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Abstract

The surge of social media use has triggered
huge demands of multilingual sentiment anal-
ysis (MSA) for various purposes, such as
unveiling cultural difference. So far, tradi-
tional methods resorted to machine transla-
tion (MT)—translating other languages to En-
glish, then adopted the existing methods of
English. However, this paradigm is highly
conditioned by the quality of MT. In this pa-
per, we propose a new deep learning paradigm
for MSA that assimilates the differences be-
tween languages. First, separately pre-trained
monolingual word embeddings in different
spaces are mapped into a shared embedding
space; then, a parameter-sharing deep neu-
ral network using those mapped word em-
beddings for MSA is built. The experimen-
tal results justify the effectiveness of the pro-
posed paradigm. Especially, our convolutional
neural network (CNN) model with orthogo-
nally mapped word embeddings outperforms
a state-of-the-art baseline by 3.4% in terms of
classification accuracy.

1 Introduction

The prevalence of social media has allowed the col-
lection of abundant subjective multilingual texts.
Twitter is such a particularly significant multilingual
data source providing researchers/companies with
sufficient opinion pieces on various topics/products
from all over the world. By analyzing these mul-

tilingual opinion texts, there can be many useful
applications, such as revealing the cultural varia-
tions and conducting customer surveys in different
areas. Therefore, it’s necessary to develop an effec-
tive MSA model that can process multilingual texts
simultaneously.

The research on MSA has progressed slowly com-
pared with monolingual sentiment analysis, mainly
due to the lack of a benchmark dataset that can
assess the cross-language adaptability of methods.
As many previous studies have highlighted, open-
source sentiment datasets are usually imbalanced
between different languages (Mihalcea et al., 2007;
Denecke, 2008; Wan, 2009; Steinberger et al.,
2011). There are many freely available annotated
sentiment corpora for English, but not for many
other languages. As a compromise, many of the pre-
vious multilingual corpora have been built using hu-
man/machine translation, which are not authentic.

In this study, we used the MDSU corpus as our
training/test dataset (Lu et al., 2017)1. The MDSU
corpus with 5,422 tweets in total contains three
languages, i.e., English, Japanese, and Chinese,
and involves four identical international topics, i.e.,
iPhone 6, Windows 8, Vladimir Putin, and Scottish
Independence. The multilinguality and topic distri-
bution of the corpus makes it an ideal MSA dataset.

Moreover, monolingual sentiment analysis meth-
ods are usually not portable between languages,

1The corpus can be downloaded from
https://github.com/lyjlyj517/The-MDSU-Corpus.
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since they depend on language-specific polarity lex-
icons, POS taggers and parsers, etc. This prevents
the application of many sophisticated monolingual
methods to other languages, particularly the minor
languages that lack basic NLP tools. This is also the
reason why the most typically used methods of MSA
have been based on the above-mentioned MT.

However, the MT-based paradigm is strongly con-
ditioned by the MT quality. Considering that social
media data contain many informal expressions, ac-
curate MT is basically unguaranteed. Therefore, we
proposed a new deep learning paradigm with no MT,
to integrate the processing of different languages
into a unified computation model. First, we pre-
trained monolingual word embeddings separately;
second, we mapped them into a shared embedding
space; and finally, we built a parameter-sharing2

deep neural network for MSA. A comparison be-
tween the two types of models is presented in Figure
1.

Figure 1: MT-based paradigm and the proposed deep
learning paradigm

Although the study by Ruder et al. (2016) is much
similar to ours in the use of deep learning methods,
there are two fundamental differences. On one hand,
they only input the raw monolingual word embed-
dings in their deep learning methods; however, we
used customized pre-trained word embeddings and
further transformed them into a shared space. On
the other hand, they created separate models for each

2In this paper, “parameter-sharing” specifically means that
the same model parameters are shared among different lan-
guages.

language, whereas we developed a single parameter-
sharing model for all languages.

To the best of our knowledge, this study is the first
to use a parameter-sharing deep learning paradigm
with mapped word embeddings for MSA. Using
such a paradigm, the only resources we required
were word embeddings for each language and to-
kenizers for non-spaced languages (e.g., Chinese).
With regard to the network structure, we mainly
studied CNN in this paper.

We expected this paradigm to assimilate language
differences and to make full use of the whole size
of multilingual datasets. The results showed that
our best parameter-sharing CNN model with orthog-
onally transformed word embeddings outperformed
the MT-based baseline by 6.8% and a state-of-the-art
baseline by 3.4%, thereby proving its effectiveness.

2 Related Work

In this section, we introduce MSA-related studies,
including those on multilingual subjectivity analy-
sis as well as the MSA of traditional text and social
media.

2.1 Multilingual Subjectivity Analysis

Sentiment analysis in a multilingual framework was
first conducted for subjectivity analysis. Mihalcea et
al. (2007) explored the automatic generation of re-
sources for the subjectivity analysis of a new lan-
guage (i.e., Romanian). They tested a rule-based
subjectivity classifier using a Romanian polarity lex-
icon translated from English, and Naive Bayes (NB)
classifiers on a Romanian subjectivity corpus whose
subjectivity is projected from its English counter-
part. The results revealed that the performances of
these classifiers deteriorated in Romanian compared
with them in English. Banea et al. (2010) trans-
lated the English corpus into other languages (i.e.,
Romanian, French, English, German, and Spanish)
and explored the integration of uni-gram features
from multiple languages into a machine learning ap-
proach for subjectivity analysis. They demonstrated
that both English and the other languages could ben-
efit from using features from multiple languages.
They believed that this was probably because, when
one language did not provide sufficient information,
another one could serve as a supplement.
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2.2 MSA of Traditional Text

Although there is extensive scope for improvement,
translation-based methods have inspired many stud-
ies. Denecke (2008) translated German movie re-
views into English, developed SentiWordNet-based
methods for English movie reviews, and tested the
proposed methods on the German corpus. The re-
sults revealed that the performance of the proposed
methods in MSA was similar to that in monolin-
gual settings. Wan (2009) leveraged a labeled En-
glish corpus for Chinese sentiment classification. He
first machine translated the labeled English corpus
and an unlabeled Chinese corpus, and then proposed
a co-training approach to use the unlabeled cor-
pus. His experimental results suggested that the co-
training approach outperformed the standard induc-
tive and transductive classifiers. Steinberger et al.
(2011) annotated a valuable resource for entity-level
sentiment analysis in seven European languages—
English, Spanish, French, German, Czech, Italian,
and Hungarian; however, their method using word
polarity summation alone was preliminary and de-
pended substantially on language-specific polarity
lexicons.

2.3 MSA of Social Media

Recently, the MSA of social media content
has received increasing attention. Balahur and
Turchi (2013) translated English tweets into four
languages—Italian, Spanish, French, and German to
create an artificial multilingual corpus. They tested
support vector machine (SVM) classifiers using po-
larity lexicon-based features on various combina-
tions of the datasets in different languages. The re-
sults suggested that the combined use of multilin-
gual datasets improves the performance of sentiment
classification. Volkova et al. (2013) constructed a
multilingual tweet dataset in English, Spanish, and
Russian using Amazon Mechanical Turk. They ex-
plored the lexical variations in subjective expres-
sion and the differences in emoticon and hashtag us-
age by gender information in the three different lan-
guages; their results demonstrated that gender infor-
mation can be used to improve the sentiment analy-
sis performance of each language.

2.4 Comparison with Previous Work

Our study is different from the previous studies in
the following ways. First, in multilingual datasets
from previous studies, datasets of languages other
than English have been projected from the English
dataset. Banea et al. (2010) and Balahur and Turchi
(2013) have used MT to obtain texts in target lan-
guages, which are considerably noisy. Mihalcea et
al. (2007) and Denecke (2008) have directly used
parallel corpora to eliminate this noise. However,
real multilingual opinion texts would not be in the
form of parallel corpora because users usually give
their opinions in one language. By contrast, tweets
in different languages in the MDSU corpus are real-
world and covers common international topics.

As for methods, Denecke (2008) and Wan (2009)
have adopted the “MT + machine learning” ap-
proach, which unavoidably imports bias during MT.
The abstraction of the word feature in Balahur and
Turchi (2013) can be applied to other languages,
but it requires language-specific polarity lexicons.
Banea et al. (2010) used uni-grams in multiple lan-
guages as features, but they might be restricted due
to data sparseness issues. Volkova et al. (2013)
proved the effectiveness of employing gender in-
formation, but their classifiers are not designed for
multilingual settings. By contrast, our deep learning
paradigm requires no polarity lexicons and can unify
the representations of texts in different languages us-
ing mapped word embeddings and a deep neural net-
work.

3 Methods

In this section, we introduce our baseline methods
and the proposed deep learning method (i.e., trans-
formed word embeddings + CNN models). The
global polarity of the MDSU corpus has three types:
positive, negative, and neutral; therefore, our task is
technically a three-way classification problem3.

3.1 Baselines

Our first baseline was MT-based. We used Google
Translate4 to translate Japanese/Chinese tweets into
English. The SVM-based learning methods with n-

3For brevity, positive/negative/neutral are denoted as +/-/=
respectively in Figure 2.

4https://cloud.google.com/translate/
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gram features have been frequently used as base-
lines in many monolingual sentiment analysis stud-
ies (Pang et al., 2002; Go et al., 2009). Similar to
their settings, we used an SVM model with a linear
kernel and C = 1 and fed the binarized uni-gram/bi-
gram term frequencies as features. The one-vs-one
strategy was adopted for multiclass classification.
Following the traditional paradigm, the SVM model
trained on all translated tweets of the MDSU corpus
is our first baseline, denoted as MT-SVM.

In addition, we re-implemented Banea et al.
(2010)’s NB model that uses the cumulation of
monolingual uni-gram features as our second base-
line. Here, we fine tuned Banea et al. (2010)’s
method in two ways: first, we used both uni-gram
and bi-gram as features; and second, we used all the
features instead of parts of them. We denoted this
state-of-the-art baseline that does not use language-
specific polarity lexicons as Banea (2010)*.

3.2 Deep Learning Paradigm

3.2.1 Word Embedding Space Transformation

Since there is no comparable open source word
embeddings learned from Twitter data for multiple
languages, we independently obtained word embed-
dings using a large number of monolingual texts for
each language. However, these monolingual word
embeddings were heterogeneous in terms of vector
space (the meaning of each dimension was differ-
ent between languages.). Hence, we attempted to
reduce the discrepancies between monolingual word
embeddings.

This notion was adopted from Mikolov et al.
(2013). In their study, they highlighted that the
same concepts have similar geometric arrangements
in their respective vector spaces. This implies
that if the matrix transformation is adequately per-
formed, monolingual word embeddings in hetero-
geneous spaces can be adjusted to a shared vector
space.

Mikolov et al. (2013) used the Translation Ma-
trix (TM, for short) method—to obtain a linear pro-
jection between the languages using a set of pivot
word pairs. Thereafter, many other ways to conduct
matrix transformation have been proposed (Ruder,
2017). Following Artetxe et al. (2016), we will com-
pare two methods: TM and Orthogonal Transforma-

tion (OT, for short).
Let X and Z denote the word embedding matri-

ces for the word pairs in the bilingual dictionary, so
Xi∗ and Zi∗ are the word embeddings for the i-th
entry in the dictionary. TM aims to identify a trans-
lation matrix W that minimized the following object
function:

minimize
W

∑
i=1

||Xi∗W − Zi∗||2 (1)

On this base, OT further requires W to be an or-
thogonal matrix (i.e., WTW = I). Since both
methods have analytical solutions, W can be effi-
ciently computed in linear time. For TM, W =
X+Z, where X+ takes the Moore-Penrose pseudo-
inverse: (XTX)−1XT ; for OT, W = V UT , where
V and UT can be given by the SVD fraction of
ZTX: UΣV T .

After W is identified, we map the vocabulary ma-
trix of one language to another by multiplying it by
its corespondent W. For example, we transferred
the Japanese vocabulary matrix to the English vec-
tor space using X̂JA = XJAWJA→EN

5. The same
thing applies to Chinese.

Additionally, we also try out pre-processing be-
fore OT to see how it affects the performance of
MSA. Specifically, we apply length normalization
(+LN), and length normalization and mean center-
ing together (+LN&MC) before OT.

Although these linear projections can be consid-
ered as a kind of word-level MT, this kind of space
transformation is considerably less expensive than
building a full-fledged MT system.

3.2.2 CNN
One of the advantages of CNNs is that they have

much fewer parameters than fully connected net-
works with the same number of hidden units, which
makes them much easier to be trained. The CNN
we used is very similar to that of Kim (Kim, 2014),
which is presented in Figure 2.

To unify the matrix representation of tweets in dif-
ferent length, the maximum length of all tweets in
the dataset was used as the fixed size for tweet ma-
trices. For shorter tweets, zero word vectors were
padded at the back of a tweet matrix.

5X is a subset of X .
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Figure 2: Network structure of the CNN model

A tweet having n words (padded if necessary) was
represented as follows:

x1:n = x1 ⊕ x2 ⊕ x3 ⊕ ...⊕ xn (2)

where xi is a word vector, and⊕ is the concatenation
operator. In general, xi:i+j meant the concatenation
of words xi,xi+1, ...,xi+j .

The layers of the CNN are formed by a convolu-
tion operation followed by a pooling operation. We
performed a convolution operation to transform a
window of h words (i.e., xi:i+h−1) to generate a fea-
ture ci. The procedure was formulated as follows:

ci = σ(w · xi:i+h−1 + b) (3)

where w denotes a filter map, h is the window size
of a filter, σ is a non-linear activation function and b
is a bias term.

By applying filter w to each possible window of
words in a tweet, we obtained a feature map:

c = [c1, c2, ..., cn−h+1] (4)

Afterwards, we performed a subsampling opera-
tion, for which we used the following max-pooling
subsampling method based on the idea of capturing
the most important feature from each feature map.

cmax = max{c} (5)

From Eqs. (3)–(5), each filter generated one cmax

from a tweet matrix.
The number of filter maps in our CNN mod-

els was 100, and the possible window sizes were
{3, 4, and 5}; thus, our model had 300 different fil-
ters in total. The corresponding 300 cmax formed
the penultimate layer, and was then passed to a fully
connected softmax layer to predict the global polar-
ity of a tweet.

4 Experiments

In this section, we compare our deep learning meth-
ods with the baseline methods. We first describe our
experimental setup, followed by a discussion of the
results.

4.1 Experimental Setup
4.1.1 Datasets

The MDSU corpus was originally built for deeper
sentiment understanding in a multilingual setting;
therefore, tweets in it were annotated many fine-
grained tags in addition to global polarity. In this
paper, we used global polarities as the classifica-
tion labels. Lu et al. (2017) filtered out apparent
non-emotional tweets and prioritized long tweets
with rich language phenomenon during data selec-
tion; therefore, the tweets in the MDSU corpus are
more complex and longer than those in randomly
collected or noisy-labeled tweet datasets.

Table 1 presents the global polarity distribution
for each language in the MDSU corpus. The polarity
distribution of each language does not differ largely,
although not perfectly uniform. Moreover, the polar-
ity distribution of the entire corpus is well-balanced,
rendering the corpus suitable for a three-way senti-
ment classification.

The length of a tweet is defined as the number of
elements (including words, emoticons, and punctu-
ations) after under-mentioned pre-processing. The
maximum length (also the fixed size of the CNN
models) of the MDSU corpus is 124: 41 for English,
93 for Japanese, and 124 for Chinese.

Table 1: Polarity distribution for each language in the
MDSU corpus

Language Abbr. Positive Neutral Negative Total #
Max

Length
English EN 503 526 774 1803 41
Japanese JA 392 875 534 1801 93
Chinese ZH 566 614 638 1818 124

Total ALL 1461 2015 1946 5422 124

4.1.2 Pre-processing
The language used in social media is more casual

than in traditional media. There are many informal
ways of expression on Twitter, such as emoticons,
Unicode emojis, misspelled words, letter-repeating
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words, all-caps words, and special tags (e.g., #,
@). These may disturb the learning of word embed-
dings and classification models; therefore, we pre-
processed them.

For all the three languages, we detected Unicode
emojis and replaced them with an “EMOJI CODE”
(e.g., we replaced “ ” with “EMOJI 2764”);
detected emoticons from easy :-) to complex
(((o(*◦5◦*) o)))) using regular expressions and re-
placed them with “EMOTICON”; and labeled URLs
as “URL”.

We also performed language-dependent pre-
processing. For English, we lowercased English
characters and tokenized the tweets with TweetTok-
enizer6; for Japanese, we normalized Japanese char-
acters and tokenized the tweets with Mecab7; for
Chinese, we transferred traditional Chinese charac-
ters to simplified Chinese characters and tokenized
the tweets with NLPIR8.

4.1.3 Word Embeddings and Space
Transformation

Large collections of raw tweets are accumulated
using Twitter RESTful API by the same query key-
words with the MDSU corpus during a one-year pe-
riod. We excluded undesirable tweets (e.g., tweets
starting with “RT”) using the same veto patterns
as Lu et al. (2017), and checked the preceding 10
tweets of each tweet to delete the repeating tweets.
After filtering out these tweets, the remaining tweets
were pre-processed as previously described. The
number of remaining tweets was 232,214 (EN),
264,179 (JA), and 148,052 (ZH). The vocabulary
size for each collection of tweets was 63,343 (EN),
49,575 (JA), and 52,292 (ZH).

Our vector representation for words was learned
using fastText9. Because the scale of our corpus for
word embedding training was relatively small, we
set the minimal number of word occurrences as 2.
We used the skip-gram model because it generates
higher quality representations for infrequent words
(Mikolov et al., 2013). The word embeddings for
each language were trained separately on its corre-
sponding corpus. Words that were not present in the

6http://www.nltk.org/api/nltk.tokenize.html
7http://taku910.github.io/mecab/
8http://ictclas.nlpir.org/
9https://github.com/facebookresearch/fastText

pre-trained word list were initialized randomly in the
deep learning models. The dimension of our word
embeddings was 100.

As to the size of bilingual word pairs, it is usu-
ally thousands. Figure 3 illustrates how we select
bilingual word pairs. First, we translated words
in English vocabulary into Japanese/Chinese (using
Google Translate), then we selected top K high-
frequent English words whose correspondent trans-
lations appear in Japanese/Chinese vocabularies. To
avoid meaningless words, we filter out those English
words whose numbers of characters are less than 2
and that contain any punctuations. In this paper, we
setK as {1000, 2000, 3000, 4000, 5000} to see how
K affects the final performance of MSA.

Figure 3: Selection of bilingual word pairs

As a validation, we calculated the change of co-
sine distance of each word pair in a test set before
and after mapping. For each language, a set of an-
other 500 word pairs was held out as the test set
(none of them appears in the training set). For sim-
plicity, the two bilingual test sets are denoted as EN-
JP and EN-ZH. Table 2 shows the cosine distance
decrease situation in the test sets for the two kinds
of transformation methods.

First, we can see that the original angles on av-
erage between word pairs were very large for both
EN-JP and EN-ZH (85.2 and 89.3, respectively).
As we all know, the closer the angle of a word pair
is to 90 degrees, the more irrelevant the word pair is.
Therefore, this means that the two vectors of a word
pair from separately trained word embeddings has a
large difference.

After mapping, the angles became smaller. For
TM, the angles became 49.5 (averaged over different
K, the same below) for EN-JP, and 49.6 for EN-
ZH, respectively; for OT, the angles became 63.8
for EN-JA, and 60.3 for EN-ZH, respectively. This

PACLIC 32

424 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



shows the transformations both worked. Moreover,
the angles of OT were larger than that of TM. This is
reasonable since OT imposes additional constraints
on TM.

As to K, we find that the larger K was, the
larger the decrease ratio was for each language and
transformation method. This proves that the more
training data are used, the better W is. However,
good intermediate results do not necessarily gener-
ate good final results. In Section 4.2.3, we will fur-
ther elaborate which method and K should we use
to achieve the best MSA performance.

Table 2: Distance decrease of word pairs in the test sets
Method Language Original k=1000 k=2000 k=3000 k=4000 k=5000

TM JA 85.2 52.7 50.0 48.9 48.3 47.9
ZH 89.3 52.7 50.1 49.0 48.4 48.0

OT JA 85.2 64.8 63.9 63.6 63.4 63.3
ZH 89.3 61.5 60.5 60.0 59.8 59.6

4.1.4 Model Hyper-parameters
All the methods were evaluated using 10-fold

cross validation. For CNN models, we randomly se-
lected 10% of the training splits of cross-validation
as the validation datasets to tune parameters for an
early stopping. Moreover, trainings were completed
using a stochastic gradient descent (SGD) algorithm
for shuffled mini-batches with the Adadelta update
rule, with a mini-batch size of 50. To prevent over-
fitting, we employed the dropout technique on the
penultimate softmax layers, with a dropout rate of
0.5.

4.2 Result and Discussion

4.2.1 Baselines
Table 3 presents the classification accuracy of

baselines.
According to Table 3, the average accuracy of

separate SVM classifiers over original datasets was
the same as it over translated datasets. This shows
that the same method did not necessarily perform
worse after being translated by MT for monolingual
datasets. In addition, the performance of MT+SVM
model (use all translated tweets) was worse than
the average accuracy of separate SVM classifiers
over original datasets (53.0% vs. 54.5%), showing
the limitation of traditional paradigm on MSA (i.e.,
“MT + machine learning”).

For classifiers directly used the cumulation of uni-
gram and bi-gram, both SVM and Banea (2010)*
outperformed MT+SVM by 0.8% and 3.4%, respec-
tively. The improvements indicate that the use of
cumulation of n-gram is effective, although this may
result in the problem of data sparseness (Banea et
al., 2010).

Table 3: Accuracies of baselines
Model Dataset Feature Accuracy

Average – – 0.545
SVM EN unigram+bigram 0.529
SVM JA unigram+bigram 0.596
SVM ZH unigram+bigram 0.509

Average – – 0.545
SVM EN unigram+bigram 0.529
SVM Translated JA unigram+bigram 0.591
SVM Translated ZH unigram+bigram 0.515

MT+SVM
(baseline 1)

Translated ALL unigram+bigram 0.530

SVM ALL
cumulation of

unigram+bigram
0.538

Banea (2010)*
(baseline 2)

ALL
cumulation of

unigram+bigram
0.564

4.2.2 Deep Learning Models
Table 4 presents the classification accuracies of

the CNN models; the input of word embeddings for
the models in this table involved no transformation.

First, our deep learning paradigm performed
better than the MT+SVM method (traditional
paradigm). Specifically, the parameter-sharing CNN
model outperformed MT+SVM model by 4.3%
(57.3% vs. 53.0%). This indicates that the deep
learning paradigm is more efficient than the tradi-
tional paradigm.

Besides, we also conducted the learning sepa-
rately on each language split. The results revealed
that the average accuracy of separate CNN classi-
fiers was a little higher than the accuracy of the
mixed case (58.1% vs. 57.3%), implying that the
deep learning methods did not improve after using
the entire dataset. This is supposed to be caused
by the heterogeneity of word embedding spaces, be-
cause the raw word embeddings were learned sepa-
rately.

Furthermore, we observed that the MT+CNN
model (trained on the translated datasets and using
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only English word embeddings) performed worse
than the parameter-sharing CNN model (trained on
the original datasets and using multilingual word
embeddings). Ideally, if JA/ZH were perfectly trans-
lated, the performance should have increased. This
suggests that the noises that MT brings in are greater
than the heterogeneity of multilingual word embed-
dings does.

Table 4: Accuracies of deep learning models
Model Dataset Accuracy

Average – 0.581
CNN EN 0.578
CNN JA 0.610
CNN ZH 0.553

MT+CNN Translated ALL 0.564
Parameter-sharing CNN
(none-transformation)

ALL 0.573

4.2.3 Deep Learning Models using
Transformed Word Embeddings

The coordination of different vector spaces was
expected to further improve the deep learning
paradigm. Table 5 presents the classification accu-
racies of the CNN models using differently trans-
formed word embeddings.

According to Table 5, we can see that the perfor-
mances of TM (57.9% on average) were better than
none-transformation case, which justified the useful-
ness of vector space coordination.

Furthermore, OT performed ever better than TM
by 1% on average (58.9%). Artetxe et al. (2016) re-
ported that OT could preserve monolingual invari-
ance, which made it perform better in both word
analogy and translation induction task. We believe
that it is reasonable to attribute the improvement
here to this property.

Besides, the performances of both OT(+LN)
and OT(+LN&MC) degraded compared with none-
transformation case, especially OT(+LN). This may
imply that changing the scale or changing the posi-
tion and scale together of monolingual word embed-
dings is unnecessary when carrying out space trans-
formation.

As toK, for both TM and OT methods, MSA per-
formed best when K = 1000. On contrary to the
discussion of cosine distance reduction in Section

4.1.3, this suggests that the selection of K isn’t ‘the
more, the better’ for down-stream applications (e.g.,
MSA). What’s more, this also justifies the conve-
nience of applying deep learning paradigm to other
languages, because we only need to build a small-
scale bilingual word pairs.

Overall, the performance of the CNN model fed
with orthogonally transformed word embeddings
(K=1000) was most effective, which achieved an ac-
curacy of 59.8%.

Table 5: Accuracies of deep learning models using dif-
ferently transformed word embeddings

Method k=1000 k=2000 k=3000 k=4000 k=5000 Avg.
TM 0.585 0.578 0.580 0.577 0.574 0.579
OT 0.598 0.582 0.588 0.590 0.587 0.589

OT(+LN) 0.532 0.547 0.548 0.542 0.542 0.542
OT(+LN&MC) 0.569 0.559 0.562 0.563 0.568 0.564

5 Conclusion and Future Work

In this paper, we proposed a novel deep learning
paradigm for MSA. We map monolingual word em-
beddings into a shared embedding space, and used
parameter-sharing deep learning models to unify
the processing of multiple languages. The experi-
ments on a well-balanced tweet sentiment corpus—
the MDSU corpus—revealed the effectiveness of
our deep learning paradigm. Especially, our CNN
model fed with orthogonally transformed word em-
beddings achieves a rise of 3.4%, comparing with
the strong Banea (2010)* baseline.

Our paradigm provides a great cross-lingual
adaptability. Tweets in any other language can be
represented using transformed word embeddings of
that language, and then be channeled into parameter-
sharing deep learning models.

The novelty of our study is not in the complex-
ity of the network itself, but more in the coor-
dination of heterogeneous monolingual word em-
beddings and the parameter-sharing property of the
cross-lingual models. In the future, we plan to at-
tempt non-linear transformation methods and more
task-oriented deep networks.
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