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Abstract 

Two of the main problems in creating an 

Indonesian parser with high accuracy are 

the lack of sentence diversity in treebank 

used for training and suboptimal uses of 

parsing techniques. To resolve these 

problems, we build an Indonesian 

dependency treebank of 2098 sentences 

(simple and complex sentences) and use 

ensemble techniques to maximize the usage 

of available dependency parsers. We 

compare the combination of seven parsing 

algorithms provided by MaltParser and 

MSTParser, which provides both 

transition-based and graph-based models. 

From our experiments, we found that the 

graph-based model performs better than the 

transition-based model for Indonesian 

sentences. We also found no significant 

accuracy difference in models between 

several simple ensemble models and 

reparsing algorithms. 

1 Introduction 

Text parsing is one of the major tasks in natural 

language text processing (NLP). Text parsing is the 

process of determining the syntactic structure of a 

sentence. The result of text parsing is a syntactical 

tree, which is mostly used for higher-level NLP 

tasks, like sentiment analysis (Di Caro and Grella, 

2013) and semantic role labeling (Johansson and 

Nugues. 2008). 

There are two kinds of text parsing to date: 

constituent parsing and dependency parsing. 

Constituent parsing parses a sentence by 

determining the constituent phrases of the sentence 

hierarchically, usually by using a grammar (Aho, 

2003). Dependency parsing, on the other hand, 

parses a sentence by determining a dependency 

relation for each word in a sentence. In this 

research, we use dependency parsing, because it is 

suited for analyzing languages with free word 

order, such as Indonesian (Nivre, 2007). Figure 1 

shows an example of a parsed Indonesian sentence 

using dependency structure. 

 

Figure 1. Example of a parsed Indonesian sentence 

(TL: That allegation does not miss) with 

dependency structure 

Up until now, there have been only a few studies 

regarding Indonesian dependency parsing 

(Sulaeman, 2012; Green et.al, 2012). Most of the 

previous researches focused on rule-based parsing 

(Purwarianti et.al, 2013), which yielded quite a low 

accuracy, compared to other languages. Based on 

these researches, we use ensemble parsing 

techniques (Surdeanu and Manning, 2010) in our 

works. We also built a dependency Treebank 

corpus used for the model training with 2098 

sentences.
 

In the following sections, we describe the 

relevant studies and some basic concepts about 
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dependency parsing and its models. We then 

describe the corpus used in this research, our 

experiment settings, and finally the results and 

analysis.
 

2 Related Works  

There are two studies that are related to ensemble 

dependency parsing, which is Surdeanu & 

Manning's work for English (Attardi and 

Dell'Orletta, 2009), and Green et al.'s work for 

Indonesian (Green et.al, 2012). Surdeanu & 

Manning created an ensemble dependency parser 

using parsing algorithms from both MaltParser and 

MSTParser for English. This research used CoNLL 

2008 shared task corpus as the treebank for 

training and testing. There are two types of 

ensemble models used in this research: ensemble 

model at learning (using stacking) and ensemble 

model at runtime (using voting mechanism). The 

ensemble system at runtime used both weighted 

and unweighted voting scheme. The system also 

used a reparsing algorithm (Attardi and 

Dell'Orletta, 2009) to ensure the resulting 

dependency graphs always form a tree. The 

employed reparsing algorithms are Eisner's 

algorithm (Eisner, 1996) and Attardi's algorithm 

(Attardi and Dell'Orletta, 2009).
 

There are three conclusions that can be inferred 

from this research. First, an ensemble model that 

combines several base parsers at runtime performs 

significantly better than an ensemble model that 

combines two parsers at learning time. Second, 

well-formed dependency trees can be guaranteed 

without significant performance loss by linear-time 

approximate reparsing algorithms. Lastly, 

unweighted voting performs as well as weighted 

voting for the re-parsing of candidate 

dependencies. 

Green et al.'s (2012) research consists of making 

treebank for Indonesian and analyzing ensemble 

technique effectivity on Indonesian dependency 

parser using self-training. This research used four 

out of five parsing algorithms provided by 

MaltParser (Nivre, Stack, Planar, and 2-Planar) as 

its base parsers. This research used 100 Indonesian 

sentences from IDENTIC (Larasati, 2012) as the 

treebank. The treebank was split into three parts: 

one for training, one for self-training tuning, and 

one for testing. The ensemble techniques used was 

Chu-Liu Edmonds reparsing algorithm with the 

unweighted voting scheme.
 

From this research, Green et al. (2012) 

concluded that self-training and ensemble parsing 

can be used to increase overall accuracy for 

Indonesian dependency parsing. Our work differs 

from Green et al.'s work by using base parsers 

from two different parsing models (transition-

based and graph-based model), where Green et al.'s 

and only use one parsing model (transition-based 

model); and also the treebank size which is 20 

times larger than Green et al.'s. Our experiment 

scheme is also different since we conducted a cross 

validation scheme in calculating the accuracy.
 

3 MaltParser and MSTParser 

Both MaltParser and MSTParser are data-driven 

dependency parsers, which use treebank as training 

data for making parsing models. Both of these 

parsers are language-independent, which allows 

any language to be used in the parser without any 

compromise in accuracy. However, these parsers 

have different ways to parse sentences. Both of 

these parsers will be explained in the next sections. 

3.1 MaltParser 

MaltParser was introduced by Nivre et al. (2007). 

It is a data-driven and language-independent 

dependency parser. MaltParser uses transition-

based model during parsing. This model uses 

transition machine, which contains four main 

components: a set of parsing states, a set of parsing 

transitions, the initial parsing state, and a set of 

terminating parsing states. The parsing result of a 

transition-based model is a transition sequence that 

can be used to transform the initial parsing state 

into a terminating parsing state. The learning 

problem comes from determining the best action to 

make at each state. This can be achieved learning 

an “oracle” function. 

There are five parsing algorithms available in 

MaltParser, which can be seen in Table 1. Each of 

these algorithms differs on the data structures used 

to represent the parsing states and the set of 

transitions available for every parsing state. 
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Algorithm Parsing Mode Data Structure Complexity Projective? 

Nivre 
Arc-eager Stack O(n) Yes 

Arc-standard Stack O(n) Yes 

Covington 
Projective Two lists O(n2) Yes 

Non-projective Two lists O(n2) No 

Stack 

Projective Stack O(n) Yes 

Non-projective lazy Stack O(n) No 

Non-projective eager Stack O(n) No 

Planar Stack O(n) Yes 

2-Planar Two stacks O(n) Yes 

 

Table 1. Transition-based Algorithm Used by MaltParser 

 

3.2 MSTParser  

MSTParser is a data-driven and language-

independent dependency parser that uses graph-

based model. The graph-based model adds a 

weight to each directed edge in a dependency 

graph, which is determined by the dot product of 

the feature weight vector and the score vector 

based on the current dependency relation. The 

overall graph is scored, which equals to the 

product of all weights of all directed edges. The 

graph-based model will be able to determine the 

best dependency tree for a sentence by finding the 

spanning tree of the dependency graph created 

with maximum score. 

There are two parsing algorithms available in 

MSTParser: Eisner and Chu-Liu Edmonds 

algorithm. The first one is Eisner algorithm, which 

uses dynamic programming (memoization) to find 

the maximum spanning trees. It has a complexity 

of O(n3) and can only build projective trees. The 

second one is Chu-Liu Edmonds algorithm, which 

uses recursive greedy selection to find the 

maximum spanning tree. It has a complexity of 

O(n2) and can build both projective and non-

projective trees. 

4 Ensemble Technique  

In NLP, ensemble technique is a parsing technique 

that uses a collaboration of several unique parsing 

models to parse sentences better than individually. 

Ensemble technique can be applied during learning 

and during parsing. Ensemble technique can be 

applied during learning by having a parsing model 

parse a test data, and then uses another parsing 

model to repair the mistakes made by the previous 

parser. These steps are repeated until all parsers are 

used. Several examples of ensemble during 

learning are stacked parsing and guided model 

(Fan et.al, 2008; Nivre and McDonald, 2008). 

Ensemble technique can also be applied during 

training by having several base parsers parse the 

same test data. The base parsers are trained using 

the same training data. After that, the result from 

each base parser will be used to determine one 

final dependency graph that considers all of the 

base parsers' results. There are three kinds of 

ensemble during parsing to date: meta-classifier, 

voting system, and reparsing algorithm. We will 

only discuss the voting system and the reparsing 

algorithm in this paper. 

In voting system, every token in a sentence will 

have a dependency relation that was determined by 

majority voting. Every dependency relation from 

all of the base parsers will be tallied according to a 

voting scheme (weighted or unweighted). After 

that, the best dependency relation for each token 

will be used for the final dependency graph. In 

practice, voting scheme is simpler than meta-

classifier and performs at the same level as meta-

classifier. 

There two types of voting that can be used for 

voting system: weighted and unweighted. 

Unweighted voting makes all base parsers give the 

same score for all dependency relations. On the 

other hand, weighted voting makes base parsers 

with better accuracy give bigger score for 

particular dependency relations. When using 

voting system, the dependency relation with the 

biggest score for a particular token will be used by 

the ensemble parser to create the final dependency 

graph. Voting is done until every token has a 

dependency relation. 

66



 

Figure 2. Overall ensemble parsing process 

 

Sometimes, the dependency graphs that are 

created by the voting system does not make a 

dependency tree. To resolve this, a reparsing 

algorithm can be used to parse the dependency 

graph by finding the maximum spanning tree of the 

graph. The weight of each directed edge is 

calculated by tallying the dependency relations 

from all of the base parsers using a weighting 

scheme (weighted or unweighted). Three of the 

most used reparsing algorithms are Eisner 

algorithm, Chu-Liu Edmonds algorithm, and 

Attardi algorithm. Our work uses voting system 

with unweighted voting scheme and all of the 

reparsing algorithms (all with unweighted 

weighting scheme).
 

There are three main steps on doing ensemble 

parsing. The first step is training all of the base 

parsers with parsing algorithms and learning 

algorithm provided by MaltParser and MSTParser. 

The base parsers are trained using the treebanks 

that will be listed in the next section. The second 

step is parsing the test sentences using a particular 

base parsers combination. The parsing result is in 

CoNLL. The last step is using a particular 

ensemble technique to create an ensemble tree. The 

whole process of ensemble parsing can be seen in 

Figure 2. 

5 Experiments  

5.1 Experimental Settings  

Our treebank statistic is shown in Table 2. We 

performed the experiments using our treebank that 

contains 2098 sentences. We used Kuncoro’s 

treebank (2013), which contains 2018 sentences, 

and added 80 sentences, which we manually parsed 

from news sites like Kompas and Tempo to include 

in our treebank. 

There are three main scenarios in our research. 

In the first scenario, we compared the 

performances of the base parsers in parsing 

Indonesian sentences. There were eleven single 

parsers that were compared: Nivre eager, Nivre 

standard, Covington projective, Covington non-

projective, Stack projective, Stack eager, Stack 

lazy, Planar, 2-Planar, Eisner, and Chu-Liu 

Edmonds. The parsers were tested using 10-fold 

cross validation and used the same learning 

algorithm (SVM). 

In the second scenario, we compared the 

performances of four ensemble techniques: voting 

system with unweighted scheme, Eisner reparsing 

algorithm, Chu-Liu Edmonds reparsing algorithm, 

and Attardi reparsing algorithm. All of the 

reparsing algorithms used unweighted weighting 

scheme. The ensemble combination used is 2-

Planar, Eisner, and Chu-Liu Edmonds parsing 

algorithms. The parsers were tested using 10-fold 

cross validation and used the same learning 

algorithm (SVM). 

In the third scenario, we compared the 

performances of ensemble parsers that use 

different algorithm combination. There were six 

ensemble combinations that were compared: all 

parsing algorithms (both from MaltParser and 

MSTParser), all algorithms from MaltParser, all 

algorithms from MSTParser, all projective parsing 

algorithms, all non-projective algorithms, and three 

algorithms with the highest accuracy (according to 

the first scenario). The parsers used Eisner 

reparsing algorithm with unweighted weighting 

scheme and were tested using 10-fold cross 

validation and used the same learning algorithm 

(SVM). 

5.2 Results and Analysis  

The results of the four experiments are shown in 

Table 3, Table 4, and Table 5. The metric used in 

this work is UAS (unlabeled attachment score). We 

don’t use LAS (labeled attachment score) since we 

have no dependency label in our treebank yet. 
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Sentence Type Number of Sentences (Percentage) 

Number of clauses 

Simple sentence 1067 (50.86%) 

Compound sentences 349  (16.63%) 

Complex sentence 527  (25.12%) 

Complex-compound sentence 155  (7.39%) 

Presence of gerund 
Present 50  (2.38%) 

Not present 2048  (97.62%) 

POS tag of central 

dependency 

Transitive verb 1017  (48.47%) 

Intransitive verb 989  (47.14%) 

Adjective 69  (3.29%) 

Noun 8  (0.38%) 

Others 15  (0.71%) 

Deletion type 

None 1630  (77.69%) 

Anaphoric 312  (14.87%) 

Cataphoric 89  (4.24%) 

Structural 67  (3.19%) 

 

Table 2. Indonesian Treebank Statistic 

 

The result from Table 4 shows that Chu-Liu 

Edmonds algorithm is the best parsing algorithm to 

be used for Indonesian sentences. One of the main 

factors that contribute to Chu-Liu Edmonds' high 

accuracy is the fact that graph-based model can 

handle long distance dependency well, which most 

Indonesian sentences have. We can see from the 

results that Chu-Liu Edmonds dominated both the 

accuracy on parsing the long sentences and the 

short sentences. Theoretically, transition-based 

models should have been able to parse short 

sentences better than graph-based model. 

However, the results showed the opposite. This 

could be caused by Indonesian sentences tendency 

to use long distance dependencies, even in short 

sentences. 

Another interesting thing that can be inferred 

from these results is the fact that transition-based 

models generally performed better when parsing 

sentences with outlier predicates (like adjectives 

and nouns). This is most likely because of the rich 

feature representations that transition-based model 

has, which depends on the data structures used to 

represent the parsing state. Figure 3 and 4 shows 

the example of this occurrence.
 

The result from Table 5 shows that there is no 

significant accuracy difference on the ensemble 

technique used. However, voting system with 

unweighted scheme has a little higher accuracy 

than others (0.01%), because the resulting graphs 

are not reparsed, which make the individual 

dependency accuracy better than those that use 

reparsing algorithm. The accuracy indifference 

may be caused by the fact that all of the reparsing 

algorithms used unweighted voting scheme, which 

would make the weight of many dependency 

relations to be the same, regardless of the 

algorithm. 

The result from Table 6 shows that the parser 

that uses the combination of the top three base 

parsers (2-Planar, Eisner, and Chu-Liu Edmonds) 

has the highest accuracy. This is because of the 

ensemble property itself. Most of the correct 

majority decisions (from the best parsers) were 

able to repair the best parser's mistakes. We can 

also see that parsers combining all algorithms have 

lower accuracy than others. This is because of the 

fact that most of the parsing algorithms created the 

same dependency trees, especially for the same 

variants (like Nivre's standard and eager mode). 

This resulted in most majority decisions to come 

from the algorithms with several variants. 
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Parsing Algorithm 

Accuracy 

Overall 
Outlier 

Predicates 
Sentence with > 15 tokens Sentence with ≤ 15 tokens 

Nivre-eager (Malt) 83.5% 60.00% 77.16% 85.81% 

Nivre-standard (Malt) 82.9% 55.71% 75.51% 85.54% 

Covington projective 

(Malt) 
82.4% 51.43% 75.25% 85.01% 

Covington non-

projective (Malt) 
82.6% 50.00% 75.40% 85.29% 

Stack projective (Malt) 83.3% 55.71% 76.23% 85.81% 

Stack eager (Malt) 83.7% 57.14% 77.58% 85.86% 

Stack lazy (Malt) 83.9% 57.14% 78.17% 85.90% 

Planar (Malt) 84.1% 57.14% 77.85% 86.30% 

2-Planar (Malt) 84.7% 54.29% 78.79% 86.82% 

Eisner (MST) 85.8% 54.29% 80.68% 87.51% 

Chu-Liu-Edmonds 

(MST) 
86.1% 52.86% 80.89% 87.86% 

 

Table 3. Accuracy of Single Dependency Parsers 

 

 

Figure 3. Correct dependency tree for sentence Dia tidak malu bertanya di depan umum (He is not 

ashamed of asking questions in public) 

 

 

 

Figure 4. Parsing result for sentence Dia tidak malu bertanya di depan umum (He is not ashamed of 

asking questions in public) using 2-Planar, Eisner, and Chu-Liu Edmonds parsing algorithm respectively 

69



Ensemble Technique Accuracy 

Unweighted majority 86.6% 

Eisner 86.5% 

Chu-Liu-Edmonds 86.5% 

Attardi 86.5% 

 

Table 4. Accuracy of Parsers with Different Ensemble Technique 

 

 
Ensemble Technique Accuracy 

All parsing algorithms (MaltParser + MSTParser) 85.5% 

All parsing algorithms from MaltParser 85.1% 

All parsing algorithms from MSTParser 86.0% 

All projective parsing algorithms 85.6% 

All non-projective parsing algorithms 85.3% 

Top three parsers (2-Planar, Eisner, and Chu-Liu Edmonds) 86.5% 

 

 

Table 5. Accuracy of Parsers with Different Ensemble Combination 

 

6 Problems While Creating Indonesian 

Treebank 

During the making of our Indonesian Treebank, we 

encountered several problems that should be 

solved in the future works. Most of the problems 

revolve around labeling standards. The first 

problem is the POS-tags standards. Our current 

treebank uses proprietary standards for both the 

coarse-grained and fine-grained POS-tags. While 

our standards are adequate to cover most word 

types, the lack of standards for POS-tags makes it 

difficult to merge several treebanks to create a 

larger data set for future studies. INACL has issued 

a POS-tags standard for Indonesian 1 , however, 

there is still a matter of mapping the old POS-tags 

standards to the new POS-tags standards. 

The second problem is the lack of dependency 

labels for Indonesian. At the time this research is 

concluded, there were no dependency label 

standards that can be used to label each 

dependency relation in a treebank. This would 

drastically reduce the usefulness of the parser 

results for most semantic-related NLP tasks since 

the dependency label is one of the main features in 

                                                           
1 http://inacl.id/inacl/wp-content/uploads/2017/06/INACL-

POS-Tagging-Convention-26-Mei.pdf 

those tasks. One possible solution is to use the 

dependency label standards from Universal 

Dependencies (Nivre et al., 2016), which has a 

universal dependency labeling scheme. 

7 Conclusions and Future Works 

From our experiments, we concluded that the 

graph-based model is better than transition-based 

models for the Indonesian language. We also 

concluded that different simple ensemble 

techniques and ensemble combinations do not give 

significant accuracy difference between models.
 

Potential future works lie in using more intricate 

ensemble techniques (e.g. weighting models by its 

proficiency in creating dependencies for different 

POS-tags) or better base parsers (using deep 

learning or word embedding as features during 

parsing). Other major future works lie in creating a 

big and complete dependency treebank, which can 

be done by merging several treebanks from several 

studies using one labeling standards for both its 

POS-tags and dependency labels. 
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