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Abstract 

Many of the language identification (LID) 

systems are based on language models using 

machine learning (ML) techniques that take into 

account the fluctuation of speech over time, such 

as Hidden Markov Models (HMM). Considering 

the fluctuation of speech results LID systems use 

relatively long recording intervals to obtain 

reasonable accuracy. This research tries to 

extract enough features from short recording 

intervals in order to enable successful 

classification of the tested spoken languages. 

The classification process is based on frames of 

20 milliseconds (ms) where most of the previous 

LID systems were based on much longer time 

frames (from 3 seconds to 2 minutes). We 

defined and implemented 173 low level features 

divided into three feature sets: cepstrum, relative 

spectral (RASTA), and spectrum. The examined 

corpus, containing speech files in seven 

languages, is a subset of the Oregon Graduate 

Institute (OGI) telephone speech corpus. Six 

machine learning (ML) methods have been 

applied and compared and the best optimized 

results have been achieved by Random Forest 

(RF): 89%, 82%, and 80% for 2, 5, and 7 

languages, respectively. 

1 Introduction 

LID is used either as a standalone task or as a pre-

processing step, capturing the first seconds (sec) of 

the recording and processing it in order to transfer 

the control to the appropriate next stage; e.g. speech 

recognition systems, multilingual translation 

systems or call-centers (e.g., emergency calls) 

routing, where the response time of a native 

operator might be critical. 

LID is a process by which a given spoken 

utterance language is automatically identified 

(Muthusamy et al., 1994). Most LID systems are 

based on high level features such as frequency of a 

single phoneme, phoneme sequences (Zissman and 

Singer, 1994), syllable, words, and prosody 

(Thymé-Gobbel and Hutchins, 1996). Such LID 

systems need a comprehensive corpus, including 

transcription from trained humans, and long enough 

intervals to correctly classify, first, these high level 

features and then the spoken language (Zissman, 

1996; Greenberg, 1999). Any error in the higher 

level feature recognizers is carried over, and 

probably/possibly amplified in, the following steps. 

However, providing a comprehensive corpus 

enables higher level features which ensure better 

results than using acoustic features alone. LID 

systems based on higher level features have one 

principal problem: Tokenizing those features 

accurately has proven to be the main obstacle thus 

far in high accuracy of natural LID (Abramson, 

2003). Matejka et al. (2005) found that separating 

gender before processing improved the LID’s 

accuracy. 

A LID system has two main parts: feature 

extraction, where a vector of measurements that 
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should characterize the high level features are 

extracted from the signal; and pattern matching, 

where these extracted features are processed using 

statistical (like in this study) or temporal (Rabiner, 

1989) methods to recognize speech languages. The 

approach taken in our study does not resort to the 

use of phoneme recognizers or any higher level 

features. Instead, we rely on low-level features 

alone, rather than using low-level features 

to predict intermediate features as in previous work. 

The motivation is "quicker response time and 

simpler training stages". 

The rest of this paper is organized as follows: 

Section 2 presents an overview of previous LID 

systems. Section 3 describes the different feature 

sets chosen for this study. Section 4 presents the 

suggested classification model and the implemented 

features for LID of seven languages: French (FR), 

Farsi (FA), Japanese (JA), Korean (KO), Mandarin 

(MA), Tamil (TA), and Vietnamese (VI). Section 5 

describes the examined corpora and experimental 

results and analyzes them. Section 6 includes a 

summary and proposes suggestions for future 

research. 

2 Previous LID Systems 

In this section, we focus our overview of previous 

LID systems that had goals similar to our work or 

systems that used the same (or a very similar) 

corpus and / or set of languages. 

Silences are an integral part of speech recordings 

in all languages. These silences are usually 

unnecessary for computer processing purposes: they 

considerably increase the files size and potentially 

lead to a great loss of accuracy of the LID system. 

Thus, the first step in most LID systems use a Voice 

Activation Detection (VAD), a sub-process that 

identifies and discards those silences. Other factors 

must also be taken in account, such as the channels 

through which the speech is conveyed. These 

channels add noises to the speech which, although 

it is still recognizable by Humans, causes 

difficulties for computers. Therefore, to ensure 

better performance using ML methods, a noise-

filtering sub-process is preferable. All the previous 

LID systems described below used at least one of 

those techniques to enhance their results. Thus, we 

decided to implement those techniques as well. 

Hazen and Zue (1993) tested their system on the 

OGI Multi-Language telephone speech (MLTS) 

corpus (Yeshwant K. Muthusamy et al., 1992). Us-

ing both genders on the speech utterances. The av-

erage length of selected utterance on the OGI corpus 

is about 13.4 sec. They developed and tested a LID 

system based on a segment-based approach com-

posed of phonotactic (Matejka et al., 2005), pro-

sodic, and acoustic property of the languages. The 

features used are 14 Mel Frequency Cepstral Coef-

ficients (MFCC), in contrast to most LID systems 

that use 13 MFCCs, for each frame. The Cepstral 

Coefficient (CC) deltas were also extracted along 

with the pitch (F0) feature, which was used to find 

and discard silences (VAD) as well as removing the 

speaker dependency. Each frame was 5ms long. 

They tested their system on 10 languages, an overall 

system performance of 48.6% was achieved using 

n-grams, acoustic, duration, F0, and delta-F0 fea-

tures. The correct language was one of the top three 

choices 74.4% of the time. Their results on less than 

a sec for each file is between 10% and 20%. 

Muthusamy et al. (1993) based their system on 

the OGI-MLTS corpus with 13.4 sec of speech per 

file on average. They explained that at the time it 

was still not clear which of the possible LID tech-

niques will be more suitable to discriminate lan-

guages. Thus, they compared 3 different approaches 

(acoustic features, category segmentation, and pho-

netic classification). In all the sets, the Perceptual 

Linear Predictive (PLP; Dave, 2013) coefficients 

was applied using 10ms frames with either 4ms or 

7ms of overlapping intervals. Their best result was 

obtained using 200 bigrams and unigrams. They 

classified the whole speech files (up to 50 sec) using 

these feature sets and the Artificial Neural Network 

(ANN; Lopez-Moreno et al., 2014) ML method. 

Best results of 86.3% on 2 languages (EN and JA) 

were obtained. They also obtained 70% accuracy 

using acoustic features (PLP) alone. 

Lamel and Gauvain (1994) presented a LID sys-

tem tested on the OGI corpus and Laboratory qual-

ity speech (four different corpora, two for EN and 

two for FR language). They applied phone-based 

acoustic likelihoods, using parallel-trained Hidden 

Markov Models (HMMs). In 10 languages classifi-

cation tasks, they tested the OGI corpus and got 

48.7%, 55.1%, and 59.7% on intervals of 2, 6 and 

10 sec, respectively. On 2 languages (FR and EN) 

however, their results rose to 76%, 80.87%, and 

81.33% on 2, 6, and 10 sec, respectively. 

Shuichi and Liang (1995) tested their system on 

corpora produced from multiple respected sources, 
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containing the OGI, NTT and NATC corpora. They 

proposed a LID system based solely on F0 and its 

time-dependent patterns using discriminant analysis 

on the polygonal line approximation of the F0 

patterns. Using the 21 extracted features from the F0 

behavior (e.g., slope, shape, etc.) They achieved 

75% on the NTT and NATC corpus and 63.3% on 

the OGI corpus. 

Zissman (1996) compared different LID 

techniques on the OGI corpus. he also uses RelAtive 

SpecTrAl (RASTA; Hermansky and Morgan, 1994) 

as a part of the pre-processing of speech in order to 

remove slowly varying, linear channel effects from 

the raw feature vectors. He obtained that single-

language phone recognition followed by language-

dependent language modeling (PRLM) gave best 

results when distinguishing 10 languages, giving 

results as high as 79% on 45 sec speech utterances 

and 63% on 10 sec. Furthermore, their results in 2 

languages discrimination were up 97% on 45 sec of 

speech (EN and SP) using parallel phone 

recognition (PPR; Nagarajan and Murthy, 2004) 

and 90% on 10 sec (JA and SP) using parallel 

PRLM, they also tested Gaussian Mixture Model 

(GMM) achieving 84% on 10 sec long audio file 

(EN and JA). 

Lippmann (1997) compared human and state of 

the art LID available at the time and noted that even 

if machine ability to identify a language was still 

several order of magnitude lower than human, he 

only proved that it was needed to work on more re-

liant, noise robust, LID systems and components. 

“The transcription error rate (ER) is less than 

0.009% for read digits, less than 0.4% for read sen-

tences from the Wall Street Journal, and less than 

4% for spontaneous conversations recorded over the 

telephone.” His study was focused more on isolated 

digits or alphabet letters recognition in order to per-

form LID than spontaneous conversation. 

Pellegrino and Andre-Obrecht (2000) tested a 

LID system on 5 languages from the OGI-MLTS 

corpus: FR, KO, VI, JA, and SP. Using two different 

approach (GMM and HMM) to model either the 

vocalic (GMM) or phonetic (HMM) space. Features 

such as MFCC (8 coefficients) and duration of the 

segments obtained using a so called “Forward 

Backward Divergence” (Andre-Obrecht, 1988) 

segmentation algorithm. The features are extracted 

inside segments by frames of 20ms. The purpose of 

this study was to demonstrate the possibility to 

extract vowel information from acoustic signal. 

Results were presented either in segments of 2 

minutes or 45 sec of speech. Their best results are 

73.8% and 61.2% on 4 and 5 languages, 

respectively, using 2-minute-long speech utterances 

and all of the features presented earlier. 

Kirchhoff and Parandekar (2001) based her LID 

system on the OGI corpus. Using Multi-Stream 

Statistical N-Gram Modeling, he compared the 

accuracy of the model on different speech lengths 

(from 3 to 45 sec). Features such as manner, 

consonantal place, vowel place, front-back, and 

rounding and their dependencies (front-back -vowel 

place and front-back – consonantal place) were 

used. On 10 languages, her results were as high as 

48%, 58.8%, and 64.6% on audio files of less than 

3 sec, between 3 and 15 sec, and longer than 15 sec 

audio files respectively. 

Torres-carrasquillo et al. (2002) used the 1996 

Linguistic Data Consortium’s CallFriend LID eval-

uation set, a 12 languages corpus that was allocated 

as follows: The development set consists of 1184 

30-sec utterances and the evaluation set of the cor-

pus consists of 1492 30-sec utterances, each distrib-

uted among the various languages of interest. LID 

was performed using GMM Tokenization: extract-

ing features to then tokenize them using GMM and 

finally perform LM (in an attempt to enhance the 

PRLM system developed by Zissman in 1996). Us-

ing the evaluation set, an ER of 17% (83% of accu-

racy) was obtained using both Parallel-PRLM, 

GMM tokenizers, and GMM acoustics. 

Li et al.  (2007) investigate automatic spoken 

language identification (LID) process based on 

Vector Space Modeling (VSM; e.g.,  Martínez et al., 

2011). The evaluation is carried out on recorded 

telephone speech of 12 languages: Arabic, EN, FA, 

FR, GE, Hindi (HI), JA, KO, MA, SP, TA, and VI 

from 1996 and 2003 NIST Language Recognition 

Evaluation. Achieving ER as low as 2.75% (97.25% 

of accuracy) on 30-sec of speech on 6 languages 

identification. The 2nd focus in their project was the 

possibility of Real-time (RT) applications. 

All those studies based their performance 

evaluation on a wider time frame than ours, this is a 

major difference, and it must be considered when 

comparing our results. Moreover, unlike most of the 

previous works, our system is not designed to 

classify languages using keyword, phoneme, or 

even vowel recognition.  It doesn’t require any 

language model either, making the language 

training process a lot faster.
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Figure 1. The computed acoustic features.

3 Acoustic Features 

In this research, we consider 173 acoustic features 

divided into three main feature sets: 114 Cepstrum 

features, 28 RASTA features, and 30 Spectrum 

features. The hierarchical structure of the three 

feature sets is described in Figure 1. Although most 

of these features have been extensively used in 

previous LID systems, these features were a basis 

for higher level features. In contrast, our system is 

solely relying on an extensive combination of low 

level features which has never been used before to 

the best of our knowledge. 

The Cepstrum features set is composed of groups 

of coefficients which represent the filter sources 

(e.g., shape of the mouth etc.). The Bark and Mel 

scales (Stevens et al., 1937; Stevens and Volkmann, 

1940)  are perceptual scales of the pitch. Filter Bank 

Energy (FBE) represents the energy from all the 

band filters (Huang et al., 2001) used to extract the 

MFCCs. HTK (HMM ToolKit) represents the CCs 

extracted using parameters close to the original 

HTK (Young et al., 2002; Ellis, 2005; Brookes, 

1997)  approach. 

The RASTA set represents features extracted af-

ter filtering. These features are extracted in both 

spectrum and cepstrum, taking cepstrum coeffi-

cients using both Linear Predictive Coefficients 

(LPC), which are used to compute spectral and 

cepstral features, and RASTA filter. 

We implemented the IIR RASTA filter as it is de-

scribed in Equation 1 (Ellis 2005; Matlab RASTA’s 

filter transfer function implementation). 

H(z) = 0.1 ×
2z5+z4−z2−2z

z−0.94
    (1)  

The -0.94 weight in the denominator side was 

chosen in our Matlab implementation to improve 

filter response time  from the original 500ms to 

160ms response time using -0.98 that is applied in 

some of the previous works (Zissman, 1996). 

The Spectrum features set consists of the follow-

ing feature sets: (1) The pitch (F0) feature (Titze, 

1994; Zahorian and Hu, 2008). (2) The graph fea-

tures, which are statistical features that record the 

occurrence of each frame’s median peak. (3) Values 

(mean, median, min, max, std), and frequency (me-

dian) stats, describing each frame’s FFT. (4) For-

mants are the principal spectral component of a 

frame, defined by "the spectral peaks of the voice 

spectrum". Linguists largely maintain that the first 

two formants (in EN at least) are sufficient to differ-

entiate between all vowels (Ladefoged and Johnson, 

2014). We decided to extract the 4 first formants. 

There is a spectral tilt in speech caused by the 

voice-source (vocal tract). The vocal tract creates 

the formant frequencies, so when these are 

estimated (using FFT), the spectral tilt needs to be 

removed. This is usually done with a simple pre-

emphasis filter, as in our case. 

The algorithms that were developed, using 

MATLAB (V8.3), for this study were built for fea-

ture extraction, VAD, and WEKA interfacing pur-

poses. They were designed to perform for real-time 

applications and, in addition, to be dynamic so that 

they could be easily changed to extract any specific 

set of features and/or classes. WEKA (Hall et al., 

2009) explorer was used for the classification task.
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Figure 2. The feature extraction process (stages 2-3 in the classification model).

4 The Classification Model 

The main stages of the classification model are as 

follows: 

1. Building the speech corpus (Table 1). 

2. Cleaning the speech files. Removing the silent 

intervals and filtering each file (Figure 2). 

3. Computing the features for each file (Figure 2). 

4. Transforming the features matrix into a WEKA 

input file. 

5. Applying six ML methods on various combina-

tions of feature sets using WEKA. 

Figure 2 describes the feature extraction process 

(stages 2-3 in the classification model). This Figure 

grossly illustrates how the structure containing the 

features, used to discriminate the languages, is 

extracted. In order to process the speech files as 

clean as possible equalization and filtering seemed 

appropriate to better distinguish noise or silence 

from speech (experimentation shows an 

improvement of at least 5% in VAD classification 

after RASTA filtering compared to before).  

A RASTA filter is applied to suppress the effect 

of the telephone line on the features. First, the audio 

file (speech) is passed through a VAD, and the si-

lence intervals are discarded. One of the features 

used to perform the VAD (F0) is also extracted 

(Zahorian and Hu, 2008a). Speech, rid of silences, 

goes through RASTA feature extraction that ex-

tracts the RASTA features family and filters the au-

dio files. The filtered, silence-free speech file is then 

enframed (Brookes and others, 1997) into frames of 

20ms with 10ms overlap, and a Hamming window 

is applied on each frame (where the last frame is dis-

carded if shorter than 20ms). The frames are sent to 

the spectrum and cepstrum features extraction 

where remaining features are extracted. Then, the 

features extracted are grouped together inside a 

“features structure” with each frame’s features con-

tained in a single line vector. Every file, after com-

pleting the feature extraction process, outputs a 

structure composed of X vectors (depending on file 

length) containing the 173 features. The resulting 

structure is then converted into a matrix, and the ma-

trices are concatenated so that every language gets 

a part of all the files (presented experimented on 

gets 10,000 feature vectors (frames) for each lan-

guage. 

Six supervised ML methods including one deci-

sion tree, two ensemble learning, and two SVMs, 

have been selected for application of the last stage 

in our model: 

1. J48 is an improved variant of the C4.5 decision 

tree induction (Quinlan, 1993; Quinlan, 2014) 

implemented in WEKA. J48 is a classifier that 

generates pruned or unpruned C4.5 decision 

trees. The algorithm uses greedy techniques and 

is a variant of ID3, which determines at each step 

the most predictive attribute, and splits a node 

based on this attribute. J48 attempts to account 

for noise and missing data. It also deals with 

numeric attributes by determining where 

thresholds for decision splits should be placed. 

The main parameters that can be set for this 

algorithm are the confidence threshold, the 

minimum number of instances per leaf and the 

number of folds for REP. As described earlier, 

trees are one of the easiest thing that could be 

understood because of their nature. 

2. RF, an ensemble learning method for 

classification and regression (Breiman, 2001). 

This ML technique is an ensemble learning 

VOICE EX-

TRACTION 

RASTA Features 

RASTA-PLP  

ENFRAMED 

RASTA  

ENFRAMED 

Wave-form Features 

 

LPC COEFF. 

VOICE 
FILTERED 

VOICE 
SPEECH 

S
IL

E
N

C
E

 

F
E

A
T

U
R

E
S

 

S
T

R
U

C
T

 

RASTA-

PLP EX-

TRACT+ 

FILTER 

E
N

F
R

A
M

E
 

SPECTRUM AND 

MELCEPSTRUM 

FEATURES  

EXTRACTION 

PACLIC 29

279



technique. Ensemble methods use multiple 

learning algorithms to obtain better predictive 

performance than what could be obtained from 

any of the constituent learning algorithms. RF is 

based on what’s called a random tree: a tree that 

randomly chooses K attributes and then build a 

simple tree with no pruning. RF let us choose the 

number of features (K) and the number of 

random trees (I) we want to use. 

3. MultiBoostab (MB) (Webb, 2000) is an exten-

sion to the highly successful AdaBoost (Freund 

and Schapire, 1996) technique for forming deci-

sion committees. MB technique can be viewed 

as combining AdaBoost with wagging (Bauer 

and Kohavi, 1999). It is able to harness both 

AdaBoost's high bias and variance reduction 

with wagging's superior variance reduction. Us-

ing C4.5 as the base learning algorithm, Multi-

boosting is demonstrated to produce decision 

committees with lower error than either Ada-

Boost or wagging significantly more often than 

the reverse. It offers the further advantage over 

AdaBoost of suiting parallel execution. In 

WEKA, the default base classifier for MB is De-

cision Stump (Iba and Langley, 1992). 

4. BayesNet (BN) is a variant of a 

probabilistic statistical classification model that 

represents a set of random variables and 

their conditional dependencies via a directed 

acyclic graph (DAG) (Friedman et al., 2000; 

Heckerman, 1997; Pourret, 2008). 

5. Logistic regression (LR) (Cessie et al., 1992) is 

a variant of a probabilistic statistical classifica-

tion model that is used for predicting the out-

come of a categorical dependent variable (i.e., a 

class label) based on one feature or more 

(Landwehr et al., 2005; Sumner et al., 2005). 

6. Sequential Minimal Optimization (SMO; Platt, 

1998; Keerthi et al., 2001) is a variant of the Sup-

port Vectors Machines (SVM) ML method 

(Cortes and Vapnik, 1995). The SMO technique 

is an iterative algorithm created to solve the op-

timization problem often seen in SVM tech-

niques. SMO divides this problem into a series 

of smallest possible sub-problems, which are 

then resolved analytically. 

These ML methods have been applied using the 

WEKA platform (Frank, 2006; Hall et al., 2009). 

We performed parameter tuning with Info-Gain 

(IG), a feature selection metric for classification 

purposes. Yang and Pedersen (1997) reported that 

IG performed best in their multi-class benchmarks. 

The accuracy of each model was estimated by a 10-

fold cross-validation test. 

5 Experimental Results 

The OGI Multi-language Telephone Speech Corpus 

(Muthusamy et al., 1992; Muthusamy et al., 1993) 

consists of telephone speech recorded in eleven 

languages: EN, FA, FR, GE, HI, JA, KO, MA, SP, 

TA and VI. The OGI corpus is not balanced between 

males and females: the male files represent more 

than 75% of the corpus. Thus, in this study, we only 

used the male speech files. The examined corpus 

contains 478 files (each from a different person) 

from seven selected languages with an average 

length of 44.3 sec, each file consists of free, 

continuous speech. 

Since our classification system was heavily 

consuming a classic workstation's RAM, the final 

corpus had to be reduced to 10,000 frames per 

language (equally distributed on the various files), 

that are equivalent to 100 sec of speech. As most of 

telephone speech corpus based LID systems 

(Hermansky, 2011), we used a RASTA  filter 

(Matlab implementation; Ellis, 2005) to reduce the 

channel (telephone) effect noises. 

Table 1 presents general information about the 

speech files contained in the examined corpus. The 

number of speech files for each language is ranging 

from 53 to 86. The average time length is rather 

similar for all languages (from 42.2 to 47.5 sec).

# Language # of speech files Length of speech files in sec. Avg. time length in sec. 

1  French (FR) 55 37<x<49 47.5 

2   Farsi (FA) 81   5<x<49 44.4 

3  Japanese (JA) 53 23<x<49 46.6 

4  Korean (KO) 62   4<x<49 42.2 

5  Mandarin (MA) 73 10<x<49 42.5 

6  Tamil (TA) 86   8<x<49 44.3 

7  Vietnamese (VI) 68   7<x<49 43.9 

Table 1. General information about the speech files selected from the OGI corpus. 
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Table 2. Accuracy results for the best language combinations using default parameters and all features. 

For each tested combination of feature sets we 

applied all of the 6 chosen ML methods: BN, SMO, 

LR, MB, J48 and RF. We then checked our feature 

sets using IG, among other feature selection 

methods, and no features with zero weights were 

found. We also performed a parameter tuning 

process in order to achieve the best results on the 

best default ML method (see Figure 3). All the 

optimized results are obtained as follows: each ML 

parameter is tuned in a hill climbing fashion, 

changing one parameter at a time (manually) until 

the best value is obtained (within a <1% margin). 

On ML methods based on simple trees such as J48, 

it appears to be enough: the parameters seemed to 

be independent (according to the results we had). 

However, for the RF ML method, the two principal 

parameters were tuned together since our 

preliminary results tends to show that they have an 

influence on one another. 

Unlike previously developed methods (see 

Section 2) that focus on changes of specific features 

over time to classify languages, our research assess 

the potential of features computed on a single frame 

(20ms), using each frames as a basis of the 

classification decision. 

Table 2 presents the accuracy results for the 6 

selected ML methods under default parameters 

proposed by the WEKA platform. The best 

language combinations from 7 to 2 languages (with 

accuracy as the deciding factor) were selected by 

analyzing the confusion matrices that were 

produced by the best ML method – RF (according 

to Table 2), and filtering out the less successful 

language in each stage. Firstly, The RF ML method 

has been applied on the all seven languages and then 

the six best languages (achieving the best accuracy) 

were picked from those seven based on the 

confusion matrix, and so on, until only the best 

combination of two languages remains. As a result, 

we got the following language combinations: 

 

7. FR, FA, JA, KO, MA, TA, and VI. 

6. FR, FA, JA, MA, TA, and VI. 

5. FR, FA, JA, TA, and VI. 

4. FR, JA, TA, and VI. 

3. FR, JA, and TA. 

2. FR, and TA. 

Various conclusions concerning our LID system 

can be drawn from Table 2: (1) The RF method 

obtained the best accuracy results. (2) The 2nd best 

ML method was J48. (3) The decision tree ML 

methods are the best ML methods for our LID tasks. 

Since RF is uncontestably the most suited 

technique between the six chosen ML techniques, 

we decided to optimize the RF’s parameters 

(maxDepth, numFeatures, numTrees, and seed). 

Because of the lack of space to display results, we 

were only able to present optimized results on a 

limited set of languages. We chose to optimize the 

best language combinations of size 2, 5, and 7 (see 

Table 2). All the optimized results are obtained as 

follows: each parameter is tuned in a hill climbing 

fashion. By manually changing one parameter at a 

time till the best value is obtained within a 

reasonable (<0.1%) margin. 

Figure 3. Optimized/default accuracy on each 

feature set and all features. 

# Languages BN SMO LR MB J48 RF 

2 FR, TA 66.47 72.59 73.02 66.84 80.21 88.27 

3 FR, MA, TA 54.25 58.76 60.41 42.96 68.47 81.17 

4 FR, MA, TA, VI 45.99 50.00 51.04 34.11 62.72 77.51 

5 FR, FA, MA, TA, VI 36.84 42.81 43.34 27.45 57.03 73.97 

6 FR, FA, JA, MA, TA, VI 32.36 37.54 37.70 22.89 53.29 71.83 

7 FR, FA, JA, KO, MA, TA, VI 29.38 33.52 33.66 19.48 51.50 71.13 
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Multiple conclusions can be drawn from Figure 

3: (1) RF has a great optimizing potential, (2) The 

more language it classifies, the greater become the 

optimization over default results, (3) The Cepstrum 

feature set has the greatest differentiation potential. 

A possible explanation for these results can be the 

high number of relevant features: the more relevant 

data one have, the easier classification become. (4) 

RASTA has the greatest differentiation potential per 

feature; its performance is almost equal to the 

Cepstrum set while using only a quarter of its 

number of features. 

6 Summary and Future Research 

In this paper, we present a methodology for 

classifying speech files from 7 different languages 

based on combined cepstrum, RASTA, and 

spectrum feature sets. This methodology compares 

six different ML methods. RF, the best ML method 

achieves relatively high accuracy results of 89.18%, 

81.85%, and 80.33% for the following classification 

experiments: 2, 5, and 7 best language 

combinations, respectively. 

The novelties of this research are in its reliance: 

(1) on low-level features alone, rather than using 

low-level features changes over time to predict 

intermediate features as in previous work, and (2) 

on much smaller frames (20ms) in comparison to 

most previous LIDs whose results are based on 

much longer time periods (at least 3 sec. or longer; 

see Martinez et al., 2013, among many other 

references below, for detail on the impact of frame 

length on result). Eliminating reliance on 

intermediate features is an important contribution, 

especially for low-resource languages. 

Our results are comparable to the accuracy level 

of top LID systems from about 20 years ago (that 

also used different versions of the OGI corpus; see 

section 2). However, our LID system uses a time 

frame that is at least 60 times shorter than the time 

frames used by previous LID systems. To the best 

of our knowledge, there is no LID system which is 

based on a such short time frame. 

Future directions for research are: (1) Developing 

additional feature sets in general and additional 

features in particular (with an emphasis on the 

RASTA set), (2) Applying other ML methods in 

order to find the most suited method for LID 

purposes, (3) Conducting more experiments using 

more speech files from more languages, (4) 

Discovering which combination of features in 

particular are appropriate for LID of speech files 

using the system we developed, and (5) How well 

does the system based on acoustic features work for 

non-native speakers? 
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