PACLIC 32

Automatic Identification of Indicators of Compromise
using Neural-Based Sequence Labelling

Shengping Zhou ZiLong Lianzhi Tan Hao Guo
Mobile Internet Group, Tencent
Hans Laser Technology Centre , Shennan Ave No0.9988,
Nanshan District, Shenzhen City, Guangdong Province, 518057, China

Abstract

Indicators of Compromise (IOCs) are arti-
facts observed on a network or in an operat-
ing system that can be utilized to indicate a
computer intrusion and detect cyber-attacks in
an early stage. Thus, they exert an impor-
tant role in the field of cybersecurity. How-
ever, state-of-the-art IOCs detection systems
rely heavily on hand-crafted features with ex-
pert knowledge of cybersecurity, and require a
large amount of supervised training corpora to
train an IOC classifier. In this paper, we pro-
pose using a neural-based sequence labelling
model to identify IOCs automatically from re-
ports on cybersecurity without expert knowl-
edge of cybersecurity. Our work is the first to
apply an end-to-end sequence labelling to the
task in IOCs identification. By using an at-
tention mechanism and several token spelling
features, we find that the proposed model is
capable of identifying the low frequency IOCs
from long sentences contained in cybersecu-
rity reports. Experiments show that the pro-
posed model outperforms other sequence la-
belling models, achieving over 88% average
F1-score.

1 Introduction

Indicators of Compromise (IOCs) are forensic arti-
facts that are used as signs when a system has been
compromised by an attacker or infected with a par-
ticular piece of malware. To be specific, IOCs are
composed of some combinations of virus signatures,
IPs, URLSs or domain names of botnets, MD5 hashes
of attack files, etc. They are frequently described

849

in cybersecurity reports, much of which are written
in unstructured text, describing attack tactics, tech-
nique and procedures, and can be utilized for early
detection of future attack attempts by using intru-
sion detection systems and antivirus software. With
the rapid evolvement of cyber threats, the IOC data
are produced at a high volume and velocity every
day, which makes it increasingly hard for human
to gather and manage them. A number of systems
are proposed to help discover and gather malicious
information and IOCs from various types of data
sources (Zhu and Dumitras, 2016; Liao et al., 2016;
Husari et al., 2017; Huang et al., 2017; Kwon et al.,
2017; Zhu and Dumitras, 2018). However, most of
them identify IOCs by using human-crafted features
that heavily rely on specific language knowledge
such as dependency structure, and they often have to
be pre-defined by experts in the field of the cyberse-
curity. Furthermore, they need a large amount of an-
notated data used as the training data to train an IOC
classifier. Those training data are frequently diffi-
cult to be crowed-sourced, because non-experts can
hardly distinguish IOCs from those non-malicious
IPs or URLSs. Thus, it is a time-consuming and labo-
rious task to construct such a system.

In this paper, we propose using an end-to-end
neural sequence labelling model to fully automate
the process of I0Cs identification. Among the pre-
vious studies of the neural sequence labelling task,
Huang et al. .(2015) proposed using a sequence la-
belling model based on the bidirectional long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) for the task of name entity recogni-
tion (NER). Chiu and Nichols (2016) and Lample

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

et al. .(2016) proposed integrating LSTM encoders
with character embedding and the neural sequence
labelling model to achieve a state-of-the-art perfor-
mance on the task of NER. Besides, Dernoncourt et
al. (2017) and Jiang et al. (2017) proposed applying
the neural sequence labelling model to the task of
de-identification of medical records. To the best of
our knowledge, we are the first to apply an end-to-
end sequence labelling to the task of I0Cs identifi-
cation in cybersecurity.

The proposed approach is on the basis of
an artificial neural networks (ANN) with bidi-
rectional LSTMs and Conditional Random Fields
(CRF) (Lafferty et al., 2001), which shows promis-
ing results for named entity recognition (Lample et
al., 2016; Dernoncourt et al., 2017). Considering
that sentences of cybersecurity reports are different
from those news articles and patient notes, which al-
ways contain a large number of tokens, and some-
times lists of IOCs with little context, we make use
of an attention mechanism that helps LSTM to en-
code the input sequence accurately. We further in-
troduce several token spelling features to the ANN
model so that the proposed model can perform well
even with a very small amount of training corpora.
Based on the results of our experiments on En-
glish cybersecurity reports, our proposed approach
achieved an average precision of 90.4% and the re-
call of 87.2%.

2 Model

Figure 1 shows the components (layers) of the pro-
posed neural network architecture.

2.1 Input Embedding Layer

The input embedding layers takes a token as input
and outputs its vector representation. Similar to the
work of Lample et al. (2016), the output vector re-
sults from the concatenation of two different types
of embeddin: the first one directly maps a token to
a vector, while the second one outputs a character-
level token encoder.

As shown in Figure 1, given an input sequence
of tokens x1,...,x,, each token x; (z = 1,...,n)
is mapped to a token embedding V;(x;) with the
mapping of token embedding V;(-). The token em-
bedding is pre-trained on large unlabeled datasets,

850

and is learned jointly with the rest of the model.
Then, let z;1,..., ;) be the sequence of char-
acters that comprise the token x;, where () is the
number of characters in z;. Each character x; ;
(j = 1,...,1(7)) is mapped to a character embed-
ding V.(z;,) using the mapping of character em-
bedding V.(-). The character embedding is ran-
domly initialized and also jointly learned during the
training process. Then the vector V.(z; ;) is passed
to a bidirectional LSTM, which outputs a forward
character-based token embedding b; and a back-
ward embedding (E Finally, the output e; of the
input embedding layer for the i token x; is the con-
catenation of the token embedding V;(z;) and the

character-based token embeddings b;, b;.

2.2 Token LSTM Layer

The token LSTM layer takes the sequence of em-
beddings e; (¢ = 1,...,n) as input, and outputs a
sequence p;(i = 1,...,n), where the t*" element of
p; represents the probability that the i*" token has
the label ¢.

Different from the previous work of name entity
recognition in news articles or patient notes, sen-
tences from a cybersecurity report often contain a
large number of tokens as well as lists of IOCs
with little context, making it much more difficult for
LSTM to encode the input sentence correctly. Con-
sidering that tokens cannot contribute equally to the
representation of the input sequence, we introduce
an attention mechanism to extract such tokens that
are crucial to the meaning of the sentence. Then,
we aggregate the representation of those informative
words to form the vector of the input sequence. The
attention mechanism is similar to the one proposed
by Yang et al. (2016), which is defined as follows:

u = tanh(thi + bw)
___onuuy)

! > exp(u;-'—uw)

S =

Z Odihl'

That is to say, we first compute the u; as a hidden
representation of the hidden states of LSTM h; for
it" input token, i.e., h; = [Kz, ﬁl] Then, we mea-
sure the importance of the i* token with a trainable
vector u,, and get a normalized importance weight

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

12

\XIH \ xi,tT(Q

charactersin the it token

iToken i
ILSTM !
ilayer feature(x;) E
| ! i
| N — |
| :O:‘_ Token :
! N i
? X T S i
i Character LSTM E
Input / O Q_. - 5
'embeddings V; !
ayer Character embeddings VJ i

Figure 1: ANN model of sequence labeling for IOCs automatic identification

«; through a softmax function. After that, the sen-
tence vector s is computed as a weight sum of h;
(¢ = 1,...,n). Here, weight matrix W,,, bias b
and vector u,, are randomly initialized and jointly
learned during the training process. Noted that each
input sentence merely has one sentence vector s as
its weighted representation, and s is then used as a
part of each outputo; (2 = 1,...,n).

Furthermore, we introduce some spelling features
to defined IOCs to improve the performance of the
proposed model on a very small amount of training
data. Here we define several token spelling features
and map each token z; (x = 1,...,n) to a vector
feature(x;), where the ¢*" element of feature(x;)
represents the value of the ¢'" feature of token x;.
Noted that the hand-crafted token spelling features
are only applied to initialization, and values of fea-

851

tures are jointly learning during the process of train-
ing.

As shown in Figure 1, the vectoro; (1 = 1,...,n)
is a concatenation of the i LSTM hidden states
h;, the sentence vector v and the feature vector
feature(z;). Each vector o; is then given to a
feed-forward neural network with one hidden layer,
which outputs the corresponding probability vector
Di-

2.3 CRF Layer

We also introduce a CRF layer to output the most
likely sequence of predicted labels. The score of a
label sequence y;(¢ = 1,...,n) is defined as the
sum of the probabilities of unigram labels and the

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Table 1: Statistics of datasets

training ‘ validation set | test set
attacker 5,304 1,067 1,609
attack method 2,737 610 882
attack target 3,055 1,055 695
domain 6,443 1,054 1,701
e-mail address 1,284 154 222
file hash 10,367 2,055 2,459
file information 4,353 1,024 1,131
IPv4 3,012 729 819
malware 7,317 1,585 1,974
URL 1,849 105 156
vulnerability 1,557 309 359
tokens 1,169,896 253,336 350,406
paragraphs 6,702 1,453 2,110
articles 250 70 70

bigram label transition probabilities:

s(y) =Y pilvl + Y Tlyy-1, 4]
=1 =2

where T is a matrix that contains the transition prob-
abilities of two subsequent labels. Vectors p; is the
output of the token LSTM layer, and T'[g, h| is the
probability that a token with label g is followed by
a token with the label h. Subsequently, these scores
are turned into probabilities of the label sequence by
taking a softmax function over all possible label se-
quences.

3 Evaluation

3.1 Datasets

As English data, we crawled 687 cybersecurity arti-
cles from a collection of advanced persistent threats
(APT) reports which are published from 2008 to
2018'. All of those cybersecurity articles are used
to train the word embedding. Afterwards, we ran-
domly selected 370 articles, and manually annotate
the IOCs contained in the articles. Among the se-
lected articles, we randomly select 70 articles as the
validation set and 70 articles as the test set; the re-
maining articles are used for the training set. Table 1
shows statistics of the datasets. The output labels are

"https://github.com/CyberMonitor/APT_
CyberCriminal_Campagin_Collections

852

annotated with the BIO (which stands for “Begin”,
“Inside” and “Outside”) scheme.

3.2 Token Spelling Features

Table 2 lists all the spelling features for a given to-
ken.

Values of features are then formed as a vector, and
are concatenated with the LSTM hidden state vec-
tor and the sentence vector of attention in the token
LSTM layer? as shown in Section 2.2.

3.3 Training Details

For pre-trained token embedding, we apply
word2vec (Mikolov et al., 2013) to all crawled
687 English APT reports described in Section 3.1
using a window size of 8, a minimum vocabulary

>We concatenate the feature vector at different locations in
the proposed model, i.e., the input of the token LSTM layer
(ei = [Va(zi); b_l)-;bi; feature(zx;)]), the hidden state of the
token LSTM (h;; = [h;; h;; feature(x;)]), and the output of
token LSTM (o; = [hs;s; feature(z;)]). Among them the
third alternative achieved the best performance. We speculate
that spelling features played an important role in the task of
IOCs identification and feature vectors near the output layer was
able to improve the performance more significantly than those
at other locations.

*http://data.iana.org/TLD/
tlds-alpha-by-domain.txt

‘nttps://www.microsoft.com/en-us/
security/portal/mmpc/shared/malwarenaming.
aspx

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

Table 2: token spelling features

features H definition

IPv4 feature
the port.

Return 1 when the token contains 4 digits (<256) and maybe a digit as

domain feature

Return 1 when the token has an identified top-level domain

3

hash feature
40 or 64.

Return 1 when the token is a hexadecimal string with the length of 32,

URL feature

Return 1 when the token matches a regular expression
http(s)2:\\[0-9a-zA-Z_\.\-\\]1+.

vulnerability feature

Return 1 when the token matches a regular expression
CVE-[0-9]{4}-[0-9]{4,6}.

file information feature

Return 1 when the token matches a regular expression
[a—zA-Z]{1}:\\[0-9a-zA-Z_\.\-\\]+

e-mail address feature

Return 1 when the token contains a string that matches a regular expres-
sion [0-9a—-zA-Z_\.\—-]+, the “@” and a domain.

malware feature
common delimiter®

Return 1 when the token starts with the malware type, and contains the

other features

Return 1 when the token contains digits.

Return 1 when the token merely consists of digits.

Return 1 when the token contains alphabets.

Return 1 when the token merely consists of alphabets.

Return 1 when the token contains both digits and alphabets.

Return 1 when the token merely consists of digits and alphabets.

tained.

Return 1 when the token contains

)

and return the number of “.” con-

contained.

Return 1 when the token contains “\” and return the number of “\”

contained.

Return 1 when the token contains “@” and return the number of “@”

tained.

Return 1 when the token contains

17T

and return the number of “:” con-

count of 1, and 15 iterations. The negative sampling
number of word2vec is set to 8 and the model type
is skip-gram. The dimension of the output token
embedding is set to 100.

The ANN model is trained with the stochastic
gradient descent to update all parameters, i.e., to-
ken embedding, character embedding, parameters
of bidirectional LSTMs, weights of attention, token
features, and transition probabilities of CRF layers
at each gradient step. For regularization, the dropout
is applied to the character-enhanced token embed-
ding before the token LSTM layer. Further training
details are given below: (a) Dimensions of character
embedding, hidden states of character-based token

853

embedding LSTM, and hidden states of label predic-
tion LSTM are set to 25, 25, and 100, respectively.
(b) All of the LSTMs parameters are initialized with
a uniform distribution ranging from -1 to 1. (c) We
train our model with a fixed learning rate of 0.005.
We compute the average F1-score of the validation
set by the use of the currently produced model after
every epoch had been trained, and stop the training
process when the average F1-score of validation set
fails to increase during the last ten epochs. We train
our model for, if we do not early stop the training
process, 100 epochs as the maximum number. (d)
We rescale the normalized gradient to ensure that its
norm does not exceed 5. (e) The dropout probability

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

Table 3: evaluation results (micro average for 11 labels)

] Models H Precision \ Recall \ F1-score ‘

| Baseline | 471] 588 | 523 |
Huang et al. (2015) 64.8 33.6 51.6
Lample et al. (2016) 83.0 75.2 78.9
Rei et al. (2016) 81.6 74.5 77.9
Our model H 90.4 ‘ 87.2 ‘ 88.8 ‘

Table 4: evaluation results for each labels (Precision / Recall / F1-score)

Lample et al. (2016) Our model Our model without

additional features
attacker 89.2/66.5/178.1 94.7/73.6/82.8 | 94.2/70.6/80.7
attack method 78.0/67.7/74.8 72.5/92.0/91.1 | 93.2/85.8/89.3
attack target 81.2/66.5/76.1 90.2/87.8/89.0 | 88.6/86.4/87.5
domain 67.0/64.3/65.6 91.2/953/93.2 | 829/61.3/70.5
e-mail address 63.8/20.7/31.3 93.8/92.5/93.2 | 83.3/40.3/54.3
file hash 85.9/97.7/91.4 88.3/99.9/93.7 | 89.0/98.5/93.5
file information 72.4167.7/70.0 78.7/80.2/79.4 | 83.3/58.9/69.0
1Pv4 77.6/76.1/76.9 83.7/96.3/89.6 | 83.6/95.2/89.0
malware 74.4/161.4/67.2 95.6/56.9/71.3 | 85.6/56.0/67.7
URL 98.2/94.1/96.1 99.2/94.1/96.6 | 98.2/93.1/95.6
vulnerability 87.7/88.9/88.3 95.5/955/95.5 | 953/94.1/94.7
micro average | 83.0/752/78.9 [90.4/87.2/88.8 | 90.0/78.8/84.0

issetto 5.

We train the ANN model on the training set. The
training time is around 10 hours when using the de-
scribed parameters on an 8-CPU machine.

3.4 Results

As shown in Table 3, we report the micro average
of precision, recall and F1-score for all 11 types of
labels for a baseline as well as the proposed model.
As the baseline, we simply judge the input token as
IOCs on the basis of the spelling features described
in Section 3.2° . As presented in Table 3, the score
obtained by the proposed model is clearly higher
than the baseline.

Furthermore, we quantitatively compare our study
with other works of name entity recognition, i.e., the
work of Huang et al. (2015), the work of Lample et
al. (2016) and the work of Rei et al. (2016). We

SFor types of “attacker”, “attack method” and “attack tar-
get”, only tokens that appeared in the training set are identified
by the baseline.

854
32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

Figure 2: Impact of the training set size on F1-score

95.0 88.1 88.3 885 886 88.7 88.8 888
90.0 . - - S P - P ®
85.0
79.0 785 789
L 800 // 759 772 775 180
o) 750 725
3 68.3
700
E 65.0 623 —e—our model
60.0 Lample et al. (2016)
55.0
15% 30% 40% 50% 60% 70% 80% 90% 100%

training set size (%)

train these models by employing the same training
set and training parameters as the proposed model.
As shown in Table 3, the proposed model obtains
the highest precision, recall and F1-score than other
NER models in the task of IOCs extraction. Com-
pared with the second-best model of Lample et
al. (2016), the performance gain of the proposed
model is approximately 7.4% of precision, 12.0% of

PACLIC 32

Table 5: Examples of correct identification by the proposed model

attack method
Reference

The shellcode excuted by this command is the same as in the delivery documents as
well, specifically taken from Metasploit to obtain additional shellcode to execute using

an HTTP request to the following URL http://www7.chrome-up.date/0mSEE .

artack method

url

attack method
Our model

The shellcode excuted by this command is the same as in the delivery documents as
well, specifically taken from Metasploit to obtain additional shellcode to execute using

an HTTP request to the following URL http://www7.chrome-up.date/0m5SEE .

attack method

url

attack method
Lample et al. (2016)

The shellcode excuted by this command is the same as in the delivery documents as
well, specifically taken from Metasploit to obtain additional shellcode to execute using

an HTTP request to the following URL http://www7.chrome-up.date/Om5EE .

attack method

(failed to extract the malicious url)

Another ASCII string can be discovered in the DLL's config, MDDEFGEGETGIZ,

Reference which likely pertains to the specific KeyBoy campaign, or target.
attacker
Another ASCII string can be discovered in the DLL's config, MDDEFGEGETGIZ,
Our model

which likely pertains to the specific KeyBoy campaign, or target.

attacker

Lample et al. (2016)

Another ASCII string can be discovered in the DLL's config, MDDEFGEGETGIZ,

which likely pertains to the specific KeyBoy campaign, or target.

(erroneously identified as file information)

attacker

recall and 9.9% of the F1-score. Table 4 shows the
comparison of scores of each label between Lample
et al. (2016) and out proposed models. Based on
Table 4, the proposed model achieves better perfor-
mance for every label, which proves the effective-
ness of the proposed model.

To prove the effectiveness of the spelling features,
we further compare the proposed model with the
model without spelling features. As shown in Ta-
ble 4, the model with features obtains slightly lower
scores of precision for some types of labels, and ob-
viously higher scores of recall and F1-score for all
types of labels. This is mainly because parts of the
IOC:s in the test set are newly introduced and appear
infrequently. Therefore, the model without spelling
features fails to identify those low frequency 10Cs
for the lack of context information, while the pro-
posed model correctly identifies those I0Cs using
spelling features as extra information. However,
model with hand-crafted spelling features may cause
more extraction of false positives, i.e., tokens that

855

have similar to IOCs but are not malicious. The
problem is expected to be solved by the introduc-
tion of some context features for IOCs tend to be de-
scribed in a simple and straightforward manner with
a fixed set of context tokens (Liao et al., 2016).

Moreover, Figure 2 shows the impact of the train-
ing set size on the performance of the models. When
the training set size is rather limited, the proposed
model achieves a greater improvement on F1-score
the Lample et al. (2016), since the proposed model
uses spelling features as extra information to iden-
tify IOCs that have little context information.

Table 5 compares several examples of correct IOC
extraction produced by the proposed model with one
by the work of Lample et al. (2016). In the first ex-
ample, the model of Lample et al. (2016) fails to
identify the malicious URL “http://www7.chrome-
up.date/OmSEE”, because the token only appears in
the test set and consists of several parts that are un-
common for URLs, such as “www7” and “date”,
and thus both the token embedding and the char-

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

acter embedding lack proper information to repre-
sent the token as a malicious URL. The proposed
model correctly identifies the URL, where the to-
ken is defined as a URL by spelling features and is
then identified as a malicious URL by the use of the
context information. In the second example, token
“MDDEFGEGETGIZ” is erroneously identified as
the name of a malicious file by the model of Lample
et al. (2016) because of the context “DLL’s config”
before the token that tends to co-occur with names
of files. The token is correctly identified by the pro-
posed model, because the token fails to match the
regular expression of file information, and is conse-
quently not considered as a name of a malicious file.

4 Related Work

NLP in cybersecurity Few references in cyber se-
curity utilize natural language processing. Neuhaus
and Zimmermann (2010) analyze the trend of vul-
nerability by applying latent Dirichlet allocation to
vulnerability description. Liao et al. (2016) put for-
ward a system to automatically extract IOC items
from blog posts. Husari et al. (2017) proposed a sys-
tem that automatically extracted threat actions from
unstructured threat intelligence reports by utilizing a
pre-defined ontology. A concurrent work by Zhu et
al. (2018) automatically extracted IOC data from se-
curity technical articles and further categorized them
into different stages of malicious campaigns. All
of those systems consist of several components that
rely heavily on manually defined rules, while our
proposed model is an end-to-end model using word
embedding and spelling features as input, which is
more general and applicable to a broader area.

Neural NER models There are amount of ANN-
based works in the area of named entity recogni-
tion. Collobert et al. (2001) described one of the
first task-independent neural tagging models on the
basis of convolutional neural networks. Hammer-
ton (2003) first proposed NER with LSTM. Huang
et al. (2015) proposed a bidirectional LSTM model
with a CRF layer, including hand-crafted features
specialized for the task of NER. Lample et al. (2016)
described a model where the character-level repre-
sentation was concatenated with word embedding
and Rei et al. (2016) improved the model by intro-
ducing an attention mechanism to the character-level

856

representations. Dernoncourt et al. (2017) proposed
applying the neural sequence labelling model to the
task of de-identification of medical records. One
appealing property of those works is that they can
achieve excellent performance with a unified archi-
tecture and without task-specific feature engineer-
ing. It remains unclear that whether such works can
be used for tasks without large amounts of training
data. Several works such as Yang et al. (2017) and
Lee et al. (2018) proposed applying transfer learning
to NER using a limited number of training corpora.
Nevertheless, a large dataset that has same labels
as the small training dataset is required for transfer
learning, which is hard to obtain in the field of cyber-
security. In this paper, we introduce several spelling
features which use no expert knowledge of cyberse-
curity to the neural model, and achieve an excellent
performance even using a small dataset for training.

5 Conclusions

To conclude, in this paper, we propose a neural
based sequence labelling model capable of iden-
tifying IOCs automatically from APT security re-
ports. Utilizing an attention mechanism and several
spelling features, we find that the proposed model
can correctly identify low frequency IOCs with a
small amount of training corpora. Based on the eval-
uation results of our experiments on English APT
reports, our proposed approach performs better than
other sequence labelling models with an average
precision of 90.4% and recall of 87.2%.

To avoid the problem caused by the spelling fea-
tures described in Section 3.4, one of our significant
future work is to integrate several context features.
Another important future work is to adapt the pro-
posed model to another new language. Even though
security articles are written in different languages,
most of the IOCs are written in English. Our prelim-
inary experiments demonstrate that models trained
with English texts can identify parts of IOCs from
a Chinese text using cross-lingual words embedding
obtained by the work of Duong el al (2016). It can
be a quick way to adapt the model to a new language
with minimal or no data, and the performance of the
proposed model is expected to be improved by ex-
tending the training dataset using multilingual cor-
pora.

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

PACLIC 32

References

J. P.C. Chiu and E. Nichols. 2016. Named entity recogni-
tion with bidirectional LSTM-CNNSs. Transactions of
the Association for Computational Linguistics, 4:357—
370.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2001. Natural lan-
guage processing (almost) from scatch. The Journal
of Machine Learning Research, 12:2493-2537.

F. Dernoncourt, J. Y. Lee, O. Uzuner, and P. Szolovits.
2017. De-identification of patient notes with recurrent
neural networks. Journal of the American Medical In-
formatics Association, 24(3):596-606.

L. Duong, H. Kanayama, T. Ma, S. Bird, and T. Cohn.
2016. Learning crosslingual word embeddings with-
out bilingual corpora. In Proc. EMNLP 2016, pages
1285-1295.

J. Hammerton. 2003. Named entity recognition with
long short-term memory. In Proc. CONLL 2003, pages
172-175.

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. Neural computation, 9(8):1735-1780.

Z. Huang, W. Xu, and K. Yu. 2015. Bidirectional Istm-
crf models for sequence tagging. arXiv:1508.01991.

C. Huang, S. Hao, L. Invernizzi, J. Liu, Y. Fang,
C. Kruegel, and G. Vigna. 2017. Gossip: automati-
cally identifying malicious domains from mailing list
discussions. In Proc. ASIA CCS 17, pages 494-505.

G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu.
2017. TTPDrill: automatic and accurate extraction of
threat actions from unstructured text of cti sources. In
Proc. ACSAC 2017, pages 103—112.

Z. Jiang, C. Zhao, B. He, Y. Guan, and J. Jiang. 2017.
De-identification of medical records using conditional
random fields and long short-term memory networks.
Journal of Biomedical Informatics, 75:5S43-S53.

B. J. Kwon, V. Srinivas, A. Deshpande, and T. Dumitras.
2017. Catching worms, trojan horse and PUPs: un-
supervised detection of silent delivery campagins. In
Proc. NDSS 17.

J. Lafferty, A. McCallum, and F. C.N. Pereira. 2001.
Conditional random fields: probabilistic models for

segmenting and labeling sequence data. In Proc.
ICML 2001, pages 282-289.
G. Lample, M. Ballesteros, S. Subramanian,

K. Kwakami, and C. Dyer. 2016. Neural archi-
tectures for name entity recognition. In Proc. NAACL
2016, pages 260-270.

J. Y. Lee, F. Dernoncourt, and P. Szolovits. 2018. Trans-

fer learning for named-entity recognition with neural
networks. In Proc. LERC 2018, pages 4471-4473.

857

X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah.
2016. Acing the ioc game: toward automatic discov-
ery and analysis of open-source cyber threat intelli-
gence. In Proc. CCS 16, pages 755-766.

T. Mikolov, I. Sutskever, K. Chen, G. S Corrado, and
J. Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111—
3119.

S. Neuhaus and T. Zimmermann. 2010. Security trend
analysis with CVE topic model. In IEEE 21st Inter-
national Symposium on Software Reliability Engineer-
ing, pages 111-120.

M. Rei, G. K. O. Crichton, and S. Pyysalo. 2016. Attend-
ing to characters in neural sequence labeling models.
In Proc. COLING 2016.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and
E. Hovy. 2016. Hierarchical attention networks for
document classification. In Proc. NAACL-HLT 2016,
pages 1480-1489.

Z. Yang, R. Salakhutdinov, and W. W. Cohen. 2017.
Transfer learning for sequence tagging with hierarchi-
cal recurrent networks. In Proc. ICLR 2017.

Z.Zhu and T. Dumitras. 2016. FeatureSmith: automat-
ically engineering features for malware detection by
mining the security literature. In Proc. CCS 16, pages
767-T78.

Z. Zhu and T. Dumitras. 2018. ChainSmith: automat-
ically learning the semantics of malicious campaigns
by mining threat intelligence reports. In Proc. Eu-
roS&P 2018.

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors

