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Abstract

We show that domain adaptation for word
sense disambiguation (WSD) satisfies the as-
sumption of covariate shift, and then solve it
by learning under covariate shift. Learning
under covariate shift has two key points: (1)
calculation of the weight of an instance and (2)
weighted learning. For the first point, we em-
ploy unconstrained least squares importance
fitting (uLSIF), which models the probability
density ratio of the source domain against a
target domain directly. Additionally, we pro-
pose weight only to the particular instance and
using a linear kernel rather than a Gaussian
kernel in uLSIF. For the second point, we em-
ploy a support vector machine (SVM) rather
than the maximum entropy method (ME) that
is commonly employed in weighted learning.
Three corpora in the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) and 16
target words were used in our experiment. The
experimental results show that the proposed
method demonstrates the highest average pre-
cision.

1 Introduction

Supervised learning methods have been used in
many natural language processing tasks. In super-
vised learning, we create training data for the target
task from corpus A and learn a classifier from the
training data. This classifier performs well for test
data in corpus A; however, it does not perform well
for test data in corpus B, which is different from cor-

pus A. This is the problem of domain adaptation1. In
this paper, we deal with domain adaptation for word
sense disambiguation (WSD).

WSD identifies the sensec ∈ C of an ambiguous
wordw in a sentencex. This problem can be solved
by the following equation:

arg max
c∈C

P (c|x).

The above equation can be solved using supervised
learning. However, the domain adaptation problem
occurs in a real task. In domain adaptation,Ps(c|x)
can be derived from source domainS; therefore, we
must estimatePt(c|x) in the target domainT us-
ing Ps(c|x) and other data. Note that the sensec of
the wordw in sentencex is not changed if sentence
x appears in any domain corpus, i.e.,P (c|x) does
not depend on a domain. As a result,Ps(c|x) =
Pt(c|x). Therefore, it seems that we do not need to
estimatePt(c|x) because we havePs(c|x). How-
ever, this is wrong becausePs(x) 6= Pt(x). The
following assumption is referred to as the covariate
shift:

Ps(x) 6= Pt(x), Ps(c|x) = Pt(c|x).

In other words, the domain adaptation for WSD
satisfies the assumption of the covariate shift. In
this paper, we solve domain adaptation for WSD by
learning under covariate shift.

Briefly, learning under covariate shift is a learning
method through weighted training data. Thus, it has

1Domain adaptation is considered as a type of transfer learn-
ing (Kamishima, 2010) in part of machine learning.
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two key points: (1) calculation of the weight of an
instance and (2) weighted learning.

For the first point, the probability density ratio
w(x) = Pt(x)/Ps(x) is used theoretically as the
weight of the instancex. There are two techniques
for calculating the probability density ratio. The
first is modelingPS(x) and PT (x) and then tak-
ing the ratio between them. The second is model-
ing w(x) directly. Several studies have examined
the former method (Jiang and Zhai, 2007)(Saiki et
al., 2008). However, to the best of our knowledge,
the latter approach has not been attempted in NLP
research. In this paper, we adopt unconstrained least
squares importance fitting (uLSIF) as the second cal-
culation (Kanamori et al., 2009). Actually, there are
many methods to calculate probability density ratio
(Sugiyama and Kawanabe, 2011). In this paper, we
use uLSIF because it shows good performance and
quick calculation time. uLSIF modelsw(x) with the
sum ofNt pieces of basis functionsψl(x), whereNt

is the number of target data.

w(x) =
Nt∑

l=1

αlψl(x).

Generally, a Gaussian kernel is used as the basis
function. However, in this case, the widthσ of the
Gaussian kernel becomes an additional parameter.
Therefore, we suggest using a linear kernel to drop
this parameterσ.

For the second point, the maximum entropy
method (ME) is commonly employed in weighted
learning. However, in domain adaptation for WSD,
the number of instances is generally small. For this
reason, we do not use a weighted ME but a weighted
support vector machine (SVM).

Furthermore, three rough heaviness values are ap-
plied to the weighted SVM for comparison, i.e., a
small weight 0.1, a normal weight 1.1, and a large
weight 2.1, rather than a detailed weight for each
case.

In the experiment, we use three domains, i.e., OC
(Yahoo! Answer), PB (books) and PN (newspa-
per) in the Balanced Corpus of Contemporary Writ-
ten Japanese (BCCWJ (Maekawa, 2007)) and 16
target words that appear frequently in these three
domains. There are six types of domain adapta-
tion - OC→ PB, PB→ PN, PN→OC, OC→ PN,

PN→ PB, and PB→OC giving a total of 96 (=
16× 6) domain adaptation tasks. Consequently, the
effects of the proposed method are confirmed.

2 Related Work

Generally, methods for domain adaptation can be
divided into instances-based method and features-
based method (Pan and Yang, 2010). The instances-
based method is a learning method that gives weight
to an instance of training data. Learning under co-
variate shift is typical method for this type. The
features-based method is a method that maps the
source and target features spaces to a common fea-
tures space to maintain the important characteristics
in each domain by reducing the difference between
domains. The paper (Blitzer et al., 2006) proposed
the dimension reduction method called structural
correspondence learning (SCL). The paper (Pan et
al., 2008) evaluated the distance between the spaces
mapped in the source domain and the spaces mapped
in the target domain by maximum mean discrep-
ancy (MMD). They proposed a conversion method
to minimize the distance called MMD embedding
(MMDE). Moreover, the paper (Pan et al., 2011) im-
proved MMDE and proposed a novel method called
transfer component analysis (TCA). Adding weight
to features is a features-based method. The paper
(Dauḿe III, Hal, 2007) offered a weighting sys-
tem for features. In this study, vectorxs of the
training data in the source domain is mapped to
an augmented input space(xs, xs,0), and xt is
mapped to an augmented input space(0, xt, xt).
The classifier that learned from the augmented vec-
tors solves the classification problem by the usual
method. Dauḿe’s method assumes that an effect can
be determined by overlapping the characteristics that
are common to the source and target domains.

The domain adaptation problem is considered
a data-sparse problem. Self-training and semi-
supervised learning (Chapelle et al., 2006) and ac-
tive learning (Settles, 2010) (Rai et al., 2010) are
useful for domain adaptation.

At last, we introduce researches on domain adap-
tation for WSD. We assume thatPt(c|x) = Ps(c|x),
but the assumptionPt(x|c) = Ps(x|c) is also pos-
sible. Under this assumption, we can solve do-
main adaptation for WSD by estimatingPt(c). Ac-
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tually, the papers (Chan and Ng, 2006) and (Chan
and Ng, 2005) estimatedPt(c) by using EM algo-
rithm to do it．The papers (Komiya and Okumura,
2012a), (Komiya and Okumura, 2011) and (Komiya
and Okumura, 2012b) changed the learning method
by the combination of source domain, target domain
and target word. These studies are a kind of ensem-
ble learning. In those learning methods, only the
weight that is applied to data in source and target
domain is different.

3 Domain Adaptation under Covariate
Shift

In this section, we show that weighted learning can
solve a domain adaptation problem under assump-
tion of covariate shift.

We define the loss function asl(x, c, d) wherex,
c andd denote an instance, the class ofx and a clas-
sifier respectively. Thus, expected loss functionL0

in our task is expressed as the following:

L0 =
∑
x,c

l(x, c, d)PT (x, c).

Through the assumption of covariate shift, we ob-
tain the following:

PT (x, c)
PS(x, c)

=
PT (x)PT (c|x)
PS(x)PS(c|x)

=
PT (x)
PS(x)

.

Now, w(x) = PT (x)/PS(x). It establishes as fol-
lows:

L0 =
∑
x,c

w(x)l(x, c, d)PS(x, c).

D = {(xi, ci)}N
i=1 denotes the training data.

Using empirical distribution as a substitute for
PS(x, c), the following holds

L0 ≈ 1
N

N∑

i=1

w(xi)l(xi, ci, d).

In terms of expected loss minimization, findd mini-
mizing the following equationL1 to solve the prob-
lem of covariate shift.

L1 =
N∑

i=1

w(xi)l(xi, ci, d). (1)

Consider a classification based on a posterior
probability maximizing estimation.

d(x) = arg max
c

PT (c|x).

Additionally, adapt a logarithmic loss as a loss func-
tion. Eq. (1) turn into the following:

L1 = −
N∑

i=1

w(xi) log PT (ci|xi).

In case of adopting an approach using a model
of PT (c|x, λ) in order to solve the classification
problem, we find the parameterλ maximizing
the weighted log-likelihoodL(λ) of the following
weighted by the probability density ratio in covari-
ate shift.

L(λ) =
N∑

i=1

w(xi) log PT (ci|xi,λ). (2)

For above problem, Maximum Entropy Method
(ME) is commonly used as a model.

PT (c|x, λ) =
1

Z(x, λ)
exp




M∑

j=1

λjfj(x, c)


 ,

(3)
wherex = (x1, x2, · · · , xM ). The functionfj(x, c)
is a feature function. It returnsxj when the true class
is definedc, and it returns 0 in other cases.Z(x,λ)
is a normalization term. Hence, we obtain

Z(x,λ) =
∑

c∈C

exp




M∑

j=1

λjfj(x, c)


 , (4)

whereλ = (λ1, λ2, · · · , λM ) is a vector of weight
parameters for features.

4 Weight through Probability Density
Ratio

There are two kinds of approaches estimating the
probability density ratiow(x) = PT (x)/PS(x).
The first approach is estimating eachPS(x) and
PT (x), and take their ratio. The second approach
is modelingw(x), directly.

In this paper, we use unconstrained least-squares
importance fitting (uLSIF) proposed in (Kanamori
et al., 2009) as the second approach.
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4.1 uLSIF

{xs
i}Ns

i=1 and{xt
i}Nt

i=1 denote a source data and a tar-
get data, respectively. In uLSIF, the probability den-
sity ratio is modeled as the following:

w(x) =
Nt∑

l=1

αlψl(x) = α ·ψ(x),

where α = (α1, α2, · · · , αNt), ψ(x) =
(ψ1(x), ψ2(x), · · · , ψb(x)). and αl > 0. Here,
ψl(x) is a basis function which is mapping from the
source data to the positive real number.

In uLSIF, actually, the parameterα is estimated
after building the basis functionψ(x). However, for
the convenience of description, we firstly explain the
estimation ofα. ŵ(x) denotes a model ofw(x). In
order to estimate parameterαl, we find α̂ minimiz-
ing a mean square errorJ0(α) betweenw(x) and
ŵ(x). By taking account ofw(x) = PT (x)/PS(x),
J0(α) can be transformed as follows:

J0(α) =
1
2

∫
(ŵ(x)− w(x))2PS(x)dx

=
1
2

∫
ŵ(x)2PS(x)dx

−
∫

ŵ(x)w(x)PS(x)dx

+
1
2

∫
w(x)2PS(x)dx

=
1
2

∫
ŵ(x)2PS(x)dx

−
∫

ŵ(x)PT (x)dx

+
1
2

∫
w(x)2PS(x)dx.

Since the third term is constant, so it is independent
on minimizingJ0(α). Therefore, minimizingJ0(α)
means minimizing the followingJ(α).

J(α) =
1
2

∫
ŵ(x)2PS(x)dx−

∫
ŵ(x)PT (x)dx.

By approximatingPS(x) andPT (x) by empirical
distributions,J(α) is transformed as the following
Ĵ(α):

Ĵ(α) =
1

2Ns

Ns∑

i=1

ŵ(xs
i )

2 − 1
Nt

Nt∑

j=1

ŵ(xt
j)

=
1
2

Nt∑

l,l′=1

αlαl′

(
1

Ns

Ns∑

i=1

ψl(xs
i )ψl′(xs

i )

)

−
Nt∑

l=1

αl


 1

Nt

Nt∑

j=1

ψl(xt
j)




=
1
2
αT Ĥα− ĥT α, (5)

whereĤ denotesNt×Nt matrix, andĤl,l′ (the(l, l′)
element ofĤ) is defined as follows:

Ĥl,l′ =
1

Ns

Ns∑

i=1

ψl(xs
i )ψl′(xs

i )

Furthermore,̂h denotesNt-dimensional vector, and
the element of thel-th dimensionĥl is defined as
follows:

ĥl =
1
Nt

Nt∑

j=1

ψl(xt
j).

As the result, we can obtain thêα minimizing
Ĵ(α) by solving the following problem:

min
�

[
1
2
αT Ĥα− ĥT α +

λ

2
αT α

]
.

Here, we must note that the parameterλ is added.
The above minimization problem is unconstrained
convex quadratic programming problem without a
constrained condition, so that we obtain a global so-
lution:

α̃ = (Ĥ + λINt)
−1ĥT . (6)

Lastly, conduct the following adjustment to satisfy
the conditionα > 0:

α̂ = ((max(0, α̃1), max(0, α̃2), · · · , max(0, ˜αNt))
= max(0Nt , α̃). (7)

In genaral, a Gaussian kernel is used as the basis
function.

ψl(x) = K(x, xt
l) = exp

(
−||x− xt

l ||2
σ2

)
.

Under this situation, remaining parameters to be
determined are the regularization termλ and a width
of the Gaussian kernelσ to obtain the probability
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density ratio. These parameters are found by a cross-
validation of a grid search. First, split each source
and target data intoR pieces of subset with no in-
tersection. Secondly, exclude ther-th subset from
these subsets, and bind the rest. These data are re-
garded as a new source and target domain. Now, set
certain values toλ andσ, and obtainα with Eq. (6)
and Eq. (7), and find̂J(α)(r) with Eq. (5). Calcu-
late R pieces of values of̂J(α)(r) by varying the
valuer from 1 toR, and regard the average value of
them asĴ(α) for λ andσ. Next, estimateλ andσ
minimizing Ĵ(α) obtained with the above procedure
by changing the values ofλ andσ. These values are
denoted bŷλ andσ̂, respectively.

4.2 Use of Linear Kernel instead of Gaussian
Kernel

In this paper, we use linear kernel as the basis func-
tion in uLSIF instead of the Gaussian kernel. By this
use, we can drop the parameterσ.

Generally, a kernel function is to map to non-
linear high-dimensional space. However, in our
tasks, the number of features is larger than the num-
ber of instances, so that there is no need to map to
the high-dimensional space. In this case, calculation
to adjust the parameter is easier than using Gaussian
kernel.

ψl(x) = K(x,xt
l) = x · xt

l .

4.3 Weight of Particular Instances

In our task, that is domain adaptations of WSD, we
must construct the model of the probability density
for each target word. Additionally, the number of in-
stances of the target word is too small compared to
the number of the feature dimension in both source
and target domain. Therefore, an estimated proba-
bility density ratio tends to be smaller than the true
value, so that some approaches to close the esti-
mated probability density ratio to 1 have been pro-
posed. Sugiyama translated to the weightw to the
weightwp (0 < p < 1) (Sugiyama, 2006), and Ya-
mada proposed the relative probability density ratio
(Yamada et al., 2011):

PT (x)
αPT (x) + (1− α)PS(x)

.

These methods have an effect to close the original
probability density ratio to 1.

Here, we assign the rough weight to the instance
according to the estimated probability density ratio.
The rough weight has 3 kinds of value: 0.1, 1.1 and
2.1.

The set of the estimated probability density ratio
is expressed asW = {wi}N

i=1. Thewi is normalized
by the following:

w′i =
wi − µ

σ
,

whereµ andσ2 denote the mean and the variance of
W , respectively.

Assuming thatW follows a normal distribution,
wi is defined as 2.1 whenwi is greater than 0.84,wi

is defined as 0.1 whenwi is smaller than -0.84, and
in the other cases,wi is defined as 1.1.

The points, 0.84 and -0.84, are 20% top and lower
quantile points of normal distribution, respectively.

5 SVM for weighted learning

Learning under covariate shift means the weighted
learning using the probability density ratio. Af-
ter assigning weight to each instance, we apply the
weighted learning method. Conventionally we use
ME and logistic regression as the the weighted learn-
ing method. However, a method based on a loss
function is also available, as can be seen from the
Eq. (1). In this paper, we use the method of SVM
for imbalanced data (Tang et al., 2009). Through the
training data{(xi, yi)}N

i=1 (xi ∈ Rd, yi ∈ {1,−1}),
SVM is constructed by estimating parametersw, b,
andζ in the following:

min
w,b,�

{
1
2
wT w + C

N∑

i=1

ζi

}
. (8)

Now,

yi(wT φ(xi) + b) ≥ 1− ζi , ζi ≥ 0.

In the above formula, we can use the weighted SVM
by usingw(xi)C instead of C (Cortes and Vapnik,
1995).

6 Experiment

In this paper, we chose three domains, OC (Yahoo!
Answer), PB (books), and PN (newspaper) in the
BCCWJ, and 16 target words with enough frequency
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Table 1: Target words
dictionary OC OC PB PB PN PN

word # of freq. of # of freq. of # of freq. of # of
senses word　 senses word　 senses word　 senses

iu(言う) 3 666 2 1114 2 363 2
ireru(入れる) 3 73 2 56 3 32 2
kaku(書く) 2 99 2 62 2 27 2
kiku(聞く) 3 124 2 123 2 52 2

kodomo(子供) 2 77 2 93 2 29 2
jikan(時間) 4 53 2 74 2 59 2
jibun(自分) 2 128 2 308 2 71 2
deru(出る) 3 131 3 152 3 89 3
toru(取る) 8 61 7 81 7 43 7
baai(場合) 2 126 2 137 2 73 2
hairu(入る) 3 68 4 118 4 65 3

mae(前) 3 105 3 160 2 106 4
miru(見る) 6 262 5 273 6 87 3

motsu(持つ) 4 62 4 153 3 59 3
yaru(やる) 5 117 3 156 4 27 2
yuku(ゆく) 2 219 2 133 2 27 2

average 3.44 148.19 2.94 199.56 3.00 75.56 2.69

in all three domains. Now, we have six types of do-
main adaptation: OC→ PB, PB→ PN, PN→OC,
OC→ PN, PN→ PB, and PB→OC. Therefore, to-
tally 96 (= 6×16) kinds of domain adaptation tasks
is set.

Table 1 indicates information of the target word,
the number of senses registered in the dictionary,
and the number of senses and the frequency in each
corpus2．

Here, we explain how to evaluate a domain adap-
tation method for our tasks. First, by using a domain
adaptation method (named asMtd-A ), a classifier
for a target wordwi in a domain adaptainS → T is
obtained. We can get the precisionp

(ST )
wi of this clas-

sifier under this setting. Thus, given domain adap-
tainS → T , we can get the average precisionp(ST )

for the 16 target words (w1, w2, · · · , w16). By this
p(ST ), we evalutate the methodMtd-A for the do-
main adaptainS → T . We have 6 types ofS → T ,
so 6 p(ST ) are obtained. We evaluate the method
Mtd-A by taking average of 6p(ST ).

The methodMtd-A is composed of two ap-
proaches, a method of calculating the probability

2The word “入る (hairu)” has three senses in the dictionary,
but there are four senses in OC and PB. This is because our used
sense tagged corpus accepts new senses.

density ratio and type of the weighted learning. In
this paper, 10 kinds of method are examined. Base-
M and Base-S, are approaches without uLSIF. The
characters, “M” and “S”, mean ME and SVM, re-
spectively. The other techniques are with uLSIF.
The letters, “G” and “L” signify the Gaussian ker-
nel and the linear kernel used in uLSIF, respectively.
In addition, in Ours-*-* , convert weight into three
types of weight (0.1, 1.1, and 2.1) depending on the
probability density ratio calculated with uLSIF. Our
proposed method is expressed as “Ours-L-S”.

Results of the experiments are shown in Table. 2.
As the result, relationships,Base-M < Base-S ,
Mtd-G-M < Mtd-G-S , Mtd-L-M < Mtd-L-S ,
Ours-G-M < Ours-G-S , and Ours-L-M <
Ours-L-S are satisfied. It is found that SVM is more
effective than ME. Additionally, relations,Mtd-G-M <
Mtd-L-M , Mtd-G-S = Mtd-L-S , ans Ours-G-S
< Mtd-L-S are established. The results ofOurs-G-M
and Ours-L-M are almost the same. Therefore, the
linear kernel has better effectiveness than the Gaussian
kernel. The proposed methodOurs-L-S in this paper
has the highest average accuracy rate. In each domain
adaptation, it shows the highest accuracy rate, excluding
PN→ PB.

Here, we must note that the difference between
our proposed method (Ours-L-S ) and the baseline
(Base-S ) is slight, and we could not get statistical sig-
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Table 2: Experimental results (average precisions)
OC→ PB PB→ PN PN→ OC OC→ PN PN→ PB PB→ OC Average

Base-M 0.7163 0.7700 0.6920 0.6778 0.7474 0.6991 0.7171
Base-S 0.7141 0.7676 0.6907 0.6880 0.7452 0.7011 0.7178

Mtd-G-M 0.7008 0.7289 0.6854 0.6840 0.7110 0.6760 0.6977
Mtd-G-S 0.7143 0.7692 0.6903 0.6900 0.7455 0.7034 0.7189
Mtd-L-M 0.7145 0.7339 0.6907 0.6887 0.7144 0.7008 0.7055
Mtd-L-S 0.7134 0.7699 0.6905 0.6898 0.7450 0.7045 0.7189

Ours-G-M 0.7145 0.7670 0.6907 0.6787 0.7446 0.7008 0.7160
Ours-G-S 0.7129 0.7707 0.6911 0.6884 0.7451 0.7021 0.7184
Ours-L-M 0.7145 0.7665 0.6907 0.6787 0.7445 0.7008 0.7159
Ours-L-S 0.7197 0.7723 0.6971 0.6936 0.7416 0.7062 0.7218

(Proposed Method)

nificance. However, without taking account on the PN
domain, our proposed method is statistical significant for
the baseline. Further the use of weighted SVM is also sig-
nificant for the use of weighted ME. From these points,
our proposed method has its value.

7 Discussion

7.1 Effectiveness of Small and Large Weights
Our proposed method converts the weight estimated by
uLSIF to 0.1, 1.1 or 2.1 according to the volume of the
weight. In this section, we investigate which is effective
small weight 0.1 or large weight 2.1. To do it, we modify
our proposed method by following two cases: (case.1)
In our method, we change the weight 2.1 to the normal
weight 1.1, and other weights are not changed. (case 2)
In our method, we change the weight 0.1 to the normal
weight 1.1, and other weights are not changed.

We conducted experiments of the above two modifi-
cation. The result is shown in Table 3. “Ours-L-S-small”
and “Ours-L-S-large” in Table 3 denote (case 1) and (case
2), respectively.

This result shows that small weight 0.1 is more effec-
tive than large weight 2.1 in our proposed method, be-
cause the (case 2) is worse than baseline but the (case 1)
is better than baseline. However, our proposed method is
better than the (case 1). That is, the use of both weights
is more effective than only small weight or only large
weight.

7.2 Deletion of Misleading Data

In the previous section, we mentioned that small
weight is effective, that is, it is effective to decrease
the weight of unimportant training data in our task.
The reason comes from that there are misleading
data in the training data. Misleading data is a prob-
lem of domain adaptation. In domain adaptation,

Table 3: Importance of instances

Average

Base-S 0.7178
Ours-L-S 0.7218

Ours-L-S-small (only small weight, case 1) 0.7183
Ours-L-S-large (only large weight, case 2) 0.7176

some data in training data decrease the precision of
the classifier. These data is called misleading data
(Jiang and Zhai, 2007).

In this section, we discuss the relation of our
proposed method and misleading data. First, we
confirm the presence of misleading data in training
data. To do it, Yoshida (Yoshida and Shinnou, 2014)
checked each training data is misleading data or not
one by one.

Here, we introduce the above Yoshida’s method.
In the domain adaptation from the source domainS
to the target domainT , labeled dataD in S of the
target wordw exits. First, we measure the precision
p0 for T by the classifier learned throughD. Sec-
ond, we remove a datax from D and measure the
precisionp1 for T by the classifier learned through
D−x. In the case ofp1 > p0, the datax is regarded
as the misleading data. We apply this procedure for
all data inD to find the misleading data of the target
word w in the domain adaptation fromS to T . The
result of the number of misleading data is shown in
Table 4. The number in parentheses is the total num-
ber of the training data. Note that this method uses
lables inT , so it cannot detect misleading data. This

PACLIC 29

221



Table 4: Number of the misleading data
word OC→ PB PB→ PN PN→ OC OC→ PN PN→ PB PB→ OC

iu(言う) 159 (666) 75 (1114) 82 (363) 158 (666) 35 (363) 127 (1114)
ireru(入れる) 6 (73) 15 (56) 3 (32) 28 (73) 1 (32) 19 (56)
kaku(書く) 21 (99) 2 (62) 12 (27) 39 (99) 15 (27) 0 (62)
kiku(聞く) 26 (124) 0 (123) 4 (52) 21 (124) 27 (52) 26 (123)

kodomo(子供) 5 (77) 1 (93) 12 (29) 0 (77) 13 (29) 12 (93)
jikan(時間) 1 (53) 0 (74) 0 (59) 8 (53) 5 (59) 0 (74)
jibun(自分) 13 (128) 0 (308) 0 (71) 25 (128) 1 (71) 0 (308)
deru(出る) 14 (131) 32 (152) 22 (89) 10 (131) 10 (89) 39 (152)
toru(取る) 6 (61) 18 (81) 12 (43) 5 (61) 22 (43) 10 (81)
baai(場合) 0 (126) 13 (137) 14 (73) 0 (126) 9 (73) 7 (137)
hairu(入る) 36 (68) 27 (118) 27 (65) 11 (68) 42 (65) 38 (118)

mae(前) 8 (105) 1 (160) 15 (106) 5 (105) 2 (106) 10 (160)
miru(見る) 10 (262) 12 (273) 8 (87) 3 (262) 28 (87) 3 (273)

motsu(持つ) 8 (62) 11 (153) 1 (59) 0 (62) 1 (59) 2 (153)
yaru(やる) 0 (117) 0 (156) 0 (27) 0 (117) 0 (27) 0 (156)
yuku(ゆく) 17 (219) 1 (133) 3 (27) 0 (219) 3 (27) 15 (133)

Table 5: Deletion of the misleading data
OC→ PB PB→ PN PN→ OC OC→ PN PN→ PB PB→ OC Average

Base-S 0.7141 0.7676 0.6907 0.6880 0.7452 0.7011 0.7178
Ours-L-S 0.7197 0.7723 0.6971 0.6936 0.7416 0.7062 0.7218
Mislead 0.7459 0.7927 0.7450 0.7213 0.7869 0.7334 0.7542
Mislead2 0.7117 0.7627 0.6833 0.6920 0.7399 0.6984 0.7146

method is just to confirm the presence of misleading
data.

The result of SVM using the training data without
misleading data is shown in Table 5. “Mislead” in
Table 5 denotes the average accuracy rate. This re-
sult is highest in our experiments. To remove of the
misleading data is to assign the weight of the data to
0. Therefore, it is possible to improve the precision
by just adjusting the weight.

Now, we conduct the experiment that the data
with quite small probability density ratio is regarded
as the misleading data whose weight is 0. The “Mis-
lead2” in Table 5 shows the result. However, this
approach is not effective. Probably, we cannot de-
tect the misleading data using only the probability
density ratio. The method to detect misleading data
is our future work.

8 Conclusion

We have solved domain adaptation for WSD by
learning under covariate shift. This learning has two

key points: (1) calculation of the weight of an in-
stance and (2) weighted learning. For the first point,
we used uLSIF and improved it by weighting only
the particular instances and by using a linear rather
than a Gaussian kernel in uLSIF. For the second
point, we used a weighted SVM rather than the com-
monly used weighted ME.

Three corpora in BCCWJ and 16 target words (96
domain adaptation tasks) were used in our experi-
ment. This experimental results show that the pro-
posed method demonstrates the highest average pre-
cision. The proposed method is statistically signifi-
cant for the baseline without considering the PN do-
main. In addition, the use of the weighted SVM is
significant for the weighted ME.

In future, we will investigate why weighted learn-
ing does not work well for thePN→ PB domain
adaptation.
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