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Abstract

This paper proposes introducing domain adap-
tation into Japanese predicate-argument struc-
ture (PAS) analysis. Our investigation of a
Japanese balanced-corpus revealed that the
distribution of argument types is different
across text media, particularly the difference
is significant when the argument is exophoric.
The past Japanese PAS analysis research has
disregarded this tendency. We start with
an RNN-based PAS analyzer as a baseline,
extending it by introducing three kinds of
domain-adaptation techniques and their com-
binations. The evaluation experiments using
a Japanese balanced-corpus (BCCWIJ) con-
firmed that the domain-adaptation is effective
for improving the performance of the Japanese
PAS analysis.

1 Introduction

Predicate-argument structure (PAS) analysis is the
task to identify the argument for each case of the
target predicate. As it is a fundamental analysis for
various natural language processing (NLP) applica-
tions, the PAS analysis has been one of the most
active research areas in NLP. In discourse-oriented
languages like Japanese, the target language of the
present study, arguments are often omitted from the
sentence [Kayamal (2003). Those omitted arguments
are considered as zero-pronouns or exophora.
(1) meiru-o kaite  okuttayo. yondene.
mailycc wrote,, sent,, read,,,/imperative
I wrote a mail to you and sent it to you. Read it.
For instance, example (1) has three predicates
(v1, v2 and wv3) and one explicit argument (mail).
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predicate\ case =~ NOM ACC DAT

V1. wWrote [writer] mail [reader]
V! sent [writer]  (mail) [reader]
v3: read [reader] ((mail)) none

Table 1: PAS analysis result for example (1)
The PAS analysis result of example (1) looks like
Table |1} where the elements enclosed with square
brackets are exophoric, the round bracketed is an
intra-sentential zero-anaphora and the double round
bracketed is an inter-sentential zero-anaphora. The
accusative argument of v1, “meiru-o (mail)”, is ex-
plicitly marked by the case marker “o0” and has a
dependency relation with v1, which is indicated by a

bare noun, i.e. without any bracket.

Although the Japanese PAS analysis is similar
to the semantic role labeling (SRL) (Zhou and Xu,
2015; He et al., 2017), it also involves anaphora res-
olution for zero-pronouns and exophora to identify
the argument for every case of the predicate, which
corresponds to filling the bracketed elements in Ta-
ble We also find omitted arguments in other
pro-drop languages such as Chinese, Turkish, and
some null-subject languages in the Romance lan-
guages (lida and Poesio, 2011} [Rello et al., 2012
Chen and Ng, 2016} |Y1n et al.,[2017).

The past Japanese PAS analysis utilizes vari-
ous features obtained from the morphological and
syntactic analysis (Matsubayashi and Inui, 2017;
Hayashibe et al., 2011; Imamura et al., 2014; [Shi-
bata et al.,|2016;|/Ouchi et al.|[2015;|Yoshikawa et al.}
2013}, Taira et al., 2008). The recent approach in-
cludes the end-to-end approach that does not require
any intermediate analysis (Ouchi et al., 2017).
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The contribution of the present paper to the
Japanese PAS analysis is twofold. Firstly we sub-
categorize the exophora into fine-grained classes,
namely, the exophoric text writer (exo1), reader
(ex02) and the other entity (exoX). Example (2) de-
picts the necessity of the subcategorization.

(2) sandoitti taberu.
sandwich eat
I eat sandwich. / Do you eat sandwich?

Both the exophoric speaker (exo1) and hearer (ex02)
can be the nominative argument of the verb “eat”
and accordingly the sentence meaning is different.
To distinguish these two meanings, the subcatego-
rization of the exophora is necessary.

Secondly, we introduce domain-adaptation tech-
niques into the Japanese PAS analysis. |Surdeanu
et al.[(2008) and Hajic et al.|(2009)) reported that the
SRL performance degraded when the domains were
different between the training and testing data. [Yang
et al.|(20135)) tackled this problem by introducing the
domain adaptation into a deep learning method. As
most of the past studies of the Japanese PAS anal-
ysis targeted a mono-type of texts, i.e. newspaper
articles, the domain adaptation did not matter, ex-
cept for[Imamura et al.| (2014). They trained the PAS
analyzer for dialogues by using newspaper articles.
However, pairs of other media types have not been
investigated yet. In contrast, we target various types
of Japanese texts; we use Balanced Corpus of Con-
temporary Written Japanese (BCCWJﬂ (Maekawa
et al [2014) for evaluation. BCCWJ contains 100
million words that were systematically collected
from several source media such as newspaper arti-
cles (PN), books (PB), magazines (PM), white pa-
pers (OW), QA texts in the Internet (OC) and blog
texts (OY). We use the core data set of BCCWJ
consisting of about two million words annotated
with co-reference and predicate-argument relations
for nominative, dative and accusative cases. As
we describe in the next section, the distribution of
exophoric arguments is notably different over the
source media; thus consideration of the difference
in the source media is necessary.

We start with a recurrent neural network (RNN)-
based base model and extend it by introducing the

1http: //pj.ninjal.ac. jp/corpus_center/
bccwj/en/
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following five kinds of domain adaptation. (1) The
fine-tuning method trains the model with the entire
training data and uses the learnt parameters as the
initial parameter values for the second stage learning
with the target-domain training data. (2) The fea-
ture augmentation method trains a shared network
and domain-specific networks simultaneously (Kim
et al., 2016). (3) The class probability shift method
skews the output probability of the network based
on the prior probability distribution of the argument
types across the domains. (4) The voting method
determines the output by the majority of the above
three methods. (5) The mixture method combines
the fine-tuning method, the feature augmentation
method and the class probability shift method into
a single method. We describe the details of each
method in section

2 Problem setting

2.1 Argument type

The past Japanese PAS analysis targeted various
combinations of argument types. Table |2| summa-
rizes the previous studies and their target argument
types. The table header represents the classifica-
tion of arguments from a linguistic viewpoint. Ar-
guments are divided into endophora and exophora
depending on whether they appear in the text or not.
The endophoric arguments are further divided into
intra- and inter-sentential arguments depending on
whether they appear in the same sentence as the
predicate. Some intra-sentential arguments have a
dependency relation with the predicate, but this is
not always the case. We call the latter case intra-
sentential zero-anaphora. Since the inter-sentential
arguments do not have a dependency relation with
the predicate, they are also zero-anaphoric. As we
described in the previous section, we divide the ex-
ophoric arguments into three subcategories: writer,
reader and the other entity. In what follows, we use
the labels shown in Table [2] for denoting argument
types. The label none indicates that the predicate
takes no argument for that case. For instance, in-
transitive verbs do not take an accusative argument;
thus the accusative case of intransitive verbs should
be filled with none.

Table [2| shows that the inter-sentential arguments
were tackled by the fewer studies than the intra-
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Table 2: Target argument types of the past studies

sentential arguments. Identifying the inter-sentential
arguments requires searching in larger space com-
pared with the intra-sentential arguments, and thus
the problem becomes more difficult. Unlike the
inter-sentential arguments, identifying the exophoric
arguments, in particular, the exo1 and exo2 argu-
ments do not drastically increase the search space.
They are easy to be introduced into the PAS an-
alyzer (Shibata et al., 2016; Hangyo et al.l [2013])).
There are, however, variations in the exoX argument
treatment. [Hangyo et al.| (2013) and Imamura et al.
(2014) assume a single category for exoX, while
Sasano and Kurohashi| (2011) identifies a named-
entity class of the exophoric entity. [Imamura et al.
(2009) does not distinguish the subcategories of the
exophoric arguments and the none argument. This
fact is indicated by A in Table In this present
study, we target the intra-sentential arguments to-
gether with the exophoric argument. We do not
distinguish the exoX and inter arguments; they are
treated as a single category unknown. This is the
reason for A\ at the exoX column in our work. As
the target predicates, we use those which are marked
as “predicate” with arguments in BCCWJ and event
nouns which usually become verbs when being used
with light verbs.

2.2 Domain dependency of argument type
distribution

The previous studies on the Japanese PAS analy-
sis dealt with the texts from a single “domain” in
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a broad sense; many of them used newspaper arti-
cles. We use BCCW/J for the evaluation of the pro-
posed methods, considering six source media in BC-
CWIJ (OW, PB, PM, OW, OC, QY) as independent
domains. It is probable that the characteristics of
texts are different across the source media and there-
fore the PAS analysis performance might be affected
by the domain characteristics. One of our objective
in this study is to confirm that introducing domain-
adaptation is effective for the Japanese PAS analysis.

The length of sentences is different across the
source media. The sentence length affects the dis-
tance between the predicate and its arguments. Ta-
ble 3] shows the distribution of the argument type
for each case across the six source media. The
OW texts have fewer inter-sentential arguments than
intra-sentential arguments in contrast with the other
media. We can partially explain this difference by
the average sentence length. A longer sentence has
more chance to include the arguments of the predi-
cate within the sentence. The distribution of the ex-
ophoric arguments (the shaded rows) for the nomi-
native case, in particular, that of exo1 and exo2 is
notably different across the media. Both exo1 and
ex02 in OC show quite high numbers compared with
the other domain. The OC contains QA texts that are
similar to dialogues. It is natural not to explicitly
mention a questioner (exo1) and responders (exo02).
The QY texts also show high numbers at exo1 and
exo2 but unlike OC they are skewed toward exo1,
as the blog texts are monologues.
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arg. type\ media oC oy ow PB PM PN All
case # of predicates 16,824 15,612 33,529 32,532 30,410 47,609 176,516
NOM | none 0.06 0.74 0.19 0.39 0.76 1.00 0.58
intra(dep) 3733 3586 3575 4620 4331 4306  41.11
intra(zero) 10.50 13.36 18.20 18.03 14.62 19.75 16.81
inter 18.25 13.21 8.34 18.46 21.68 18.35 16.58
exol 12.13 19.16 0.26 0.69 1.60 0.69 3.49
exo2 8.26 2.59 0.03 0.32 1.33 0.57 1.46
exoX 13.46 15.05 37.22 15.88 16.61 16.54 19.93
ACC none 62.73 69.59 4591 61.29 62.74 59.95 59.13
intra(dep) 2143 2127 4110 2841 2870 3136  30.37
intra(zero) 4.57 3.55 5.73 4.66 3.95 3.97 4.45
inter 7.06 3.59 2.24 3.48 3.07 3.14 343
exol 0.17 0.25 0.00 0.00 0.03 0.01 0.05
exo2 0.10 0.02 0.00 0.01 0.01 0.00 0.02
exoX 3.88 1.68 4.96 2.12 1.41 1.44 2.48
DAT none 80.12 87.37 87.12 81.43 85.05 85.71 84.69
intra(dep) 10.78 9.08 9.03 13.43 12.42 11.23 11.19
intra(zero) 1.97 1.15 1.65 1.90 1.20 1.44 1.55
inter 3.14 1.21 0.75 241 1.07 1.16 1.49
exol 1.42 0.36 0.00 0.02 0.04 0.01 0.18
exo2 0.75 0.17 0.00 0.02 0.03 0.03 0.11
exoX 1.81 0.67 1.42 0.79 0.17 0.37 0.78

OC: QA texts, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers

Table 3: BCCWI distribution of argument type across source media [%]

3 Deep recurrent model

We implement our Japanese PAS analyzis method
using a recurrent neural network (RNN) model con-
sisting of the following three layers.

Input layer maps each word into a feature vector.

Hidden layer is a bi-directional RNN.

Output layer has a linear function and a softmax
function for binary classification.

Since our model outputs a binary label for each word
indicating whether the word is the argument of a
case for the target predicate, we have to prepare a
model for each case. As our preliminary experiment
showed that a model solving three cases simultane-
ously was inferior to the models for each case, we
adopt the individual model for each case in this ex-
periment. We show our model in Figure[I] which is
formalized as follow:

T = w,dwsdby (1)
h! = BILSTM(Z) )
h? = linear(h') 3)
p = softmax(h?) 4)

Our model first receives a sequence of words as
an input sentence. Sequence of words {w;}{ in

the input sentence is mapped into corresponding se-
quence of feature vectors {Z;}!. Feature vector
x is made by concatenating word embedding w,,
part-of-speech (POS) embedding w; and syntac-
tic features by. The feature vector T is fed into
a bi-directional long short-term memory recurrent
neural network (BiLSTM) (Schuster and Paliwal,
1997; |Graves et al., [2005). Then BiLSTM(-) com-
putes and outputs vector h' for each word. Func-
tion linear(-) takes h' and outputs h? = (h, h3?).
Finally, Function softmax(-) takes h? and output
probability p.

3.1 Input layer

We define three types of features: word embeddings,
POS embeddings, and syntactic features.

Word embedding We use word embeddings de-
veloped from Japanese Wikipedia by [Suzuki et al.
016)[

POS embedding Each word has a hierarchical
POS tag with at most six levels. We assign a five-
dimensional random vector to each level of a POS
tag. Thus a hierarchical POS tag is represented by

2Japanese Wikipedia Entity Vector http://www.cl.
ecei.tohoku.ac. jp/-m-suzuki/jawiki_vector/

580

32nd Pacific Asia Conference on Language, Information and Computation
Hong Kong, 1-3 December 2018
Copyright 2018 by the authors


http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/
http://www.cl.ecei.tohoku.ac.jp/~m-suzuki/jawiki_vector/

PACLIC 32

memasl) &

W) 0 0 0 0 0 0 0 0 0 0
S N (R O
DN SN SN SN AN U SN AN 4

BiLSTM(.)
== === —H)

Virtual Words

[FIOFIE

exol

Ben
Ben

Sentence I I

yomu
read

( Input
t

0 1

4

8

Figure 1: Deep recurrent model for Japanese PAS analyzis

a 30-dimensional vector that is made by concatenat-
ing six vectors of each level. A POS tag vector with
less than six levels is padded by zero-vectors.

Syntactic features Syntactic features include four
kinds of features. (1) Head feature is a binary fea-
ture which indicates whether a word is the head of
a base phrase or not. (2) Position in the sentence
is an integer feature that indicates the phrase-based
distance from the beginning of a sentence. We use
the phrases annotated in the corpus. A word in the
first phrase in the input sentence has value zero for
this feature. (3) Distance from the predicate is an
integer feature which indicates the distance from the
target predicate to be analyzed. (4) Target verb is a
binary feature which indicates whether a word is the
predicate to be analyzed.

In order to allow our model to output the labels
for none, exol, exo2, and unknown, we add vir-
tual words representing them before the first word
in a sentence. We assign the feature for these virtual
words as follows.

none We set a zero vector for none.

exol We use the word embedding of “boku (1)”,
commonly-used first-person singular pronoun
in Japanese for exo1.

exo2 We use the word embedding of “omae (you)”
for exo2, which is commonly-used second-
person singular pronoun in Japanese.

unknown We use the word embedding of “kore
(this)” for unknown, which is commonly-used
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third-person singular pronoun in Japanese.

3.2 Hidden layer

In the hidden layer, the forward LSTM (LSTM/)
computes h{ by the feature vector T; and its state
h{_l for each ¢. Conversely, the backward LSTM

(LSTM?®) computes h? by the feature vector Z; and
h?,, for each t. BILSTM concatenates h{ and h?
and outputs h; for each .

h! BiLSTM(z;)
LSTM/ (z;, hi_,)
LSTM"(Z, kY., ,)

S 5)

We then feed h} into function linear(-) to obtain
two-dimensional vector h?.

h? = linear(h}) (6)

3.3 Output layer

In the output layer, our model judges whether the
word is the case argument of the target predicate.
Function softmax(-) translates two-dimensional
vector h? into a probability indicating to what de-
gree the word can be the case argument of the target
predicate.

(N

p¢ is a probability that ¢-th word is the case ar-
gument. Our model selects the word which has the
highest probability p,.

py = softmax(h?)

y = arg max(p;) )

0<t<T
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4 Domain adaptation

First, we prepare the following five baseline models.
(1) Model Each-D is trained with the data of each
media source. (2) Model 211 is trained with the en-
tire data of all media sources. (3) Model Small is
trained with the data reduced to an amount of 75%
of all media sources, which is prepared to see the im-
pact of the data size on accuracy. (4) Model out-D
is trained with the out-domain data. (5) Model
One-H is trained with the entire. We extend each
training example by adding a one-hot vector to indi-
cate its media source. This model is a baseline for
domain adaptation.

On top of these baseline models, we prepare five
domain adaptation methods as follows.

(1) Fine-tuning We train the model with the entire
data of all media sources to build the 211 model.
We then train that model with the data of the target
media source.

(2) Feature augmentation The second method
follows [Kim et al.| (2016)) in which BiLSTM™ is
prepared for each media source m in addition to
a common BiLSTM¢® covering all media sources.
This method is summarized as follows.

T = w,Dw;Dby )
ht = BILSTM™(Z) @ BiLSTM®(Z) (10)
h? = linear™(h') (11)
p = softmax(h?) (12)
We expect that the media-specific BiLSTM™

learns media-specific characteristics and the com-
mon BiLSTMF¢ learns general characteristics of the
PAS analysis. We train this model with randomly
selected batches from all media sources.

(3) Class probability shift The third method
leverages the distribution of argument types for each
case in each media source. Given a target case, we
use probability pjy that argument type ¢p appears in
the training examples of media source m for the tar-
get case. Since this probability distribution is differ-
ent among media sources, we use the difference in
this distribution as follows. We define two functions
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f™(h) and g (h) for each media source m.

m Pip
fm(h) —L o h (13)
ptp
100 — pi»
™(h) = —& - h, 14
g™ (h) 100 — pAl (14)

Where tp is one of none, exo1, exo2, unknown and
intra. Label intra includes both dependent and zero
intra-sentential arguments.

h? = (hZ, h?) is a two-dimensional vector where
h% is a probability that a word is the argument of the
predicate and h? is a probability that a word is not
the argument of the predicate.

T = w,PwsPby (15)
h! = BIiLSTM(Z) (16)
h? = linear(h') 17)
h? = (f"(h§),g™(hi)) (18)
p = softmax(h3) (19)

Equation (I8) shifts the output probability by condi-
tioning the distribution of argument types across the
media sources.

(4) Voting This method determines its output
based on the majority of the above three methods.
When the decisions split, we select the decision with
the highest probability.

(5) Mixture The last method combines the above
three methods: Fine-tuning, Feature augmentation
and Class probability shift into a single model.

S Experiment

5.1 Setting

We evaluated our models on a Japanese balanced-
corpus (BCCWJ). We divided the corpus into three
portions: 70% for training, 10% for development,
and 20% for testing. We trained each model for 10
epochs and used the best model in terms of accuracy
in the test data for evaluation.

Hyper parameter The number of dimensions of
word embeddings and POS embedding are 200 and
30, respectively. The dropout rate of BiLSTM is
0.2. The batch size is 32. Our models were opti-
mized with Adam (Kingma and Ba, 2014) in which
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Baseline Adaptation
Each-D Small All Out-D One-H | F-t F-a C-p Vote Mix
\model oC oy ow PB PM PN
target\size‘ 11,777 10,929 23,471 227773 21,287 33,327 92,674 123,564 - - - - - - -
oC 61.2 53.6 51.6 58.8 58.6 58.3 66.9 68.5 62.4 669 | 677 656 614 69.6 67.2
oY 51.7 54.1 475 52.3 52.3 52.5 61.1 60.4 58.4 63.2 | 632 615 65.6 64.0 62.8
ow 54.4 57.2 74.3 66.1 64.9 67.4 74.5 76.5 70.6 76.8 | 73.0 76.1 70.2 776 772
PB 61.6 57.2 66.1 74.0 71.4 71.1 76.8 78.8 75.1 792 | 7138 77,6 783 79.3 78.0
PM 55.0 52.3 66.2 75.5 72.9 72.8 76.3 76.4 75.1 788 | 744 787 78.0 80.0 774
PN 54.1 54.0 63.2 64.3 65.1 69.8 72.1 74.0 71.1 73.6 | 70.7 725 739 744 73.0
OC: QA tests, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers
Table 4: NOM accuracy
arg. type\ target oC oY ow

#of predicates\ model | Each-D All Vote Mix | Each-D All Vote Mix | Each-D All Vote Mix

intra(dep) 73,5 855 86.0 84.1 62.0 78.0 795 762 79.2 837 82.6 81.7

intra(zero) 323 463 46.5 458 33.7 417 46.1 43.1 33.9 407 33.1 344

exol 504 363 455 478 584 249 37.5  60.1 0.0 0.0 0.0 0.0

exo2 40.5  40.1 464  36.1 9.1 273 13.6 205 0.0 0.0 0.0 0.0

unknown 663 754 73.5 69.8 53.7 76.1 763  60.7 86.3  85.0 90.9 904

arg. type\ target PB PM PN

#of predicates\ model | Each-D All Vote Mix | Each-D All Vote Mix | Each-D All Vote Mix

intra(dep) 79.7  86.2 86.8 85.6 77.6 862 85.5 827 763 840 833 815

intra(zero) 45.0 559 53.8 529 47.1 536 52.1 447 457 51.0 47.7  48.0

exol 0.0 0.0 0.0 0.0 24 32 0.0 1.6 0.0 24 0.0 1.2

exo2 0.0 56.0 0.0 0.0 0.0 9.7 6.5 0.0 54 243 54 135

unknown 83.2 81.6 84.0 822 814 797 889 878 79.5 789 829 80.7

OC: QA tests, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers

Table 5: NOM accuracy details

a is 0.001, § is 0.9 and weight decay is 0. For fine-
tuning, weight decay is 0.0001.

5.2 Result

Table H] shows the result of each model for the nom-
inative case. Due to the page limitation, we show
only brief results of the nominative case. Appendix
includes the detailed results of all cases.

For the Each-D models, the media source of the
training data affected the accuracy. In general, the
model worked better when the training examples
and the test examples came from the same media
source, i.e. the training data is in-domain.

The 211 model performed better than the Small
model in all media sources. This reveals that the
total amount of training examples is vital to improve
the accuracy. These facts show that both the total
amount of examples and the media source should be
taken into consideration.

The 211 model performed better than the Each-D
models in all media sources. This implies that on

top of the in-domain data, more training examples
are effective even though they are out-domain.

However, removing the in-domain data from the
training data degrades the performance even using
large data. Although the training data of all out-D
models except for PI\EI is larger than that of the
Small model, the Small model worked better than
the out-D models. When the training data lacks the
data from the target media source, the data size does
not always compensate the discrepancy in domains
between the training and test data.

The A11 model and the One-H model showed no
significant difference in accuracy. It indicates that a
one-hot vector about media does not work well.

The right-hand side in Table [4] shows the result
of the domain adaptation methods: the Fine-tuning
method (F-t), the Feature augmentation method
(F-a), the Class probability shift method (C-p),

3The total amount of training examples in the Out—D
model for PN is 123, 564 — 33, 327 = 90, 237.
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media H Vote All Sentence
shiryokukaifuku-no  yoi houhou-o  oshiete  kudasai.
OC exo2 unknown | of eyesight recovery good wayacc  tell, please
Please tell me a good way to recover my eyesight.
ippai  mite eigo ganbarimasu.
oy exo1 unknown | alot  watch, English will try hard
I will watch a lot and try English hard.
Toyota Toyota shintaisei happyou.
PN unknown | Toyotanyopm  hew structurepacc  announcement,
(Toyota) .
Toyota announces its new structure.

Table 6: Examples analyzed correctly by the domain adaptation

the Voting method (Vote) and the Mixture method
(Mix). The vote model worked better than the A11
model in all media sources. Comparing the vote
models with other domain adaptation models, the
C—p model worked better than the Vote model in
the QY texts. The number of training examples in
the OY texts is the smallest among the six media
sources. The data size could be the main reason for
the low performance in OY.

Table[5|shows the accuracy of each argument type
in each media source. According to Table 3] exo2
and exo1 in OC and exo2 in OY are frequent types.
Therefore analyzing these exophoric types correctly
contributes to the total performance.

Table [5] shows the accuracy of these types im-
proved. The domain adaptation is successful for re-
solving these types of exophora.

Table [6]shows examples analyzed correctly by the
Vote model, but not by the 211 model. Target pred-
icates are shown in bold type. The OC texts contain
QA texts like dialogue. Therefore a hearer (exo1)
tends to fill the NOM case of the predicate as in “os-
hiete (tell)” in the first example. The QY texts con-
tain blog texts where speakers often write their ex-
periences. In such cases, a speaker tends to fill the
NoM case (the second example in Table [6). Unlike
these two media sources, the PN texts contain news-
paper articles. The case markers tend to be omitted
particularly in their titles in which the first phrase in
the title tends to fill the NoMm case. Our model suc-
cessfully learned this tendency as shown in the last
example.

6 Conclusion

This paper proposed effective domain adaptation
methods for Japanese PAS analysis in various do-

584

mains (media sources). We proposed an RNN-
based model as well as five domain adaptation meth-
ods. The evaluation experiments with a Japanese
balanced-corpus (BCCWIJ) confirmed that the do-
main adaptation is effective for improving the per-
formance of the analysis.
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Appendix: Experimental results

Baseline Adaptation
Each-D Small All Out-D One-H F-t F-a C-p Vote Mix
\model oC oy ow PB PM PN
target\size‘ 11,777 10,929 23471 22,773 21,287 33,327 92,674 123,564 - - - - - - -
oC 61.2 53.6 51.6 58.8 58.6 58.3 66.9 68.5 62.4 669 | 67.7 656 614 69.6 67.2
oY 51.7 54.1 47.5 52.3 52.3 52.5 61.1 60.4 58.4 63.2 | 632 615 65.6 640 628
ow 54.4 57.2 74.3 66.1 64.9 67.4 74.5 76.5 70.6 76.8 | 73.0 76.1 70.2 776 772
PB 61.6 57.2 66.1 74.0 71.4 71.1 76.8 78.8 75.1 792 | 73.8 77.6 783 793 78.0
PM 55.0 52.3 66.2 75.5 72.9 72.8 76.3 76.4 75.1 788 | 744 787 78.0 80.0 774
PN 54.1 54.0 63.2 64.3 65.1 69.8 72.1 74.0 71.1 73.6 | 70.7 725 739 744 73.0
OC: QA tests, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers
Table 7: Result for nominative case (NOM) (accuracy)
Baseline Adaptation
Each-D Small All Out-D One-H | F-t F-a C-p Vote Mix
\model oC oy ow PB PM PN
target\size‘ 11,777 10,929 23,471 22,773 21,287 33,327 92,674 123,564 - - ‘ - - - - -
oC 83.4 79.0 78.2 81.7 80.1 80.1 83.9 85.3 83.6 859 | 853 848 844 86.1 859
oY 81.0 82.4 77.6 80.3 84.0 82.9 84.9 85.8 83.9 86.2 | 838 847 858 85.8 847
ow 65.4 64.9 79.8 73.1 72.4 74.3 81.1 82.1 78.4 81.7 | 779 81.8 76.2 829 80.6
PB 84.8 83.7 83.9 86.5 85.8 86.1 88.1 88.6 88.0 89.0 | 86.6 87.8 88.6 88.3  88.8
PM 80.9 81.2 80.3 82.9 84.2 83.8 85.8 86.4 86.2 85.8 | 83.7 86.0 85.7 86.3 854
PN 71.5 78.1 80.1 79.9 81.6 83.8 85.1 85.8 84.4 85.8 | 83.8 853 855 859 852
OC: QA tests, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers
Table 8: Result for accusative case (ACC) (accuracy)
Baseline Adaptation
Each-D Small All Out-D One-H F-t F-a C-p Vote Mix
\model oC oy ow PB PM PN
target\size‘ 11,777 10,929 23,471 22,773 21,287 33,327 92,674 123,564 - - ‘ - - - - -
oC 86.8 84.6 84.0 85.9 85.9 85.6 88.7 88.7 87.3 889 | 875 879 878 89.5 88.7
oYy 90.7 91.8 91.5 91.0 92.3 91.8 92.4 92.9 91.7 923 | 92.0 922 924 925 922
ow 87.6 87.5 90.5 88.8 88.7 89.2 90.7 91.2 90.4 909 | 89.6 90.8 88.6 91.0 90.1
PB 88.3 88.1 87.6 90.3 89.8 89.2 91.0 91.2 90.6 90.8 | 90.1 904 91.0 91.1 912
PM 88.3 88.2 87.6 89.0 90.6 90.0 914 91.3 91.3 90.8 | 90.0 904 91.1 912 913
PN 89.5 90.3 90.6 89.7 91.4 91.7 92.1 92.5 91.8 924 | 91.7 919 923 923 924

OC: QA tests, OY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers

Table 9: Result for dative case (DAT) (accuracy)
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arg. type)\ target (0]
# of predicates\ model | Each-D Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none - - - - - - - - - -
intra(dep) 73.5 825 855 82.9 854 | 83.6 84.0 80.8 86.0 84.1
intra(zero) 323 458 463 39.8 458 | 43.8 443 328 46.5 458
exofl 50.4 402 363 24.0 414 | 443 366 0.0 455 478
exo2 40.5 25.8 40.1 21.8 425 | 425 508 143 464 36.1
unknown 66.3 759 754 70.5 68.5 | 72.6 663 832 73.5  69.8

arg. type)\ target oY
# of predicates\ model | Each-D Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 0.0 0.0 00 0.0 00| 00 00 00 00 00
intra(dep) 62.0 77.6  78.0 77.1 783 | 79.7 767 79.1 795 762
intra(zero) 33.7 414 417 429 454 | 439 474 444 46.1 43.1
exo1l 584 27.0 249 10.1 578 | 494 568 63.6 375  60.1
exo2 9.1 114 273 15.9 22.7 6.8 273 227 13.6 205
unknown 53.7 783 76.1 81.0 60.2 | 66.2 56.1 63.8 763 60.7

arg. type)\ target ow
# of predicates\ model | Each-D Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 0.0 0.0 00 0.0 00| 00 0.0 0.0 00 00
intra(dep) 79.2 77.8  83.7 71.3 81.5 | 732 80.3 802 82.6 817
intra(zero) 33.9 322 40.7 22.9 34.1 | 332 321 26.6 33.1 344
exol 0.0 0.0 00 0.0 00| 00 0.0 0.0 00 00
exo2 0.0 00 00 0.0 00| 0.0 0.0 100.0 00 00
unknown 86.3 88.1 85.0 83.9 89.8 | 88.0 89.9 79.5 909 904

arg. type) target PB
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 0.0 0.0 00 0.0 00| 00 00 00 0.0 00
intra(dep) 79.7 847 86.2 85.5 87.1 | 775 86.0 86.1 86.8 85.6
intra(zero) 45.0 51.1 559 51.3 544 | 452 528 545 53.8 529
exo1l 0.0 143 00 14.3 00| 00 00 00 0.0 00
exo2 0.0 16.0 56.0 24.0 00| 00 0.0 200 0.0 00
unknown 83.2 80.8 81.6 74.1 834 | 856 804 813 84.0 822

arg. type)\ target PM
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 0.0 0.0 00 0.0 00| 00 00 00 0.0 00
intra(dep) 77.6 842 86.2 85.1 86.6 | 75.1 85.1 864 85.5 827
intra(zero) 47.1 51.3 536 51.0 529 | 442 53,6 51.6 52.1 447
exo1l 2.4 24 32 5.5 0.8 1.6 08 00 0.0 1.6
exo2 0.0 9.7 97 9.7 32 | 129 129 129 65 00
unknown 81.4 82.0 79.7 78.5 85.0 | 87.7 858 839 88.9 878

arg. type) target PN
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
intra(dep) 76.3 81.0 84.0 82.5 83.7 | 783 80.6 835 83.3 815
intra(zero) 45.7 46.1 510 479 479 | 43.1 457 497 477 480
exol 0.0 6.1 2.4 7.3 1.2 0.0 8.5 0.0 0.0 1.2
exo2 5.4 27 243 2.7 54| 00 216 135 54 135
unknown 79.5 79.8 789 74.2 80.0 | 812 814 79.8 829 80.7

Table 10: Detailed result for nominative case (NOM) (accuracy)
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arg. type)\ target

oC

# of predicates\ model | Each-D Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 95.8 96.8 96.4 96.7 958 | 944 954 96.8 96.0 952
intra(dep) 73.1 76.7  80.7 79.7 82.6 | 793 793 828 81.1 82.1
intra(zero) 27.7 27.0 340 28.3 239 | 30.8 283 390 277  30.2
exol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.0
exo2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 25.0 0.0
unknown 58.4 503 55.7 41.9 64.1 | 709 61.7 38.6 66.6 65.5

arg. type)\ target (0)4
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 93.5 935 924 91.7 94.0 | 932 944 93.0 93.6 934
intra(dep) 70.3 769 824 76.5 813 | 73.6 745 823 797 77.8
intra(zero) 22.6 233 323 33.1 24.1 | 21.1  27.1 323 293  27.1
exol 0.0 0.0 0.0 0.0 16.7 0.0 333 0.0 0.0 0.0
exo2 - - - - - - - - - -
unknown 39.0 579 598 57.2 579 | 572 484 509 572 484

arg. type) target ow
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 90.8 912 904 92.5 91.6 | 93.3 909 90.3 924 90.2
intra(dep) 86.9 88.9 89.1 83.1 88.5 | 81.2 88.0 83.6 89.3 883
intra(zero) 27.6 265 289 18.9 247 | 250 278 174 293 323
exo1 - - - - - - - - - -
exo2 - - - - - - - - - -
unknown 34.8 392 518 36.8 46.5 | 31.6 51.8 209 49.7 373

arg. type) target PB
#of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 96.5 969 969 97.4 963 | 96.8 954 96.7 96.9 972
intra(dep) 80.6 86.9 875 84.5 88.1 | 80.0 873 88.2 86.6 86.4
intra(zero) 26.0 23.0 253 21.3 283 | 233 320 283 29.7  26.7
exof - - - - - - - - - -
exo2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
unknown 41.8 39.3 447 44.0 544 | 465 428 39.0 39.3  49.1

arg. type) target PM
# of predicates\ model | Each-D  Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 95.2 944 945 93.2 942 | 958 957 932 96.0 944
intra(dep) 84.9 88.8  90.0 90.3 88.7 | 81.8 87.7 90.3 884 89.0
intra(zero) 27.2 24.1 313 33.8 26.0 | 233 357 274 302 277
exol 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
exo2 - - - - - - - - - -
unknown 29.6 478 439 51.1 48.6 | 349 324 48.6 369 372

arg. type) target PN
# of predicates\ model | Each-D  Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 90.9 91.7 917 91.3 933 | 931 930 91.8 93.0 914
intra(dep) 84.4 86.2 872 84.7 86.5 | 82.7 856 874 87.0 864
intra(zero) 23.1 223 252 21.2 19.1 | 19.1 236 252 241 212
exo1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
exo2 - - - - - - - - - -
unknown 37.7 458 502 474 447 | 249 351 414 37.7 51.6

OC: QA tests, QY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers
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arg. type)\ target

oC

# of predicates\ model | Each-D Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 97.3 98.2 988 99.3 98.8 | 982 96.6 99.2 982 97.0
intra(dep) 65.9 758 717 67.9 739 | 72.8 75.0 747 78.0 715
intra(zero) 16.7 16.7 153 11.1 125 | 16.7 153 153 16.7 194
exo1l 54.9 51.0 549 0.0 588 | 60.8 549 0.0 60.8 64.7
exo2 63.2 9.1 364 22.7 50.0 | 455 0.0 318 63.6 63.6
unknown 15.8 263 221 14.7 20.5 42 379 11.1 26.3 295

arg. type)\ target (0)4
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 98.1 97.0 98.0 96.1 97.8 | 982 972 975 97.6 975
intra(dep) 60.9 782  73.6 74.7 709 | 62.8 747 73.6 75.1 694
intra(zero) 7.4 222 11.1 18.5 11.1 | 148 185 185 185 222
exo1l 0.0 7.1 0.0 7.1 7.1 00 00 7.1 0.0 143
exo2 0.0 0.0 00 0.0 00| 00 00 00 00 00
unknown 6.4 79 11.1 27.0 0.0 0.0 1.6 3.2 0.0 7.9

arg. type) target ow
# of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 98.7 98.1 98.8 98.5 98.4 | 993 98.0 953 98.7 96.3
intra(dep) 59.4 64.1  64.8 59.9 64.1 | 474 680 677 63.6 68.8
intra(zero) 7.8 10.3 8.6 8.6 11.2 5.2 9.5 112 8.6 129
exo1 - - - - - - - - - -
exo2 - - - - - - -
unknown 2.9 11.2 5.9 2.4 4.7 0.0 2.4 4.1 29 218

arg. type) target PB
#of predicates\ model | Each-D  Small All Out-D One-H | F-t F-a C-p Vote Mix
none 97.2 974 984 98.1 97.7 | 964 96.7 97.1 97.6 973
intra(dep) 76.3 814 765 75.8 783 | 79.0 826 82.1 81.3 80.2
intra(zero) 7.8 11.4 106 7.8 99 | 135 106 135 135 128
exof - - - - - - - - - -
exo2 0.0 0.0 00 0.0 00| 00 00 00 00 00
unknown 14.2 85 63 34 63 | 159 28 114 51 205

arg. type) target PM
# of predicates\ model | Each-D  Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 97.2 96.6 975 97.0 972 | 983 96.5 96.0 97.6 96.8
intra(dep) 74.7 834 778 79.4 77.0 | 65.7 781 815 78.0 79.8
intra(zero) 15.7 165 9.6 20.0 104 | 44 122 139 78 174
exol 0.0 0.0 25.0 25.0 25.0 0.0 0.0 25.0 0.0 0.0
exo2 0.0 0.0 00 0.0 00| 00 00 00 0.0 00
unknown 3.2 89 113 6.5 08| 00 24 315 08 194

arg. type) target PN
# of predicates\ model | Each-D  Small All Out-D One-H ‘ F-t F-a C-p Vote Mix
none 97.9 96.8 97.9 96.9 979 | 984 972 969 977 97.1
intra(dep) 67.0 779 733 75.8 73.0 | 633 735 785 735 717
intra(zero) 7.5 9.0 7.5 6.0 6.7 3.7 9.0 9.7 6.7 9.0
exof - - - - - - - - - -
exo2 0.0 0.0 00 0.0 00| 00 00 00 0.0 00
unknown 4.4 8.1 9.6 2.9 1.5 2.2 1.5 8.8 44 96

OC: QA tests, QY: blog texts, OW: white papers, PB: books, PM: magazines, PN: newspapers
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Table 12: Detailed result for dative case (DAT) (accuracy)





