Generating a Linguistic Model for Requirement Quality Analysis

Juyeon Kang
PROMETIL
42 avenue du Général de Croutte
31100 Toulouse, France
j.kang@prometil.com

Abstract

In this work, we aim at identifying potential
problems of ambiguity, completeness, con-
formity, singularity and readability in sys-
tem and software requirements specifications.
Those problems arise particularly when they
are written in Natural Language. We de-
scribe them from linguistic point of view but
the business impacts of each potential error
will be considered in system engineering con-
text where our corpus come from. Several
standards give the criteria on writing good
requirements to guide requirement authors.
These properties are linguistically observable
because they appear as lexical, syntactic, se-
mantic and discursive problems in documents.
We investigate error patterns heavily used, by
analyzing manually the corpus. This analy-
sis is based on the requirements grammar that
we developed in this work. We then propose
an approach to identify them automatically by
applying the rules developed from the error
patterns to the POS tagged and parsed corpus.
By using error annotated corpus, we can train
the error model using CRFs and evaluate it.
We obtain overall 79.17% F; score for the er-
ror label annotation task.

1 Introduction and Context

In order that a system is realized and become oper-
ational in real applications, it follows several stages
of conception, development, production, use, sup-
port and retirement (ISO/IEC TR 24748-1, 2010).
During the concept stage, we identify and docu-
ment the stakeholder’s needs in the system require-
ments specification (Hull et al., 2011). Writing

Jungyeul Park
Department of Linguistics
University of Arizona
Tucson, AZ 85721

jungyeul@email.arizona.edu

clearly all required elements without ambiguities
(Berry et al., 2003) in the specifications is an es-
sential task before passing to the development stage
(Galin, 2003; Bourque et al., 2004). According
to the 2015 Chaos report by the Standish Group',
only 29% of projects was successful>. And 50%
of the challenged projects is related to the errors
from the Requirement Engineering and 70% of them
comes from the difficulties of understanding of im-
plicit requirements. All these errors do not lead to
the failure, but generate useless information. It is
well known that the costs to fix errors increase much
more after that the product is built than it would if
the requirements errors were discovered during the
requirements phase of a project (Glas, 2002; Steck-
lein et al., 2004).

However, when writing or revising a set of re-
quirements, or any technical document, it is particu-
larly challenging to make sure that texts read easily
and are unambiguous for any domain actor (Weiss,
1990; Grady, 2013). The previous experience shows
that even with several levels of proofreading and
validation, most texts still contain a large number
of language errors (lexical, grammatical, semantic,
style, etc.), and lack of overall cohesion and coher-
ence. Risks emerge from poorly written texts, and
from various forms of incoherence. For example,
Progressively heat the probe X27 relies too much on
the operators knowledge and practice: what temper-
ature should be reached and in how much time? A

"http://www.standishgroup.com

>They studied 50,000 projects around the world, ranging
from tiny enhancements to massive systems re-engineering im-
plementations.

439

wrong interpretation may lead to accidents and dam-
ages.

Tools controlling the authoring quality of require-
ments have been developed in the past with the
use of templates or boilerplates meant to guide the
technical writer. This is most notably the case for
the RAT-RQA system? and of the RUBRIC system
(Arora et al., 2013). Let us also cite two major CNL-
based prototypes which are of much interest for re-
quirement authoring: ACE (Fuchs, 2012), which
stands for Attempto Controlled English. This sys-
tem makes an in-depth language semantic analysis.
It was initially designed to control software spec-
ifications, and has been used more recently in the
semantic web. PENG (Processable English) (White
and Schwitter, 2009) is a computer-processable con-
trolled natural language system designed for writing
unambiguous and precise specifications. These sys-
tems make heavy use of syntactic analysis, which is
rather costly. A synthesis of CNL based systems is
developed in (Kuhn, 2013).

We also find the systems of requirements qual-
ity analysis based on the shallow parsing techniques.
First, SEMIOS system” is relevant for requirements
where the language is complex and sometimes ill-
formed. It detects several types of errors, lexical,
syntactic and related to style. Error detection in this
system depends on the discourse structure analysis.
Second, (Berrocal Rojas and Barrantes Sliesarieva,
2010) proposes a software prototype for controlling
if a requirement satisfies the criteria of the high qual-
ity requirement defined in DO-178b. This work fo-
cuses on the detection of inaccurate, non-verifiable
and ambiguous elements in requirements by means
of lexical (using WordNet and VerbNet) and syntac-
tic analysis.

There are other interesting approaches and tools
developed for automatically analyzing the require-
ments specifications but we do not develop all of
them in this paper because of the lack of space. We
invite the readers to consult (Gnesi et al., 2005; Fab-
brini et al., 2001; Zapata Jaramillo, 2010).

The model that we propose identifies the potential
errors in natural language requirements by applying
error patterns rules to the POS tagged and syntac-

3http://www.reusecompany.com
“http://www.semiosapp.com

tically parsed sentences. It depends on the require-
ments grammar that we elaborate from the require-
ments authoring guidelines. In §2, we introduce the
essential constraints of authoring high quality re-
quirements with examples, and in §3, develop the
requirements grammar rules corresponding to each
constraint. Errors patterns are also described in this
section as they are induced by verifying if require-
ments are correctly written following the rules of the
requirements grammar. The §4 describes the meth-
ods and results of our experiments elaborated for
generating an adapted model of automatic error pat-
terns labeling to requirements documents. The main
contribution of the paper is as follows: (1) We define
requirements grammar and their error patterns. (2)
We create training and evaluation data for building
an error pattern model and assigning error labels. To
the best of the author’s knowledge, it is the first time
to achieve such results by using the automatically
learned model from the training data set. It would
be suitable for the general purpose error annotation
for requirements authoring quality.

2 Requirements Authoring and Quality

Among technical documents, requirements are a
central issue since they must comply with a high
number of constraints of e.g. readability, lack
of ambiguity and implicit data, feasibility, rele-
vance, traceability, conformity and overall cohe-
sion and coherence (Firesmith, 2003; Alred et
al., 2012). The principles of the authoring qual-
ity of requirements are defined in different stan-
dards like IEEE 830-1998 (IEEE Recommended
Practice for Software Requirements Specification),
ISO/IEC/IEEE29148:2011 (Systems and software
engineering — Life cycle processes — Require-
ments engineering), ARP4754A (Aerospace Rec-
ommended Practice) and also in the recommen-
dations of INCOSE (Guide for Writing Require-
ments), IREB (International Requirements Engi-
neering Board) and the controlled natural languages
(e.g. ASD-STE 100°). The authoring constraints
specify the syntax, the semantic along with the style
and the lexical items that the technical authors must
respect.

SSimplified Technical English, Aerospace and Defense, by
Industries Association of Europe, Issue 5, 2010

440

In this paper, we focus on the five constraints (am-
biguity, conformity, completeness, singularity, read-
ability), considered as being the most critical by re-
quirements authors, with examples and descriptions.
All examples was extracted from our test corpus. It
contains technical requirements and some of them
are anonymized because of confidential problems.
But they remains meaningful enough to show real
problems in requirements texts.

We follow mainly the definitions of these con-
straints, proposed by the above mentioned standards
and guidelines of IEEE and INCOSE.

2.1 Non-Ambiguity

An ambiguous term can convey several information
which lead the requirement to different interpreta-
tions of what the system is expected to do. A re-
quirement must be interpreted in only one way with-
out ambiguities. The following examples contain a
lexical ambiguity in (Reql) with the fuzzy adjective
standard and a grammatical ambiguity in (Req2)
with the combinator or.

o (Reql) The maximum pressure loads at the
standard operating temperature shall be 6.

e (Req2) The CPU system shall set these signals
in output or shall send them directly to the plat-
form.

2.2 Conformity

A requirement must be written conforming to the
standard structure and style defined by a company
or a group of authors. Not respecting this standard
increases the problem of understanding and makes
difficult to identify the main requirements from the
other types of sentences having a similar structure
like procedures, instructions, recommendation, etc.
The use of should instead of shall in (Req3) makes
the requirement non mandatory.

e (Req3) Paint coatings should also assist in the
overall maintenance of the vehicle by providing
easy to clean surfaces.

2.3 Completeness

A requirement must contain complete information in
itself without needing extra elements to understand
correctly the requirement. In the example (Reg4),

the requirement missed the agents who shall real-
ize the actions, and in (Req5), these and this refer
to some elements which can be identified with extra
contextual information.

e (Req4) In particular the received configura-
tions shall be used and the communication sig-
nal shall be isolated.

o (Req)) If these systems are required for safety
purpose, this requirement shall not prohibit the
use of the supply systems.

2.4 Singularity

A singular requirement must express a single idea
and characteristic concerning what the system has
to make. The (Req6) contains multiple actions shall
deliver and reload, introduced by the use of the com-
binator and. The (Req7) expresses the main action,
then justify why this action is required (in order
to...). This last is not a part of the requirement.

e (Req6) The system shall deliver data and
reload the configuration checks performed and
not performed.

o (Req7) Seats shall be selected at the discre-
tion of each customer in order to [accommo-
date differences in operations and passenger
preferences].

2.5 Readability

A complex requirement makes difficult the compre-
hension on given requirements and increase the cog-
nitive works of the reader. In (Req8), the quanti-
fier all needs to be specified by a list to be eas-
ily readable. In (Req9), the three acronyms should
be defined in a glossary and if not, the requirement
will not be understandable without specific domain
knowledge.

o (Req8) All exterior graphics shall be applied to
the vehicle in accordance with Customer spec-
ifications.

e (Req9) Static RAM or dynamic EPROM win-
dows shall be covered with labels that are
opaque at the UV erasing wavelengths.

The above requirements (Req1)~(Req9) illustrate
the counterexamples of high quality requirements,

441

which do not respect the non-ambiguity, conformity,
completeness, singularity and readability. Some of
them will be reconsidered in §3.1 to describe the Re-
quirements Grammar.

3 Requirements grammar and Errors
patterns

As shown in §2, the requirements texts need to be
qualified as unambiguous, conforming, complete,
readable and singular. Such constraint of a require-
ment written in Natural Language form a specific
linguistic genre that we call “requirements gram-
mar”. We consider in this work the five previously
explained constraints for writing good requirements
and define the corresponding rules in our require-
ments grammar. We also elaborate the types of most
frequent language errors as errors patterns, and de-
scribe them in relation with the rules of requirements
grammar. Table 1 describes a list of error patterns
that we developed based on requirements grammar.

3.1 Ambiguity rules

Rule 1: A requirement should not contain ambigu-
ous adjectives, adverbs, verbs and nouns which can
lead it to several interpretations, such as significant,
flexible, sufficient, adequate, nearly, correctly, prop-
erly, minimize, optimize, malfunction, undesirable
effects, etc. All adverbs ending in -ly particularly
make requirements unverifiable. These terms can be
replaced or complemented by a value, a set of val-
ues or an interval. The example (Reql) shows the
case that prohibits this rule. If the standard operat-
ing temperature is not defined in the text, it should
be reformulated like the standard operating temper-
ature between 5°C and 10°C.

Rule 2: A requirement should avoid the use of the
combinator or and the combination of and and or.
The conjunctions or and and, which coordinate two
actions verbs and two subjects, are not acceptable as
it raises a critical ambiguity problem (if they appear
in a main clause, it is more critical than in a subor-
dinated clause). The example (Req2) shows the case
that the or is used between two main action verbs
shall set and shall send.

3.2 Conformity rules

Rule 3: A requirement expresses an obligation that
states what the system should realize. The modal

shall is mainly used for mandatory requirements.
Other modals verbs like must, should, could, would,
can, will, may, should are not allowed in writing the
main action of a requirement. The example (Req3)
uses the modal verb should which expresses a rec-
ommendation rather than an obligation. It means
that it is recommended that Paint coatings assist in
overall maintenance but not obligatorily. The im-
pact of not respecting this requirement can be criti-
cal for the system.

Rule 4: The negation markers should be avoided in
a main clause as they states what the system does
not do as we can see in The system shall not transfer
unauthorized data to the sub-systems. This require-
ment should be reformulated like The system shall
transfer only authorized data to the sub-system.

3.3 Completeness rules

Rule 5: A requirement should be written in the ac-
tive voice because the majority of passive sentences
do not include explicit agents to indicate exactly
who perform the action. For example, in the require-
ment It shall be tested in the following conditions:...,
we need extra information to identify what will be
tested and who will test. The example (Req4) shows
the same situation.

Rule 6: Referential ambiguities appear when the
demonstrative and possessive pronouns like it, they,
them, their... are used with unclear antecedents in
requirements. These terms can refer to more than
one element of the same sentence or of the previ-
ous sentence. In the example (Req5), the pronoun
these probably refers to some elements introduced
in the antecedent requirements. All elements that
these systems refer to should be clearly specified in
the given requirement.

3.4 Singularity rules

Rule 7: A requirement should express only one ac-
tion and one idea (one subject) in a requirement.
First, we find two types of erroneous structures in-
troducing multiple actions in a requirement: 1) more
than two action verbs enumerated in a list, 2) more
than two action verbs coordinated by more than one
and. Second, when the subject is expressed in us-
ing and like X and Y shall..., we consider the re-
quirement as having multiple subjects and multiple
thoughts.

442

The example (Req6) describe the performance of

several actions and ideas in a requirement. In this
kind of case, when one of the actions is updated,
it can influence on the other action, consequently
makes difficult the maintenance and validation of the
requirement.
Rule 8: A requirement should contain appropriate
information, not including the solution and the pur-
pose of the given requirement. These extra informa-
tion should be presented separately in another docu-
ments.

In the example (Req7), in order to introduces
a new information: the reason why seats are se-
lected at the discretion of each customer. The au-
thor should not include the justification part in the
requirement. This problem often occurs using the
following structures: fo, so as to, for the purpose of,
so that, in order that, etc.

3.5 Readability rules

Rule 9: The use of universal quantifiers like every,
all, each, several, a, some, etc. should be avoided
because they generates the scope ambiguity. For ex-
ample, in the requirement A/l sub-systems shall have
their fire alarm, the quantifier all does confuse read-
ers if the meaning is that all sub-systems share one
alarm or all sub-systems has its own alarm.

Rule 10: In principle, a requirement text should
have available a glossary where the acronyms and
abbreviations are defined in order to help the reader
to understand the concepts related to them. Oth-
erwise an acronym should have a definition inside
of the requirement like The APU (Auxiliary Power
Unit) system.

4 Experiments and Results

4.1 Building training data

We build training data by using POS tagging and
syntactic parsing. We define five types of errors
as described in §2: ambiguity (AMBTI), conformity
(CONF), completeness (COMP), singularity (SING),
and readability (READ) and we write heuristic rules
based on error patterns. We use the IOB format for
error labels, in which B~ for ‘beginning’ of the label,
I- for ‘inside’, and O for ‘outside’: e.g. B-AMBI
and T-AMBI for the beginning and the inside of the
ambiguity label. Since we use the automatic method

to build our training data, we want to minimize the
error rate in our data. Therefore, we introduce the
filtering method by using two different algorithms
to filter out instances that we consider as errors for
POS tagging and syntactic analysis. To so do, we
simply use the consensus filtering method by the in-
tersection operation as follows:

D = D(M,) N D(Ms) (1)

where D is raw text data, M; is a learning algo-
rithm to annotate raw text data, and D is filtered
annotated data. For POS tagging, we use a hid-
den Markov model (HMM) and conditional ran-
dom fields (CRFs) in which we trained with POS
information of English treebank data®. We use a
TnT tagger (Brants, 2000) and Wapiti described in
(Lavergne et al., 2010) for the HMM and CRF an-
notation, respectively. For syntactic parsing, we use
two pretrained dependency parsing models for Malt-
Parser (Nivre et al., 2006).” We use syntactic pars-
ing results to detect the correct range of contamina-
tor errors described in §3.1, in which or and X’ are
dependent of X in X or X’ (for the AMBT error la-
bel). The length of X and X’ can vary in the sentence
and it would be difficult to detect them without syn-
tactic analysis. Otherwise, error annotation rules are
entirely based on POS tagging and lexical patterns
and these rules are described in detail throughout §2
and §3. For raw text data, we use ukWaC (the largest
English web-crawled resource), one of the WaCky
corpora presented in (Baroni et al., 2009). We be-
lieve that ukWaC contains large numbers of texts
written in technical English as it shows some lexical
and structural similarity to requirements texts: use
of the modal shall, action verbs, terms expressing
needs, etc. Finally, after consensus between POS
tagging and syntactic analysis, we obtain 82,847
sentences with 844,770 tokens for the training data
set. For the error annotation based on heuristic rules,
we give priorities for certain error patterns. There-
fore, when there are several possibilities to annotate
errors in the same word, we use the following error
precedence:

6https://catalog.ldc.upenn.edu/LDC99T42
"nttp://www.maltparser.org/mco/english_
parser/engmalt.html

443

Error patterns Description Impacts and rules

Combinators This error pattern related to the use of combinators orand ~ Ambiguity 2
and concerns the rules 2 and 7, respectively. Singularity 7
e X or X’ where POSs (or phrase type) of X and X’ are
same.
e X and/or X’ where POSs (or phrase type) of X and
X’ are same.
e X and X’ where POSs (or phrase type) of X and X are
same.
X= verb (infinitive form), verb phrase, noun, noun
phrase, adjective, value followed by a unit of measure-
ment

Pronouns This error pattern related to the use of possessive and ~ Completeness 6
demonstrative pronouns concerns the rule 6.
e Pron (possessive), Noun: their application
e Pron (possessive), NP: their proper development
e Pron (demonstrative), modal (shall): this
shall, these shall

Lexicals This lexical error pattern concerns the rules 1, 8, 9 and ~ Ambiguity 1
10 of §3. Requirements containing one of the following Singularity 8
lexical items: ambiguous terms (Rule 1), purpose expres- Readability 9, 10
sions (Rule 8), quantifiers (Rule 9), acronyms (Rule 10),
raises the problem of ambiguity, singularity and readabil-
ity. Due to lack of space, we do not give its complete lists
but the main items are mentioned in each rule.

Passive construction This error pattern related to the use of passive construc- Completeness 5
tion concerns the rule 5. We do not consider the passive
construction followed by the preposition by which intro-
duces the agent as being erroneous.
e modal (shall), be, AdvP, Verb (Action,
PP) : shall be used, shall be properly used

Negations This error pattern related to the negation marker concerns ~ Conformity 4
the rule 4. modal is only the mandatory modal shall.
e modal, Neg: shall not

Modals This error pattern related to the use of different types of ~ Conformity 3
modal verbs concerns the rule 3. modal excepts the
mandatory modal shall.
e modal, AdvP, Verb(Action, Inf): wouldim-
plement, should correctly implement

Table 1: Correspondence between errors patterns, impacts and rules

444

The DT O

analytes NNS B-AMBI

or CC I-AMBI

investigations NNS [-AMBI

covered VBN O

by IN (0]

the DT (0]

Scheme NNP O

shall MD B-COMP

be VB I-COMP

selected VBN I-COMP

on IN O

the DT O

basis NN O

of IN (0]

their PRP$ B-COMP

clinical JJ I-COMP

relevance NN I-COMP
O

Figure 1: An example sentence from training data: an-
alytes or investigations represents the ambiguity error,
shall be selected is annotated as completeness error, and
their clinical relevance has the completeness error.

combinators > pronouns > lexical
> passive construction > negations > modals
()

Figure 1 shows an example sentence from our
training data. In this figure, first, analytes or investi-
gations represents the ambiguity error because of or
as explained in the Rule 2 of §3.1. Second, shall be
selected is annotated as completeness error because
the information about who realize the required ac-
tion is not specified as shown in the Rule 5 of §3.3.
Third, their clinical relevance also has the complete-
ness error because of the possessive pronoun their. It
probably refers to one of the following antecedents:
analystes, investigations, the Scheme but we need
extra information to correctly identify the reference
of their (see the Rule 6 of §3.3).

We use CRFs for training. Since we are heav-
ily based on lexical and POS information, we use a
simple feature set, in which +£2 word/POS window
context, and bi-gram word/POS models.

label number average length
AMBT 138 1.69
CONF 88 2.36
COMP 88 2.94
SING 59 3.27
READ 243 1

Table 2: Error labels in the evaluation data set.

4.2 Evaluation data

To evaluate our proposed method and the model
trained by automatically generated data, we build
evaluation data. Our evaluation data are composed
of 319 technical requirements (481 sentences with
10,324 tokens), extracted from 12 documents (over
200 pages) coming from four different companies,
kept anonymous at their request. The main features
considered to validate our data are as follows:

(1) requirements corresponding to various profes-
sional activities: product design, management,
finance, and safety

(2) requirements following various kinds of busi-
ness style and format guidelines imposed by

companies
(3) requirements coming from various industrial
areas: finance, telecommunications, trans-

portation, energy, computer science.

To build evaluation data, we annotate POS labels us-
ing an HMM model and we correct them. Then, we
manually assign error labels as defined in §3. Ta-
ble 2 shows the number and the average length of
error labels in the evaluation data set.

4.3 Results

Table 3 presents evaluation results based on the eval-
uation data that we described in §4.2. We also pro-
vide precision and recall for each error label. We
obtain overall 79.17% F; score for our automatic er-
ror label annotation by using the CRF model learned
from which we build training data.

4.4 Error analysis and discussion

READ error labels are entirely based on lexical infor-
mation and we correctly annotate almost all of them
because we have enough lexical information in train-
ing data. CONF error labels show only about 26% of
precision because even though the expected modals

445

label precision recall F;
AMBTI 45.65 82.89 58.88
CONF 26.14 82.14 39.66
COMP 73.86 84.42 78.79
SING 79.66 65.28 71.76
READ 100.00 99.18 99.59

total 71.59 88.55 179.17

Table 3: Evaluation results: We learned our model from
the training data described in §4.1 and evaluated it using
CREFs.

as erroneous should have been detected exclusively
in the main clauses, many of them were identified in
the subordinated clauses where their use is allowed.
AMBT and SING error labels for the combinator er-
ror pattern are required parsing results, and we used
them for building training data. However, our CRF
model uses only lexical and POS information and
it was difficult to spot the correct range of argu-
ments of the combinators without syntactic infor-
mation. Actually, by using our program that we in-
troduced for building training data, which also used
syntactic analysis, we can obtain up to 82.47%. Re-
sults on AMBT and SING labels for combinators er-
ror patterns by our heuristic rule-based program are
especially better than by the CRF model. Note that
our heuristic rule-based program are overfitted to
our training/evaluation data and the proposed CRF
model is better for the general usage of the error an-
notation. However, dependency information is diffi-
cult to be integrated in the CRF model with depen-
dency distance. Moreover, dependency results are
not often correct for conjunction marks such as or
and and, which we use for the combinator error pat-
tern.

5 Conclusion and Future Perspectives

We have presented a linguistic model for the require-
ments quality analysis. A tool helping to improve
the requirements authoring quality allows to reduce
multiple proofreading steps which are time consum-
ing and costly but crucial in the whole life cycle of
the Requirement Engineering. The accuracy of this
kind of tools is obviously very important as techni-
cal authors (users) can reject to use them once they
generate false positives of more than 20%. To re-

duce the rate of false positives, the model that we
developed is based on the error patterns manually
identified in the linguistic framework of the require-
ments grammar.

The results of our first experiments on the model
developed in this paper show promising improve-
ments and some directions for the future work. First,
we need to improve the results of CONF and AMBT
error patterns by increasing the accuracy of the de-
pendency parsing results. For CONF, we can limit
the identification of modal shall followed by an in-
finitive verb to those only preceded by the subject
of the main clause. For AMBI, We are planning
to effectively integrate syntactic analysis results in
our learning model. Second, we can enrich the er-
ror patterns depending on the lexical information by
adding more lexical items into our model. Third,
the five constraints and the corresponding rules pre-
sented in the requirements grammar do not cover all
of the potential errors of the requirements author-
ing. It is necessary to revise and complete the rules
of the requirements grammar in order to detect an-
other error types: (1) detection of incomplete terms
(use of "TBD”, "TBC”, “etc.”...) for the Complete-
ness, (2) detection of over-specified elements (de-
sign/solution parts (how the system realize the re-
quired action) included in the requirements) for the
Singularity, (3) detection of grammatical errors (e.g.
ditransitive verbs missing one of arguments like the
system shall send the received configuration) for the
Completeness. There are also another types of con-
straints more ambitious such as the problem of con-
sistency and of redundancy between requirements or
sets of the requirements. For those errors, we need to
consider contextual information over a requirement
sentence and to understand semantic meaning of the
requirements and the relation between them. Finally,
the current model are based on automatically anno-
tated training data. We can improve its quality by
adding another language processing models to get
the better result on error filtering method. We may
also add eventually manual verification and we leave
them as our future work.

References

[Alred et al.2012] Gerald J. Alred, Charles T. Brusaw, and
Walter E. Oliu. 2012. The Handbook of Technical

446

Writing. Bedford/St. Martin’s, New York.

[Arora et al.2013] Chetan Arora, Mehrdad Sabetzadeh,
Lionel Briand, Frank Zimmer, and Raul Gnaga. 2013.
Automatic Checking of Conformance to Requirement
Boilerplates via Text Chunking: An Industrial Case
Study. In 2013 ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement,
pages 35-44, oct.

[Baroni et al.2009] Marco Baroni, Silvia Bernardini,
Adriano Ferraresi, and Eros Zanchetta. 2009. The
WaCky wide web: a collection of very large linguis-
tically processed web-crawled corpora. Language Re-
sources and Evaluation, 43(3):209-226.

[Berrocal Rojas and Barrantes Sliesarieva2010] Allan
Berrocal Rojas and Elena Gabriela Barrantes
Sliesarieva. 2010. Automated Detection of Language
Issues Affecting Accuracy, Ambiguity and Verifia-
bility in Software Requirements Written in Natural
Language. In Proceedings of the NAACL HLT 2010
Young Investigators Workshop on Computational
Approaches to Languages of the Americas, pages
100-108, Los Angeles, California. Association for
Computational Linguistics.

[Berry et al.2003] Daniel M. Berry, Erik Kamsties, and
Michael M. Krieger. 2003. From Contract Drafting
to Software Specification: Linguistic Sources of Am-
biguity.

[Bourque et al.2004] Pierre Bourque, Alain Abran, Juan
Garbajosa, Gargi Keeni, Beijun Shen, Alain April,
Antonia Bertolino, Durba Biswas, Nabendu Chaki,
Roger Champagne, Christof Ebert, Pierce Gibbs,
Mira Kajko-Mattsson, Gerald Kotonya, Eda Marchetti,
James McDonald, Xin Peng, Annette Reilly, Pete
Sawyer, Michael Siok, Yanchun Sun, and Hengming
Zou. 2004. Guide to the Software Engineering Body
of Knowledge (SWEBOK Guide). IEEE Computer So-
ciety.

[Brants2000] Thorsten Brants. 2000. TnT — A Statisti-
cal Part-of-Speech Tagger. In Proceedings of the Sixth
Conference on Applied Natural Language Processing,
pages 224-231, Seattle, Washington, USA. Associa-
tion for Computational Linguistics.

[Fabbrini et al.2001] Fabrizio Fabbrini, Mario Fusani,
Stefania Gnesi, and Giuseppe Lami. 2001. An Au-
tomatic Quality Evaluation for Natural Language Re-
quirements. In in Proceedings of the Seventh Inter-
national Workshop on RE: Foundation for Software
Quality (REFSQ’2001, pages 4-5, Interlaken, Switzer-
land.

[Firesmith2003] Donald Firesmith. 2003. Specifying
Good Requirements. Journal of Object Technology,
2:77-87.

[Fuchs2012] Norbert E. Fuchs, 2012. First-Order Rea-
soning for Attempto Controlled English, pages 73-94.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[Galin2003] Daniel Galin. 2003. Software Quality Assur-
ance: From Theory to Implementation. Pearson.

[Glas2002] Robert L. Glas. 2002. Facts and Fallacies of
Software Engineering. Addison-Wesley Professional.

[Gnesi et al.2005] Stefania Gnesi, Fabrizio Fabbrini,
Mario Fusani, and Gianluca Trentanni. 2005. An au-
tomatic tool for the analysis of natural language re-
quirements. CRL Publishing: Leicester, 20:53—62.

[Grady2013] Jeffrey O. Grady. 2013. System Require-
ments Analysis. Elsevier.

[Hull et al.2011] Elizabeth Hull, Ken Jackson, and
Jeremy Dick. 2011. Requirements Engineering.
Springer-Verlag London.

[Kuhn2013] Tobias Kuhn. 2013. A Principled Approach
to Grammars for Controlled Natural Languages and
Predictive Editors. Journal of Logic, Language and
Information, 22(1):33-70.

[Lavergne et al.2010] Thomas Lavergne, Olivier Cappé,
and Francois Yvon. 2010. Practical Very Large Scale
CREFs. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages
504-513, Uppsala, Sweden. Association for Compu-
tational Linguistics.

[Nivre et al.2006] Joakim Nivre, Johan Hall, and Jens
Nilsson. 2006. MaltParser: A Data-Driven Parser-
Generator for Dependency Parsing. In Proceedings of
the Fifth International Conference on Language Re-
sources and Evaluation (LREC’06).

[Stecklein et al.2004] Jonette M. Stecklein, Jim Dabney,
Brandon Dick, Bill Haskins, Randy Lovell, and Gre-
gory Moroney. 2004. Error Cost Escalation Through
the Project Life Cycle. In Proceedings of thel4th An-
nual International Symposium, Toulouse, France.

[Weiss1990] Edmond H. Weiss. 1990. 100 Writing
Remedies: Practical Exercises for Technical Writing.
Greenwood.

[White and Schwitter2009] Colin White and Rolf Schwit-
ter. 2009. An Update on PENG Light. In Luiz Piz-
zato and Rolf Schwitter, editors, Proceedings of the
Australasian Language Technology Association Work-
shop, pages 80-88, Sydney, Australia.

[Zapata Jaramillo2010] Carlos Mario Zapata Jaramillo.
2010. Computational Linguistics for helping Require-
ments Elicitation: a dream about Automated Software
Development. In Proceedings of the NAACL HLT
2010 Young Investigators Workshop on Computational
Approaches to Languages of the Americas, pages 117—
124, Los Angeles, California. Association for Compu-
tational Linguistics.

447

