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Abstract 

Graph theory has recently been used to 
explore the mathematical structure of the 
mental lexicon. In this study we tested 
the influence of graph measures on Man-
darin speech production. Thirty-six na-
tive Mandarin-speaking adults took part 
in a shadowing task containing 194 mon-
osyllabic words, 94 of which consisted of 
3 phonemes and were the items under 
analysis. Linear mixed effect modeling  
revealed that clustering coefficient (C) 
predicted spoken production of Mandarin 
monosyllabic words, while network de-
gree, in this case its phonological neigh-
borhood density (PND) failed to account 
for lexical processing. High C resulted in 
shorter reaction times, contrary to evi-
dence in English. While these findings 
suggest that lexical processing is affect-
ed by the network structure of the mental 
lexicon, they also suggest that language 
specific traits lead to differing behavior-
al outcomes. While PND can be under-
stood as the underlying lattice for which 
a similarity network is created, lexical 
selection is not affected by only a target 
word’s neighbors but instead the level of 
interconnectivity of words (C) within the 
network. 

1 Introduction 

Graph theory is currently an active tool within the 
language sciences. Networks constructed from the 
semantic knowledge of children have shown typi-
cal versus disordered development (Beckage et al., 
2011) and helped to explain the growth of vocabu-
lary (Hills et al., 2009). The network structure of 
phonological networks has been found to influence 
children’s productive vocabulary development and 
failed lexical retrieval in adults (Vitevitch et al., 
2014). The new methodology coming to form in-
volves the combination of graph theoretic models 
and psycholinguistic tasks, allowing for a view into 
the lexicon to examine language processing ac-
cording to structural relations. 

The manner in which a phonological network is 
constructed is through what is known as phonolog-
ical neighborhood density (PND), which is a simi-
larity metric that involves the addition, deletion or 
substitution of a single phoneme (Vitevitch, 2008). 
Thus, in the network, words (nodes) are connected 
(edges) to one another based on their sound simi-
larity. Words that are connected via this similarity 
are known as neighbors and give us the network 
feature known as degree (k). In the psycholinguis-
tic literature PND has been extensively investigat-
ed. It has been shown to influence word 
recognition (Luce and Pisoni, 1998), production 
(Sadat et al., 2014), and word learning (Storkel et 
al., 2006) to just name a few. 

Once the network is built, other measures are 
then available, such as each node’s clustering coef-
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ficient (C). C is the number of triangles made in 
relation to a given node. In terms of the mental 
lexicon, this presents us with a measure of how 
interconnected a word’s neighbors are with each 
other. It has been illustrated with an English lexi-
con that PND and C are not equivalent measures in 
that they do not correlate with each other (Chan 
and Vitevitch, 2009). The role of C has been exam-
ined in word recognition (Chan and Vitevitch, 
2009; Yates, 2013), and picture naming (Chan and 
Vitevitch, 2010), allowing for the tentative state-
ment that, at least for English speakers, low C 
words are produced faster and more accurately 
than high C words. 

While research into the network features of the 
mental lexicon has advanced rapidly, there has 
been an inordinate stress upon European lan-
guages, specifically English. Mandarin, to date has 
no evidence of either a PND or C effect on lan-
guage processing, despite several attempts (Myers 
and Tsay, 2005; Tsai, 2007). One reason for such a 
disparaging lack might lie in the complexity of the 
Mandarin mental lexicon, specifically the role that 
tone plays. Indeed, Vitevitch and Stamer (2006) 
propose that differences in processing found be-
tween languages are likely to be found due to the 
linguistic differences exhibited by many languages. 

In comparison to English, Mandarin has a small 
syllable inventory (~400 without tone). This lan-
guage specific feature might suggest a lexicon that 
would be more dense, leading to increased compe-
tition between neighbors. Tone however creates 
distance between what would be otherwise similar 
sounding words. Tone, in fact has been shown to 
be the initial guiding point for phonological ma-
nipulation (Neergaard & Huang, 2016; Weiner & 
Turnball, 2015). 

The purpose of the current study is to investi-
gate the role of network characteristics in a tonal 
language through the implementation of an audito-
ry shadowing task. 

2 Methods 

2.1 Participants 

The current results come from the spoken produc-
tion of Thirty-six native Mandarin speakers (Fe-
male: 20). One participant was excluded from the 
analysis due to misunderstanding the task instruc-

tions. None of the participants reported speech, 
hearing, or visual disorders. 

2.2 Stimuli 

The stimuli, recorded by a female native Mandarin 
speaker from the Beijing area, consisted of 193 
Mandarin monosyllabic words. All stimuli were 
415ms in duration. Target stimuli, which can be 
seen in Appendix A, consisted of 94 words that 
were 3 phonemes in length. Filler words consisted 
of 99 monosyllabic words that contained 1, 2 and 4 
phonemes. Filler words were used in the task so as 
to preclude the participants’ ability to predict the 
structure of upcoming words. Presentation order  
 

 
Figure 1. The word level network for qian2 
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was pseudo-randomized so as not to allow for the 
serial presentation of words that began with the 
same onset or that had the same tone. 

The stimulus words were selected from a data-
base of movie subtitles (Subtlex-CH: Cai and 
Brysbaert, 2010). As is common amongst data-
bases that provide calculations of PND and other 
lexical information (See Marian et al., 2012 for an 
in-depth discussion), a representative sample of 
orthographic words is chosen from either a dic-
tionary or subtitle movie corpora. The current 
study calculated PND and four of the following 
word characteristics from the top 17 thousand en-
tries of phonological words. The pinyin transcrip-
tions of the Subltex-CH database were made using 
the Lingua Sinica corpus (Chen et al., 1996). Pho-
nological representations of spoken Mandarin were 
then taken from Neergaard and Huang (2016) ac-
cording to the maximal syllable structure: CVVX 
plus tone. 

The frequencies of homophonous words were 
summed together such that spoken word frequency 
(SWF) (M: 0.0271 per-million; SD: 0.0556 per-
million), and homophone density (HD) could be 
calculated. HD (M: 5; SD: 4) was calculated based 
on the number of orthographic words that were 
used in the corpus per each phonological word. 
Neighborhood frequency (NF) (M: 18,1950; SD: 
20,2318) was calculated from the combined fre-
quency of a word’s neighbors. C (M: 0.4065; SD: 
0.1623) was calculated through the use of the net-
work analysis tool, Gephi (Bastian et al., 2009). It 
should be noted that the correlation between PND 
(M: 14; SD: 5) and C within our stimuli set was 
low: 0.3. For an illustration of the difference be-
tween PND and C see Figures 1 and 2. Note that 
both represent words with equivalent densities. 

2.3 Procedure 

Participants were seated in a quiet room in front of 
a computer running experimental software, E-
Prime 2.0 (Psychology Software Tools, 2012). 
They were instructed to repeat experimenter-
provided auditory stimuli into a headset as quickly 
as possible. The onset of each trial was activated 
when a participant spoke via a PST Serial Re-
sponse Box. They were given a practice set of 10 
words. 

Each trial consisted of the same sequence: “下
个词” (next word) was presented at the center of 

the screen for 1000ms, followed by a blank screen 
and the onset of the target audio which changed 
either upon the onset of a participant’s spoken re-
sponse or a maximum of 3000ms, then finally a 
pause of 3000ms.  The entire experiment took less 
than 15 minutes and was recorded on a second 
computer using Audacity 2.0.6. 

Reaction times were measured offline using 
SayWhen (Jansen and Watter, 2008). The audio 
recordings were also used to transcribe the partici-
pants’ spoken production by two native-Mandarin 
speaking volunteers. Incorrect responses were re-
moved from the analysis, accounting for less than 
6% of the data. 

3 Results 

Statistical analyses were done using linear 
mixed effect modeling (lmerTest in R). The 
first constructed model revealed that SWF (t 
= -2.462; p = 0.014) and C (t = -2.771; p = 
0.0056) were predictors in the production of 
Mandarin monosyllabic words, while PND, 
NF, and HD were non-significant. In order to 
eliminate the effect of SWF on the other pre-
dictors, 96 trials, identified as outliers, were 
removed from the total of 3,177 trials. The 
removal of the outliers, which accounted for 
3% of the total, limited the responses’ reac-
tion time to within 450 and 1000ms. 

 

 
Figure 3. The effect of Mandarin clustering 
coefficient on reaction time 
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model iteration (Std. Error: 0.00820; df: 
3037; t = -3.27; p = 0.001). Unique to this 
study, high C values resulted in shorter reac-
tion times as can be seen in Figure 3.  
 

4 Conclusion 

The present study is the first to find an influ-
ence of network measures on language pro-
duction in a tonal language. Of particular note 
is the fact that the direction of the C effect is 
contrary to that of the English findings (Chan 
and Vitevitch, 2009, 2010). While the two 
prior studies implemented different tasks to 
what is currently featured, the direction was 
the same for English speakers: words with 
low C were produced faster and more accu-
rately than words with high C. The present 
results, in contrast, suggest that the greater 
the interconnectivity of phonological words 
the less the competition for lexical selection.  

One direction for further investigation is the 
role that network density plays across the Manda-
rin lexicon, specifically during development. If, 
like the present findings suggest, greater connec-
tivity speeds processing, then this would imply the 
emergence of an adaptive trait learned through the 
acquisition of highly similar words. Such a lan-
guage specific adaptation would have impli-
cations for vocabulary acquisition and 
possibly be of note for children with phono-
logical delay (Gierut et al., 1999). 

An alternative hypothesis is that a signifi-
cant C effect concurrent with a null PND ef-
fect points to an error in the model’s 
construction. There have been multiple pro-
posals as to the segmentation of the Mandarin 
syllable (Duanmu, 2009). In the current study 
we examined a segmental approach with pho-
nological tone. Future experimental designs 
would benefit from contrasting stimuli that 
have been calculated according to multiple 
segmentation schemas. 
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Appendix A. Experimental Stimuli 
 
Stimulus  Tone SWF HD PND NF C 
ban1 1 0.0077 8 20 83792 0.3895 
bei3 3 0.0010 1 9 325390 0.4444 
bing1 1 0.0025 2 14 165280 0.2857 
bo1 1 0.0027 7 13 241279 0.6154 
cai2 2 0.0370 4 15 214339 0.4000 
cong2 2 0.0473 3 9 24192 0.4444 
cuo4 4 0.0363 4 18 431772 0.6928 
dai4 4 0.0385 10 21 896543 0.5333 
die1 1 0.0003 1 13 46232 0.4744 
fei2 2 0.0011 2 9 279495 0.5000 
fen4 4 0.0159 6 15 39299 0.4571 
feng1 1 0.0115 9 17 35947 0.5809 
gai1 1 0.0342 1 19 108154 0.4327 
gang1 1 0.0115 7 23 133498 0.3913 
gao3 3 0.0185 3 21 151546 0.5190 
gua4 4 0.0035 2 11 167761 0.2000 
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gun3 3 0.0040 2 12 33905 0.3030 
hei1 1 0.0457 3 6 43405 0.4667 
hen3 3 0.2011 3 11 24792 0.5273 
hong2 2 0.0031 8 11 64484 0.3091 
hou4 4 0.0226 4 16 450310 0.6583 
hua2 2 0.0026 5 9 199436 0.2222 
hun4 4 0.0035 2 16 227090 0.2917 
huo2 2 0.0115 1 14 334170 0.4396 
jia1 1 0.0332 13 12 106018 0.2121 
jie1 1 0.0148 8 18 125483 0.3007 
jin4 4 0.0247 10 11 104577 0.2000 
jing3 3 0.0054 9 16 126033 0.3083 
jue2 2 0.0026 13 5 16343 0.1000 
jun1 1 0.0016 5 7 9095 0.1429 
kua3 3 0.0004 1 9 8227 0.2222 
kun4 4 0.0015 1 14 117829 0.3516 
lao3 3 0.0177 4 22 1062897 0.4762 
lie4 4 0.0016 8 12 112347 0.3333 
lun2 2 0.0032 4 9 12206 0.2222 
mai3 3 0.0158 1 15 48933 0.4476 
mao1 1 0.0035 1 19 350311 0.5439 
mei2 2 0.1617 13 9 129539 0.4444 
men2 2 0.0089 2 12 248251 0.3485 
min2 2 0.0005 4 11 45135 0.2182 
ming2 2 0.0115 7 13 75796 0.3077 
mo2 2 0.0035 8 12 176888 0.5909 
nan2 2 0.0171 5 15 98327 0.5524 
nong4 4 0.0136 1 9 83669 0.7778 
pao4 4 0.0014 3 23 798622 0.4545 
pei2 2 0.0035 5 9 274588 0.4444 
pin1 1 0.0012 1 13 42567 0.2051 
qia1 1 0.0004 1 9 60204 0.2222 
qin2 2 0.0007 8 11 135499 0.2545 
qing3 3 0.0306 2 14 56346 0.3516 
que1 1 0.0007 2 7 22955 0.1905 
qun2 2 0.0032 2 5 13142 0.2000 
ran2 2 0.0007 3 14 260802 0.6044 
rang4 4 0.1238 2 16 180346 0.7583 
ren2 2 0.1950 5 11 24812 0.4000 
reng1 1 0.0041 1 14 41806 0.8571 
rou4 4 0.0025 1 15 123569 0.7429 
ruo4 4 0.0022 5 17 467943 0.7794 
san3 3 0.0002 2 22 58109 0.5974 
sang1 1 0.0004 2 20 113667 0.5158 
shan1 1 0.0034 12 19 81325 0.4152 
shang4 4 0.1147 4 21 204382 0.4667 
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sheng3 3 0.0014 1 13 58529 0.3205 
shua1 1 0.0006 2 12 299841 0.2424 
shuo1 1 0.2270 1 13 25019 0.5897 
song4 4 0.0133 5 10 84434 0.6444 
tang3 3 0.0023 4 19 57176 0.3626 
ting1 1 0.0555 3 13 76196 0.3077 
wai4 4 0.0041 1 26 773415 0.3908 
wan2 2 0.0244 6 20 201339 0.3421 
wang4 4 0.0077 4 23 319519 0.4150 
wei2 2 0.0493 13 13 289022 0.3077 
wen4 4 0.0205 3 14 40995 0.5275 
xia4 4 0.0557 4 11 115839 0.2182 
xie2 2 0.0028 12 12 92857 0.1818 
xin1 1 0.0265 9 12 69575 0.2576 
xue2 2 0.0062 1 8 8282 0.1786 
xun1 1 0.0004 5 7 34976 0.1429 
yan3 3 0.0064 5 15 236670 0.3810 
yang3 3 0.0036 4 22 317363 0.2944 
yao4 4 0.2435 4 30 696392 0.3471 
yong3 3 0.0010 12 14 381844 0.4066 
you3 3 0.2896 6 22 175262 0.3463 
yuan2 2 0.0121 15 7 24682 0.1905 
zai3 3 0.0007 2 15 527024 0.4667 
zao3 3 0.0129 5 21 193120 0.5190 
zeng4 4 0.0001 3 13 42450 0.5897 
zhan4 4 0.0132 9 22 245617 0.4286 
zhen4 4 0.0024 7 15 469888 0.4476 
zheng4 4 0.0207 5 16 315381 0.4000 
zhong1 1 0.0382 6 14 56887 0.4176 
zhua1 1 0.0084 1 10 34372 0.3111 
zong3 3 0.0099 1 12 92516 0.5606 
zun1 1 0.0004 5 8 6180 0.5357 

Note: Stimulus words are presented in pinyin; SWF is spoken word  
frequency; HD is homophone density; PND is phonological  
neighborhood density; NF is neighborhood frequency; C is clustering  
coefficient 
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