
Developing an Unsupervised Grammar Checker for Filipino Using
Hybrid N-grams as Grammar Rules

Matthew Phillip Go Allan Borra
De la Salle University

2401 Taft Avenue,
Manila, Philippines

De la Salle University
2401 Taft Avenue,
Manila, Philippines

matthew_phillip_go@dlsu.edu.ph allan.borra@dlsu.edu.ph

Abstract

This study focuses on using hybrid n-grams
as grammar rules for detecting grammatical
errors and providing corrections in Filipino.
These grammar rules are derived from
grammatically-correct and tagged texts which
are made up of part-of-speech (POS) tags,
lemmas, and surface words sequences. Due to
the structure of the rules used by this system,
it presents an opportunity to have an
unsupervised grammar checker for Filipino
when coupled with existing POS taggers and
morphological analyzers. The approach is
also customized to cover different error types
present in the Filipino language. The system
achieved 82% accuracy when tested on
checking erroneous and error-free texts.

1. Introduction

According to the philosopher and educator Kevin
Browne, poor grammar implies two negative
sentiments towards the writer: either he is not
intelligent or he just does not care about his
writing any better. Backing on this problem,
there has been many researches and advances in
the field of computer-aided grammar checking
such as Microsoft Word, Google Docs,
Grammarly, LanguageTool, and Ginger. These
software solutions can detect syntactical errors
such as spelling, punctuation, word forms, and
word usages. However, most of these solutions
have focused on the English language. There has
been very few works in the Filipino language
despite being a language of at least 100 million
people1 . Additionally, it is difficult to use an
existing grammar checker system of one
language and apply it on another since the
system would have its specific design and

1http://www.philstar.com/headlines/2016/01/03/1538653/ph
ilippines-population-seen-hit-104m

functionalities tackling the unique phenomena of
its target language.

The Filipino language, just like any other
language, has its own unique phenomena which
serve as a challenge in developing its own
grammar checker system. It has a ‘large

vocabulary of root, borrowed, and derived
words’ caused by the arrival and/or colonization
of foreign countries including: Spain, USA, and
China in the Filipino land2. It also has a high
degree of inflection and uses variety of affixes to
change the part-of-speech of a root word (ex.
root: tira ‘live [on a house]’, tira + han = tirahan
‘house’) or change the focus and aspect of a verb

(tirhan ‘live’ – neutral aspect/object focus, titira
‘will live’ – contemplative aspect/ actor focus,
tumira ‘lived’ – perfective aspect/ actor focus.
Another linguistic phenomenon in Filipino is its
free-word order structure. Filipino sentences, in
its natural form, follow the predicate-subject
sentence format (ex. Masaya ako – word-per-
word is translated as ‘Happy I’) or as subject-
predicate sentence format (ex. Ako ay masaya –

word-per-word is translated as ‘I [none] happy’)

where the word ay acts as a lexical marker and is
usually placed after the subject and before the
predicate. In the Filipino language, direct objects,
adjectives and adverbs may also be written as
phrases and including prepositional phrases, they
also follow the free-word order and not being
limited to just one position in the sentence
(Ramos, 1971). For example, the sentence ‘Mark

ate an apple.’ can be translated to: Si Mark ay
kumain ng mansanas., Kumain si Mark ng
mansanas., and Kumain ng mansanas si Mark.
As seen in the last two translations, the direct
object phrase ng mansanas ‘apple’ can be placed
directly after the verb or after the subject yet both
produce the exact same meaning.

2 http://ffemagazine.com/the-origin-of-the-filipino-
language-wikang-filipino/

PACLIC 30 Proceedings

105

30th Pacific Asia Conference on Language, Information and Computation (PACLIC 30)
Seoul, Republic of Korea, October 28-30, 2016

As of this writing, there are still no
grammar-checking software systems for Filipino
that is publicly available that cover broad-range
of grammatical errors. This fact may be
associated with the complex structure of the
Filipino language which makes it difficult in
constructing (error) grammar rules. Among the
few existing grammar checkers in Filipino are:
Panuring Pampanitikan (PanPam) by Jasa et al.
(2007) and Language Tool for Filipino (LTF) by
Oco & Borra (2011). PanPam is a syntax and
semantics-based grammar checker for Filipino
that makes use of error patterns as rules and
lexical functional grammar as its parsing
algorithm. LTF, on the other hand, uses a rule
file containing error patterns in the form of
regular expressions and part-of-speech tags and a
dictionary file in detecting its errors and
providing corresponding suggestions. Although
these systems, especially LTF, could distinctly
recognize grammatical errors from correct text
by using error patterns, the main concern with
these systems is that the parser rules,
dictionaries, affix-to-root-word mappings, word-
to-part-of-speech mappings, error patterns, and
other files are manually defined which is a very
tedious task to cover the entire language and all
possible errors in it especially that the language
is ever growing and the number of errors
committed by writers are directly proportional to
it. This concern is evident on the systems’

presented limitations and results where only a
small subset of errors was covered.

In other languages such as English, there
are existing works such as Lexbar (Tsao &
Wible, 2009), EdIt (Huang et al., 2011), Google
books n-gram corpus as grammar checker (Nazar
& Renau, 2012), and Chunk-based grammar
checker for translated sentences (Lin et al., 2011)
which are unsupervised grammar checker
systems that make use of grammatically correct
texts, their corresponding part-of-speech (POS)
tags, and/or lemmas converted into n-gram
sequences and used as grammar rules.

The Lexbar application (Tsao & Wible,
2009) generated hybrid n-grams, which are n-
grams composed of words, POS tags, and
lemmas. These hybrid n-grams are generated
from actual tagged word sequences. For
example, given phrases such as ‘from her point

of view’ and ‘from his point of view’, the system

will be able to generate the hybrid rule ‘from

[dps]3
point of view’. This rule can be used to

flag the phrase ‘from my point of view’ as

grammatically correct and the phrase ‘from him

point of view’ as incorrect. The Lexbar app was
only tested on substitution-correctable errors.
The EdIt system (Huang et al., 2011) also made
use of hybrid n-grams (called pattern rules) as
grammar rules but only generates the rules such
as ‘play ~ role in [Noun]’, ‘play ~ role in [V-
ing]’, and ‘look forward to [V-ing] 4

’ from
specific lexical collocations such as ‘play ~ role’

and ‘look forward’. These types of rules tackle
much more specific error types in English. The
key difference of EdIt with Lexbar is that it only
limits the number of POS tokens in an n-gram
rule to one while Lexbar can have one or more
POS tokens such as the rule: ‘from [dps] [nn0]5

’

derived from the phrases like ‘from his house’

and ‘from her balcony’. EdIt applied its rules in
detecting errors correctable by substitution,
insertion, and deletion. Both Lexbar and EdIt
used weighted Levenshtein edit distance
algorithm in prioritizing its suggestions.

This research aims to build an unsupervised
grammar checker system for Filipino using
hybrid n-grams as grammar rules following a
similar format as Lexbar’s grammar rules. These
rules will be used to detect grammatical errors in
Filipino and provide suggestions such as
substitution, insertion, deletion, merging, and
unmerging extending the existing suggestions
made by both Lexbar and EdIt.

2. Filipino Linguistic Phenomena
Aside from the free-word order structure in
Filipino, there are other linguistic phenomena
such as being morphologically rich, existence of
compound words, and the rule in Filipino: “Kung
ano ang bigkas, siyang sulat” ‘Spell as you
pronounce it’ (Ortograpiyang Pambansa, 2013).

There are at least 50 affixes and other
morphologies such as partial reduplication, full
reduplication, and compounding that are used in
Filipino. These morphologies are categorized
into three: inflectional – changes in word form
that ‘accompany case, gender, number, tense,
person, mood, or voice that have no effect in the
word’s part-of-speech’; derivational – changes in

3 dps is the part-of-speech (POS) tag for possessive
pronouns such as his, her, my, their, etc in the CLAWS5
tagset.
4 V-ing is the POS tag for verbs followed by –ing in the
CLAWS5 tagset.
5 nn0 is the POS tag for neutral nouns in the CLAWS5
tagset.

106

word form that changes the word’s part-of-
speech category; and compounding – ‘where

independent words are concatenated in some way
to form a new word’ (Bonus, 2003). See Table 1
for some of the different forms of the root word
kain ‘eat’.

Word Translation
Verbs
ikakain will just eat
ikain just eat
ipakain feed
ipapakain will feed
kainin eat (something)
kinain ate (something)
kinakain eating (something)
kumain (somebody) eating
Nouns
hapagkainan eating/dinner table
kainan eating place
kakainan eating place (where

do-er will go later)
kinakainan eating place (where

do-er is right now)
pagkain food
Adjective
palakain loves eating

Table 1: Different forms of kain ‘eat’

There are also affixes that are separated by a
hyphen (-) from its root word or morpheme (ex.
mang-akit ‘to entice’ from the root akit ‘entice’).
There are also cases wherein addition or insertion
of an affix to a word could alter the spelling of its
base form (ex. The prefix pang- + palit ‘change’

= pamalit ‘item for changing’). However, not all
affixes and reduplication can be applied to any
word. For instance, the root word luto ‘cook’ can

use ‘nag-‘ as prefix but kain ‘eat’ cannot. It
should also be noted that there are assimilated
words from English in Filipino wherein affixes
are also appended to it (ex. magce-cellphone
‘will use a cellphone’, i-file ‘to file (a

document)’). The Filipino language also has its
own set of compound words. There are two ways
to combine words together, either with the use of
a hyphen (ex. halo-halo ‘(a type of Filipino
dessert)’ from the word halo ‘mix’, and kisap-
mata ‘instant’ from the words kisap ‘blink’ &

mata ‘eye’) or just combining them as is (ex.
kapitbahay ‘neighbor’ from the words kapit
‘hold onto’ & bahay ‘house’, and hanapbuhay
‘livelihood’ from the words hanap ‘find’ &

buhay ‘life’) (Paz, 2003).

Another important linguistic phenomenon in
Filipino is the rule: “Kung ano ang bigkas,
siyang sulat” ‘Spell as you pronounce it’

(Ortograpiyang Pambansa, 2013). As the rule
states, the words in Filipino are usually spelled as
they are pronounced with some exceptions. This
phenomenon simplifies the way Filipino words
are spelled out (ex. Filipinized form of
‘computer’ as kompyuter) but also causes some
spelling confusion which will be discussed in the
next section.

3. Error Types
In understanding the error types that exist in
Filipino writing, three references were used: The
Cambridge Learner Corpus (Nicholls, 1999),
Wikapedia (2015), and a parallel corpus of 1252
erroneous-and-correct word and phrase pairs
from sentences written by Filipino university
students.

The Cambridge Learner Corpus contains 16
million words from English examination scripts
by learners of English containing different types
of errors. The corpus categorized the error types
into general and specific errors. The proponents
noticed that some error categories would have its
Filipino counterpart such as wrong form used,
missing word/phrase, word/phrase needs
replacing, unnecessary word/phrase, punctuation
errors, countability errors, determiner agreement,
incorrect verb inflection, spelling errors, and
other error categories also exist in Filipino.

Wikapedia (2015) is a booklet created by
the Presidential Communications Development
and Strategic Planning Office of the Philippines
containing correct usage of affixes, words, and
phrases in Filipino which people may find
confusing. One example described in the book
would be the use of ng, a function word defining
possession (ex. aso ng kapitbahay ‘dog of

neighbor’) and in a direct object phrase (ex.
kumain ng mansanas ‘ate an apple’) vs the use of
nang which is commonly used before an adverb
(ex. kumain nang mabilis ‘ate fast’). The usage
of these two words is confusing because it is
pronounced almost exactly the same. Other
examples contained in the booklet are proper
usage of affixes and words, morphophonemics,
usage of hyphens and spaces, and others.

After analyzing the parallel corpus of 1252
erroneous-correct word/phrase pairs, it is found
that majority of the errors fall under spelling
errors, incorrect usage of affixes/reduplication
which is mostly caused by usage of hyphens and
spaces, and wrong word usage.

PACLIC 30 Proceedings

107

It is observed that one reason the students
made spelling errors is because of the way a
word is pronounced which is usually simplified
for conversational use. Some of these simplified
words, see Table 2, are still not accepted in
formal Filipino writing which cause spelling
errors. Another cause of spelling errors is the
confusion whether to spell an English borrowed
word in its English version or convert it to its
Filipinized spelling version.

There were many instances of affix errors
where the students were confused whether a
word is an affix of a word, a separate word, or if
there should be a hyphen between the affix and
the root word. A few of the affix errors also show
the confusion of students in selecting an
appropriate affix of a verb when used for a
certain focus and/or aspect. See Table 3.

The students also committed several
mistakes in identifying which word to use in
certain situations which is caused by
unfamiliarity with Filipino syntax rules. See
Table 4.

Other errors that exist in the parallel corpus
include the lack of space between words (ex. pa
rin ‘still’ incorrectly written as parin), compound
words that was separated by a space (ex. araw-
araw ‘everyday’ incorrectly written as araw
araw) and punctuation errors where some
commas or periods are missing.

Correct
Word

Misspelled
as

Reason

noon
‘before’

nuon Pronounciation

mayroon
‘have’

meron Pronounciation

anong ‘what’ anung Pronounciation
iyong yung Pronounciation
tingnan ‘look’ tignan Pronounciation
kumpanya
‘company’

companya Filipinization

iskolarship
‘scholarship’

scholarship Filipinization

risertser
‘researcher’

researcher Filipinization

Table 2: Spelling Errors

Correct
Word

Misspelled
as

Reason

Pangkain
‘used for

eating’

Pang kain Extra Space

Tagtuyo
‘drought’

Tag-tuyo Extra Hyphen

Ikawalo
‘eighth’

Ika-walo Extra Hyphen

i-predict ‘to

predict’

ipredict Missing
Hyphen

mas malaki
‘bigger’

masmalaki Missing Space

inilagay sa
kahon ‘placed

in a box’

nilagay sa
kahon

Incorrect
Affix used for
a verb focus

Table 3: Affix Errors

Confused between:
ng ‘of’ nang ‘(function word

before an adverb)’

may ‘has (used before
nouns, verbs,
adjectives and
adverbs)’

mayroon ‘has (used
before grammatical
particles, personal
pronouns, and adverbs
of place’

suffix –ng ‘used in

place of na if word
preceding it ends in a
vowel

na ‘(type of

grammatical particle)’

Table 4: Wrong Word Usage

4. Overview of the Grammar Checker
The grammar checker named Gramatika that is
discussed in this paper utilizes the existing
implementation of the Lexbar application by
Tsao & Wible (2009) and extends it to cover
more error types, some of which are unique in
the Filipino language. It uses n-grams as rules,
commonly referred to as hybrid n-grams, from
grammatically correct texts consisting of words,
POS tags, and lemmas to detect grammatical
errors and provide suggestions containing
possible corrections. The production of POS
tags, and lemmas can be produced by existing
POS taggers and morphological analyzers 6 for
Filipino making the system unsupervised such
that new grammatically correct texts can be fed
through these systems and to Gramatika to easily
increase the number of grammar rules.

6 See Rabo & Cheng (2006) and Bonus (2003)

108

4.1 Rules Learning
Even though Gramatika also uses hybrid n-grams
similar to Lexbar’s (Tsao & Wible, 2009) and
slightly similar to EdIt’s (Huang et al., 2011), the
approach in deriving the hybrid n-grams is
different. Gramatika uses a clustering approach
as opposed to Lexbar’s pruning and EdIt’s

collocations-based approaches. The n-gram sizes
used as rules range from 2 to 7. For example,
given an incorrect phrase para sa bata ang
laruan ni iyon. ‘?that? toy is for the kid’, if
Gramatika has the hybrid 7-gram ‘para_sa
[NNC] [DTC] [NNC] na [PRO].’ 7, then it can
immediately suggest to change the word ni ‘(a

grammatical particle used before a personal
proper noun)’ to na ‘(a grammatical particle used

around adjectives, pointing pronouns, and
others)’ which produces the corrected version:
para sa bata ang laruan na iyon ‘that toy is for

the kid’ which is a more appropriate suggestion
than the suggestion produced by the trigram
[NNC] ni [NNP] 8 to change iyon to a proper
noun (ex. Mark) producing the corrected
version: para sa bata ang laruan ni Mark
‘Mark’s toy is for the kid’. The use of larger n-
gram sizes increases the context from which a
suggestion can be based from.

In the clustering approach, all n-gram
sequences are retrieved from grammatically
correct texts and are stored in the database.
During the storing process, the frequency of all
POS tag sequences is counted. POS tag sequences
exceeding the threshold of 2 are retrieved and the
word n-grams are grouped as clusters. For each
n-gram clusters, the module checks if there are
any token slot that can be generalized to POS
level. For example, if a cluster has the instances
nagpunta sa bayan ‘went to the town’ and
bumisita sa bahay ‘visited the house’, the first
and third tokens can be generalized because it
meets the minimum difference threshold of 2.
This produces the hybrid n-gram [VBTS] sa
[NNC] which can be used to flag the phrase
umupo sa silya ‘sat on the chair’ as

grammatically correct or used to detect
grammatical errors. The n-gram rules are stored
in the database as sequences of words, POS tags,
lemmas, and a Boolean sequence denoting which
token slots are generalized. This is done to allow
Gramatika to provide word-specific suggestions

7 Based from the Rabo & Cheng (2006) tag set, NNC =
common noun, DTC = determiner for common nouns, PRO
= pronoun pointing to an object
8 NNP = proper noun

and to also identify the appropriate transformed
word to a specific POS -lemma mapping.

4.2 Error Detection
In detecting grammatical errors and producing
suggestions based on the hybrid n-grams, a
weighted Levenshtein edit distance algorithm is
used. This algorithm is commonly used in spell
checking to compute how many edits it will take
to convert a potentially misspelled word to a
correct word in the dictionary. It has also been
used by EdIt (Huang et al., 2011) in providing
corrections by substitution, insertion, and
deletion. In Gramatika, the edit distance
algorithm is extended to detect errors and
provide suggestions correctable by substitution,
insertion, deletion, spelling correction,
unmerging, and merging. The error types that
exists in Filipino are grouped based on the six
suggestion types, see Table 5.

Correction Error Types
Substitution Affix/Form errors, wrong

word/punctuation usage (includes
preposition, determiners, and
others)

Spelling
Correction

Misspelled words, misuse/lack of
hyphens

Insertion Missing words and punctuations
Deletion Unnecessary words and

punctuations
Unmerging Incorrectly merged words

requiring unmerging of words or
removal of hyphens

Merging Incorrectly unmerged word
requiring removal of space or
insertion of hyphen between texts

Table 5: Correction and Error Types

In producing suggestions, Gramatika parses
the input, which is POS and lemma-tagged, into
n-grams starting from size 7 down to 2. For each
input n-gram, it retrieves hybrid n-gram rules
“similar” to the input n-gram from the database.
A rule is considered “similar” to an input n-gram
if at least n–2 POS tokens of it are equal to the
POS tokens in the input n-gram. Three sizes of
the rules are also retrieved for each input n-gram:
rules that are of equal size to the input n-gram to
be used for substitution and spelling correction
suggestions, rules that are one token size larger
to produce insertion and unmerging suggestions,
and rules that are one token size smaller to
produce deletion and merging suggestions. If an

PACLIC 30 Proceedings

109

input n-gram is “equal” to a rule n-gram of the
same size, then it is considered grammatically
correct, which is denoted by an edit distance
value of 0. “Equal” tokens, in this context, are

defined as tokens having the same POS tag if the
POS tag of the rule n-gram token is generalized
or tokens that are equal in surface word level.

A substitution suggestion is outputted when
all tokens in the rule n-gram except one are equal
to its respective tokens in the input n-gram in the
same index. The unequal token is categorized
depending on its error type: affix errors or wrong
word usage. In detecting affix errors, the system
checks if the lemma of the unequal input token is
equal to the respective rule token. If the lemmas
are equal but the words and/or POS tags are not
equal, then it is assumed that there is an affix
usage error with respect to the rule n-gram used.
For example, given the input kumain siya bukas
‘he ate tomorrow’ is compared against the rule n-
gram [VBTF] [PRS] bukas9, where one instance
of the POS tag [VBTF] is the word kakain ‘will

eat’, since kumain ‘ate’ and kakain has the same
lemma kain ‘eat’, the error is classified as an
affix usage error which will produce a suggestion
‘Change kumain to kakain’ to produce the phrase
kakain siya bukas ‘He will eat tomorrow’. For
wrong word usage errors, Gramatika suggests
that the unequal rule token should replace the
unequal input token. Consider the example:
Bumili si bata ng laruan ‘?the? child bought a
toy’. It is considered grammatically incorrect

because the word si is used as a determiner for
proper nouns. Using the trigram rule [VBTS] ang
[NNC] 10 , the correct determiner for common
nouns ang will be suggested to replace the
incorrect word si. Corresponding edit distance
values will be assigned to the outputted
substitution suggestions as seen in Table 6.

Error Type Weight Error Type Weight
Incorrect
Affix/ Form

0.6 Wrong
Word Same
POS

0.8

Spelling
Error

0.65 Wrong
Word Diff.
POS

0.95

Incorrectly
Merged

0.7 Missing
Word

1.0

Incorrectly
Unmerged

0.7 Unnecessary
Word

1.0

Table 6: Edit Distance Values

9 VBTF = contemplative verb, PRS = singular pronoun
10 VBTS = perfective verb, NNC = common noun

A spelling suggestion is similar to the
substitution suggestion criteria where in all
tokens except one should be equal to its
respective tokens. The unequal tokens are
compared using a character-level edit distance
algorithm. If it meets the spelling difference
threshold, then the token in the rule n-gram is
outputted as a spelling correction suggestion.
This approach is slightly similar to the traditional
way of spell checking which is dictionary look
up, but this uses context in providing an
appropriate suggestion. For example, given the
input Bakt ?, using dictionary look-up alone, two
possible suggestions can be produced: Bakat ‘a

mark/trace’ or Bakit ‘why’. Using a context-
based approach and the rule [PRQ] ?11 where the
word bakit is an instance of the POS tag [PRQ],
Gramatika will suggest the word Bakit to form
the correct sentence Bakit? ‘Why?’. This
suggestion is assigned an edit distance value of
0.65, as seen in Table 6.

An insertion suggestion is outputted when
all tokens in the input n-gram find their
corresponding equal tokens in the rule n-gram
and one token from the rule n-gram does not
have a matched token. For example, given the
input n-gram a b d and rule n-gram a b c d,
tokens a, b, and d are equal tokens and c does not
have a match which is outputted as an insertion
suggestion. This suggestion is given an edit
distance value of 1.0, as seen in Table 6.

A deletion suggestion is outputted when all
tokens in the rule n-gram find their
corresponding equal tokens in the input n-gram
and one token from the input n-gram does not
have a matched token. This one token will be
suggested to be deleted. This suggestion is also
given an edit distance value of 1.0, as seen in
Table 6.

An unmerging suggestion is outputted when
n-1 tokens in the input n-gram are equal to its
respective tokens in the rule n-gram leaving one
token in the input n-gram and two adjacent
tokens in the rule n-gram without matching equal
tokens. The system concatenates the two adjacent
tokens in the rule n-gram together using a
hyphen or removal of the space and checks if it
equates to the spelling of the input token. If
equal, then an unmerging suggestion is produced.
For example, given the input four-gram a b cd e,
and rule five-gram a b c d e, the tokens a, b, and
e are equal tokens. After which, the tokens c and

11 PRQ = question/interrogative pronoun

110

d in the rule n-gram is concatenated, since it
equals the token cd in the input n-gram, then the
unmerging suggestion is outputted. This
suggestion is given an edit distance value of 0.7,
as seen in Table 6.

A merging suggestion is outputted when n -
1 tokens in the rule n-gram are equal to its
respective tokens in the input n-gram leaving one
token in the rule n-gram and two adjacent tokens
in the input n-gram without matching equal
tokens. The system concatenates the two adjacent
tokens in the input n-gram together using a
hyphen or removal of the space and checks if it
equates to the spelling of the rule token. If yes,
then a merging suggestion is produced. For
example, given the input five-gram a b c d e, and
rule four-gram a b cd e, the tokens a, b, and e are
equal tokens. After which, the tokens c and d in
the input n-gram is concatenated, since it equals
the token cd in the rule n-gram, then a merging
suggestion is outputted. This suggestion is also
given an edit distance value of 0.7, as seen in
Table 6.

It should be noted that the edit distance
values used are arbitrary and is mainly used for
prioritization of suggestions only as the edit
distance threshold is set to 1. In cases that there
would be ties in terms of edit distance values (ex.
three wrong word different POS tag suggestions),
the frequency of how many times each
suggestion is produced by the n-gram rules is
also considered.

5. Results and Analysis
The Gramatika system is tested on 70 phrases
(35 erroneous and 35 error-free) retrieved from
PanPam (Jasa et al., 2007) Wikapedia (2015),
translated documents by Filipino university
students, and news articles. A small corpus of
2,668 complex sentences which consists of
70,312 tokens (14,575 unique tokens) is used in
training of the n-gram rules which result to 83%
accuracy, 93% precision, and 71% recall. Table 7
shows a summary of figures. 18 out of 25
erroneous phrases were marked as erroneous, and
23 out of 25 error-free phrases were marked as
error-free.

Sentences Correctly
Flagged

Incorrectly
Flagged

Total

Erroneous 25 10 35
Error-free 33 2 35
Total 58 12 70

Table 7: Grammar Checking Results

This result shows significant potential for an
unsupervised grammar checker that currently
only uses a small corpus of grammatically
correct sentences.

In detecting errors, the system was able to
produce word-specific suggestions for most
errors except for one instance: Noong 2006,
mananalo ang ‘Last 2006, (something/someone)

will win’, having a verb aspect/tense and adverb

of time disagreement, where the system only
suggest to replace the word mananalo ‘will win’

with any perfective verb [VBTS] because it did
not have the word- POS-lemma mapping nanalo
‘won’-[VBTS] panalo ‘win’. Other detected

errors with produced word suggestions include
affix errors (ex. linaan – root word laan ‘allot’

cannot use the infix ‘-in-‘ -> naglaan ‘alloted’),

wrong word usages (ex. nang vs ng, para_sa vs
para_kay), spelling errors (ex. kikumpara ->
kinukumpara ‘comparing’, lalake -> lalaki
‘man’, nag-simula -> nagsimula ‘started’,

nagka-loob -> nagkaloob ‘given’, skolar ->
iskolar ‘scholar’, pwesto -> puwesto ‘position’),
merging/unmerging errors (ex maka kuha ->
makakuha ‘to get’, parin -> pa rin ‘still’), and
missing punctuation (ex. Mayo 31 2016 -> Mayo
31, 2016 ‘May 31, 2016’).

Gramatika failed to produce correct
suggestions for some erroneous inputs because of
several reasons. One reason is that some tags in
the Rabo & Cheng (2006) tag set are too
generalized. For instance, the sequence para sa
Mark ‘for the Mark’ was incorrectly flagged as

grammatically correct which is supposedly para
kay Mark ‘for Mark’ because para sa is used for
common nouns and proper nouns of place. This
occurred because all proper nouns only use the
tag [NNP] and an n-gram rule para_sa [NNP]
was produced from phrases with proper nouns of
place such as para sa Amerika, and para sa
Taiwan. Another reason is that some words or
phrase sequences were not part of the training
corpus. For example, the phrase taga Manila siya
was not corrected to taga-Manila siya ‘He’s from

Manila’ because the word taga-Manila was not
in the database, thus preventing a merging
suggestion. The system also failed to detect the
grammatical error in the phrase Maganda si. ‘is

beautiful.’ which can be corrected as Maganda si
Maria. ‘Maria is beautiful.’ because the corpus
sentences were all complex sentences and thus
the correction for the simple sentence was not
produced. The system also incorrectly flagged
the phrase na bibigay ang where bibigay is an
invalid contemplative form [VBTF] of the word

PACLIC 30 Proceedings

111

bigay ‘give’ which is supposedly magbibigay
‘will give’ because there is no magbibigay-
[VBTF]-bigay mapping in the database. This is
caused by the word bibigay being given the tag
[VBTF] since it follows the partial reduplication
rule for the said tag and the hybrid sequence na
[VBTF] ang being considered grammatically-
correct based from sequences such as na
gagampanan ang ‘will take the role of’.

The system performed well in correctly
flagging error-free phrases even though many of
the words were not in the training corpus. This
result can be attributed to the POS tags of the
input phrases and the generalized rules. For
instance, the phrase ang pagtakbo ng mayor
‘mayor’s candidacy’ was flagged correctly

because of the n-gram rule ang [NNC] ng [NNC]
that came from instances such as ang kulay ng
apoy ‘fire’s color’, ang proseso ng produksyon
‘production’s process’. However, there are two
instances wherein the system incorrectly flagged
error-free phrases: Siya ay masaya. ‘She is

happy’ because simple sentences that contain the

word ay did not occur in the training corpus and
Kinuha ko ito dito. ‘I got it from here’ because

neither the word sequence ko ito nor the POS
sequence [PRS] [PRO] is not in the n-gram
rules.

6. Summary & Future Works
This paper presents an unsupervised grammar
checker system for Filipino that uses
grammatically correct texts as grammar rules in
the form of hybrid n-grams. It achieved 83%
accuracy, 93% precision, and 71% recall in
detecting broad-range of grammar errors in
Filipino using only a small corpus of 2,668
sentences which can potentially be further
improved as the size and variety of training
sentences increases.

Future works for this system includes
exploring other tag sets or modifying existing
ones to create more specific tag groups for the
system to avoid errors caused by tag groups that
are too general. Corpus size may also be
increased to produce more n-gram rules and
word- POS-lemma mappings used for grammar
checking.

Acknowledgment

This research work is supported by the
Department of Science & Technology –

Philippines and De la Salle University – Manila

as part of its Interdisciplinary Signal Processing
for Pinoys: Software Applications for Education
(ISIP:SAFE) research program.

References

Chung-Chi Huang, Mei-Hua Chen, Shih-Ting Huang,
Jason Chang (2011). EdIt: A Broad-coverage
Grammar Checker Using Pattern grammar. In
Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (p. 26-31).

Consuelo J. Paz. (2003). Compounding Old and New
Words in Filipino. University of the Philippines.

Diane Nicholls. 1999. The Cambridge Learner Corpus
– error coding and analysis for lexicography and ELT.
Cambridge University Press.

Don Erick Bonus. 2003. The Tagalog Stemming
Algorithm (TagSA). Master’s Thesis. De la Salle

University, Manila.

Michael Jasa, Justin O. Palisoc, and Martee M. Villa.
2007. Panuring Pampanitikan (PanPam): A Sentence
Syntax and Semantic Based Grammar Checker for
Filipino. Undergraduate Thesis. De La Salle
University, Manila.

Nathaniel Oco and Allan Borra. 2011. A Grammar
Checker for Tagalog using LanguageTool.
Proceedings of the 9th Workshop on Asian Language
Resources Collocated with IJCNLP 2011.

Nai-Lung Tsao & David Wible. 2009. A Method for
Unsupervised Broad-Coverage Lexical Error
Detection and Correction. Proceedings of the NAACL
HLT Workshop on Innovative Use of NLP for
Building Educational Applications, p. 51-54.

Nay Yee Lin, Khin Mar Soe, and Ni Lar Thein. 2011.
Developing a chunk-based grammar checker for
translated English sentences. In Proceedings of
PACLIC-2011 (p. 245-254).

Ortograpiyang Pambansa. 2013. Komisyon sa Wikang
Pilipino.

Rogelio Nazar & Irene Renau. 2012. Google Books
N-gram Corpus used as a Grammar Checker.
Proceedings of the EACL 2012 Workshop on
Computational Linguistics and Writing, p. 27–34.

112

Teresita V. Ramos. 1971. Makabagong Bararila ng
Pilipino. Rex Book Store.

Vladimir Rabo and Charibeth K. Cheng. (2006).
TPOST: A Template-based Part-of-Speech Tagger for
Tagalog. Journal of Research in Science, Computing,
and Engineering, 3(1).

Wikapedia (2015), Manila: Lexmedia Digital
Corporation.

PACLIC 30 Proceedings

113

