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Abstract

We show that domain adaptation for word
sense disambiguation (WSD) satisfies the as-
sumption of covariate shift, and then solve it
by learning under covariate shift. Learning
under covariate shift has two key points: (1)
calculation of the weight of an instance and (2)
weighted learning. For the first point, we em-
ploy unconstrained least squares importance
fitting (ULSIF), which models the probability
density ratio of the source domain against a
target domain directly. Additionally, we pro-
pose weight only to the particular instance and
using a linear kernel rather than a Gaussian
kernel in uLSIF. For the second point, we em-
ploy a support vector machine (SVM) rather
than the maximum entropy method (ME) that
is commonly employed in weighted learning.
Three corpora in the Balanced Corpus of Con-
temporary Written Japanese (BCCWJ) and 16
target words were used in our experiment. The
experimental results show that the proposed
method demonstrates the highest average pre-
cision.

1 Introduction

}@vc.ibaraki.’ac.jp

pus A. This is the problem of domain adaptatiom
this paper, we deal with domain adaptation for word
sense disambiguation (WSD).

WSD identifies the sensec C of an ambiguous
word w in a sentence:. This problem can be solved
by the following equation:

P(c|x).
arg max P(c|z)

The above equation can be solved using supervised
learning. However, the domain adaptation problem
occurs in a real task. In domain adaptatiéh(c|x)

can be derived from source domaintherefore, we
must estimate?;(c|x) in the target domairf’ us-
ing Ps(c|«) and other data. Note that the sens#

the wordw in sentencex is not changed if sentence
x appears in any domain corpus, i.€(c|z) does
not depend on a domain. As a resull,(c|z) =
P,(c|z). Therefore, it seems that we do not need to
estimateP;(c|x) because we have;(c|x). How-
ever, this is wrong because (z) # P;(x). The
following assumption is referred to as the covariate
shift:

Py(x) # Pi(x), Ps(clx) = Pi(c|x).

In other words, the domain adaptation for WSD

Supervised learning methods have been used sqtisfies the assumption of the covariate shift. In
many natural language processing tasks. In supdRiS Paper, we solve domain adaptation for WSD by
vised learning, we create training data for the targdgarning under covariate shift. N .
task from corpus A and learn a classifier from the Briefly, leaming under covariate shiftis alearning
training data. This classifier performs well for testmethod through weighted training data. Thus, it has
data in corpus A; however, it does not perform well 1pgmain adaptation is considered as a type of transfer learn-
for test data in corpus B, which is different from cor-ing (Kamishima, 2010) in part of machine learning.
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two key points: (1) calculation of the weight of anPN— PB, and PB—~ OC giving a total of 96 €
instance and (2) weighted learning. 16 x 6) domain adaptation tasks. Consequently, the
For the first point, the probability density ratioeffects of the proposed method are confirmed.
w(x) = P(x)/Ps(x) is used theoretically as the
weight of the instance:.. There are two techniques2 Related Work
for calculating the probability density ratio. The
first is modelingPs(x) and Pr(x) and then tak- Generally, methods for domain adaptation can be
ing the ratio between them. The second is modeflivided into instances-based method and features-
ing w(x) directly. Several studies have examinedpased method (Pan and Yang, 2010). The instances-
the former method (Jiang and Zhai, 2007)(Saiki ¢tased method is a learning method that gives weight
al., 2008). However, to the best of our knowledget,o an instance of training data. Learning under co-
the latter approach has not been attempted in NLY&riate shift is typical method for this type. The
research. In this paper, we adopt unconstrained ledggtures-based method is a method that maps the
squares importance fitting (ULSIF) as the second caource and target features spaces to a common fea-
culation (Kanamori et al., 2009). Actually, there ardures space to maintain the important characteristics
many methods to calculate probability density ratid" €ach domain by reducing the difference between
(Sugiyama and Kawanabe, 2011). In this paper, w&omains. The paper (Blitzer et al., 2006) proposed
use ULSIF because it shows good performance aﬁ&p dimension reduction method called structural
quick calculation time. uLSIF models(x) withthe ~correspondence learning (SCL). The paper (Pan et

sum of N, pieces of basis functiong (x), whereN, al., 2008) evaluated the distance between the spaces
is the number of target data. mapped in the source domain and the spaces mapped

in the target domain by maximum mean discrep-
N ancy (MMD). They proposed a conversion method
w(x) = ah(). to minimize the distance called MMD embedding
=1 (MMDE). Moreover, the paper (Pan etal., 2011) im-
Generally, a Gaussian kernel is used as the ba$l¥oved MMDE and proposed a novel method called
function. However, in this case, the widthof the transfer component analysis (TCA). Adding weight
Gaussian kernel becomes an additional paramett®.features is a features-based method. The paper
Therefore, we suggest using a linear kernel to drofPaune lll, Hal, 2007) offered a weighting sys-
this parametes-. tem for features. In this study, vectat; of the
For the second point, the maximum entropyraining data in the source domain is mapped to
method (ME) is commonly employed in weightedan augmented input spages, zs,0), and z; is
learning. However, in domain adaptation for wSDMapped to an augmented input spd0ex;, x;).
the number of instances is generally small. For thi§he classifier that learned from the augmented vec-
reason, we do not use a weighted ME but a weightd@rs solves the classification problem by the usual
support vector machine (SVM). method. Daur@’s method assumes that an effect can
Furthermore, three rough heaviness values are d¢ determined by overlapping the characteristics that
plied to the weighted SVM for comparison, i.e., a&re¢ common to the source and target domains.
small weight 0.1, a normal weight 1.1, and a large The domain adaptation problem is considered
weight 2.1, rather than a detailed weight for each data-sparse problem. Self-training and semi-
case. supervised learning (Chapelle et al., 2006) and ac-
In the experiment, we use three domains, i.e., Otive learning (Settles, 2010) (Rai et al., 2010) are
(Yahoo! Answer), PB (books) and PN (newspauseful for domain adaptation.
per) in the Balanced Corpus of Contemporary Writ- At last, we introduce researches on domain adap-
ten Japanese (BCCWJ (Maekawa, 2007)) and 16tion for WSD. We assume th&(c|x) = Ps(c|x),
target words that appear frequently in these thrdeut the assumptio®;(xz|c) = Ps(x|c) is also pos-
domains. There are six types of domain adaptaible. Under this assumption, we can solve do-
tion - OC— PB, PB— PN, PN— OC, OC— PN, main adaptation for WSD by estimatirig(c). Ac-
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tually, the papers (Chan and Ng, 2006) and (Chan Consider a classification based on a posterior
and Ng, 2005) estimateff;(c) by using EM algo- probability maximizing estimation.

rithm to do it The papers (Komiya and Okumura,

2012a), (Komiya and Okumura, 2011) and (Komiya d(x) = arg max Pr(cz).

and Okumura, 2012b) changed the learning method

by the combination of source domain, target domaiﬁ‘dd'tlona”y’ adapt a logarithmic loss as a loss func-

and target word. These studies are a kind of enser%c-m' Eq. (1) turninto the following:

ble learning. In those learning methods, only the N
weight that is applied to data in source and target Ly = = w(x;)log Pr(c|a;).
domain is different. i=1

3 in Ad . der C . In case of adopting an approach using a model
Domain Adaptation under Covariate of Pr(c|z,A) in order to solve the classification

Shift problem, we find the parametekx maximizing

In this section, we show that weighted learning cai1® Weighted log-likelihood.(A) of the following

tion of covariate shift. ate shift.
We define the loss function &€&, ¢, d) wherex, N
c_gndd denot_e an instance, the classwodind a clas- LX) = Z w(;) log Pr(ci|z;, ). 2)
sifier respectively. Thus, expected loss functign i—1
in our task is expressed as the following: For above problem, Maximum Entropy Method

ME) is commonly used as a model.
Lo = Zl(:c,c, d)Pr(x,c). (ME) Y

®,c 1 M
Through the assumption of covariate shift, we ob- Pricie, 2) Z(@A) " (; Al C)) ’
tain the following: 3
wherex = (z1,x2,- -+, 2 ). The functionf;(x, ¢)
Pr(z,c) _ Pr(z)Pr(cz) _ Pr(z) is a feature function. It returns; when the true class
Ps(x,c)  Ps(x)Ps(clx) Ps(x) is definedc, and it returns 0 in other case&(x, \)

. is a normalization term. Hence, we obtain
Now, w(x) = Pr(x)/Ps(x). It establishes as fol-

lows:
M
Lo =" w(z)l(z,c,d)Ps(,c). Z(@,A) =Y exp | D Nfi(m,e)|, (4)
x,c ceC j=1
D = {(xi,¢;)}Y, denotes the training data. whereA = (A1, Ay, -+, Ayr) is @ vector of weight

Using empirical distribution as a substitute forParameters for features.

Ps(z, c), the following holds 4 Weight through Probability Density
Ratio

1 N
Lo~ N Zw(m")l(m"’ci’d)' There are two kinds of approaches estimating the
= probability density ratiow(z) = Pr(z)/Ps(z).
In terms of expected loss minimization, fiddnini- The first approach is estimating eaéh(x) and
mizing the following equatiori; to solve the prob- Pr(x), and take their ratio. The second approach

lem of covariate shift. is modelingw(x), directly.
In this paper, we use unconstrained least-squares
al importance fitting (ULSIF) proposed in (Kanamori
Li =Y w(@)l(x, e, d). 1 mP g Prop

= et al., 2009) as the second approach.
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4.1 UuLSIF

{x:} s and{z!}Y*, denote a source data and a tar-
get data, respectively. In uLSIF, the probability den-

sity ratio is modeled as the following:

where o

(V1(x), ha(x), - -

o), (@)

ando; > 0. Here,

(a1, 09,

s p()).

= Z (7487

LI'=1

(o)

Ny 1 N .
—Z;Oél Nt;m(%)
= ; THa —hTa, (5)

whereH denotesV, x N; matrix, andf[w (the(,1")
element off) is defined as follows:

() is a basis function which is mapping from the

source data to the positive real number.
In uLSIF, actually, the parametet is estimated
after building the basis functiogt(x). However, for

the convenience of description, we firstly explain thfFurthermoreﬁ denotesV;-dimensional vector, and

estimation ofa. w(x) denotes a model af(x). In
order to estimate parametey, we find&@ minimiz-
ing a mean square errok(a) betweenw(x) and
w(x). By taking account ofv(x) = Pr(xz)/Ps(x),
Jo(a) can be transformed as follows:

1

5 [ til@) - w(@)?Ps(@)da

% / ()2 Ps (x)da

Jo(ax)

the element of thé-th dimensionﬁl is defined as
follows:

N 1 N .
= Nt;wl(m )

__As the result, we can obtain th minimizing
J(a) by solving the following problem:

N N A
min |~a’Ha — hTa + §aTa .
[0 4

Here, we must note that the parameleis added.
The above minimization problem is unconstrained
convex quadratic programming problem without a
constrained condition, so that we obtain a global so-
lution:

a = (H + My,) " 'n". (6)

Lastly, conduct the following adjustment to satisfy
the conditiono > 0:

Since the third term is constant, so it is independent

on minimizingJy (). Therefore, minimizing/y ()
means minimizing the following («).

S [a@?Ps@)de — [ @) Prix)d

By approximatingPs(x) and Pr(x) by empirical
distributions,.J(«) is transformed as the following

J(a):

- 1 & 1 &

Jl@) = 55 Z@(wf)Q—ﬁtZ@(wE)
5 =1 j=1
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.

a = ((max(0,a;), max(0,as),---,max(0,an,))

(7)

max(Oy,, &).

In genaral, a Gaussian kernel is used as the basis
function.

x — xt||?
di(x) = K(z, %)) = exp <—w :
Under this situation, remaining parameters to be
determined are the regularization tekmand a width
of the Gaussian kernet to obtain the probability
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density ratio. These parameters are found by a cross-Here, we assign the rough weight to the instance
validation of a grid search. First, split each sourcaccording to the estimated probability density ratio.
and target data int® pieces of subset with no in- The rough weight has 3 kinds of value: 0.1, 1.1 and
tersection. Secondly, exclude theh subset from 2.1.

these subsets, and bind the rest. These data are reThe set of the estimated probability density ratio
garded as a new source and target domain. Now, seexpressed d8” = {w;}¥ . Thew; is normalized
certain values td ando, and obtainx with Eq. (6) by the following:

and Eq. (7), and find/(a)") with Eq. (5). Calcu-

late R pieces of values of/(a)(") by varying the w, ="k
valuer from 1 to R, and regard the average value of

~

them asJ(a) for A ando. Next, estimate\ ando  wherey ando? denote the mean and the variance of
minimizingJ () obtained with the above procedureyy, respectively.
by changing the values ofando. These values are  Assuming that? follows a normal distribution,
denoted by\ anda, respectively. w; is defined as 2.1 when; is greater than 0.84y;
is defined as 0.1 whem,; is smaller than -0.84, and
in the other casesy; is defined as 1.1.

The points, 0.84 and -0.84, are 20% top and lower

In this paper, we use linear kernel as the basis fungy,antile points of normal distribution, respectively.
tion in ULSIF instead of the Gaussian kernel. By this

use, we can drop the parameter 5 SVM for weighted learning

Generally, a kernel function is to map to non- _ _ _ _
linear high-dimensional space. However, in oul€arning under covariate shift means the weighted

tasks, the number of features is larger than the nurhe_armn_g using the pVObab"'tY density ratio. Af-
ber of instances, so that there is no need to map Egr.as&gnlng W,e'ght to each mstancg, we apply the
the high-dimensional space. In this case, calculatio‘%elghted learning method. Conventionally we use

to adjust the parameter is easier than using Gaussidir 2nd logistic regression as the the weighted learn-
kernel. ing method. However, a method based on a loss

function is also available, as can be seen from the
Yi(z) = K(z,z)) = - . Eqg. (1). In this paper, we use the method of SVM
forimbalanced data (Tang et al., 2009). Through the
_ _ . training data{ (z;, ;) }X, (x; € R, y; € {1, —1}),
In our task, that is domain adaptations of WSD, W&\ is constructed by estimating parametersb,
must construct the model of the probability densityng¢ in the following:

for each target word. Additionally, the number of in-
stances of the target word is too small compared to {

4.2 Use of Linear Kernel instead of Gaussian
Kernel

4.3 Weight of Particular Instances

the number of the feature dimension in both source min

w,b,¢

N
;wTw+C’ZCZ-}. 8)
and target domain. Therefore, an estimated proba- =1
bility density ratio tends to be smaller than the true Now,
value, so that some approaches to close the esti-

T
mated probability density ratio to 1 have been pro- yi(w' ¢(zi) +0) 21 =G, G20,

posed. Sugiyama translated to the weighto the In the above formula, we can use the weighted SVM

weightw” (0 < p < 1) (S_uglyama, 2.(.)06)’ an.d Ya'.by usingw(zx;)C instead of C (Cortes and Vapnik,
mada proposed the relative probability density ratlgg%)

(Yamada et al., 2011):
Pr(x) 6 Experiment
aPr(z) + (1 - a)Ps(@) In this paper, we chose three domains, OC (Yahoo!

These methods have an effect to close the origin&inswer), PB (books), and PN (newspaper) in the
probability density ratio to 1. BCCWJ, and 16 target words with enough frequency
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Table 1: Target words

dictionary ocC ocC PB PB PN PN
word # of freq. of | #of | freq. of | #of | freq.of | #of

senses | word senses| word senses| word senses
iu(s92) 3 666 2 1114 2 363 2
ireru(AfL %) 3 73 2 56 3 32 2
kaku@<) 2 99 2 62 2 27 2
kiku(# <) 3 124 2 123 2 52 2
kodomo(T-1ik) 2 77 2 93 2 29 2
jikan(REfE) 4 53 2 74 2 59 2
jibun(H 47) 2 128 2 308 2 71 2
deru(ti %) 3 131 3 152 3 89 3
toru(fx %) 8 61 7 81 7 43 7
baail & 2 126 2 137 2 73 2
hairu(A\ %) 3 68 4 118 4 65 3
maefi) 3 105 3 160 2 106 4
miru(. %) 6 262 5 273 6 87 3
motsugF) 4 62 4 153 3 59 3
yaru® %) 5 117 3 156 4 27 2
yuku(wp <) 2 219 2 133 2 27 2

| average | 344 [ 14819] 2.94 | 19956 | 3.00 | 7556 | 2.69 |

in all three domains. Now, we have six types of dodensity ratio and type of the weighted learning. In
main adaptation: O€> PB, PB— PN, PN— OC, this paper, 10 kinds of method are examined. Base-
OC— PN, PN— PB, and PB— OC. Therefore, to- M and Base-S, are approaches without uLSIF. The
tally 96 (= 6 x 16) kinds of domain adaptation taskscharacters, “M” and “S”, mean ME and SVM, re-
is set. spectively. The other techniques are with uLSIF.

Table 1 indicates information of the target word,The letters, “G” and “L" signify the Gaussian ker-
the number of senses registered in the dictionarpel and the linear kernel used in uLSIF, respectively.
and the number of senses and the frequency in ealchaddition, in Ours-*-* , convert weight into three
corpus?. types of weight (0.1, 1.1, and 2.1) depending on the

Here, we explain how to evaluate a domain adagprobability density ratio calculated with uLSIF. Our
tation method for our tasks. First, by using a domaiproposed method is expressed as “Ours-L-S”.
adaptation method (named WKd-A ), a classifier ~ Results of the experiments are shown in Table. 2.
for a target wordw; in a domain adaptai§ — T'is As the result, relationshipsBase-M < Base-S ,

: L (ST) o _ Mtd-G-M < Mtd-G-S , Mtd-L-M < Mtd-L-S ,
obtalned.Wecangetthepremspﬁ of this clas OursG-M < Ours-G-S . and OursL-M <

sifier under this setting. Thus, given domain adapOurs-L-S are satisfied. It is found that SVM is more

tain § — 7', we can get the average precisigi”)  effective than ME. Additionally, relationdfitd-G-M <

for the 16 target wordsuf;, wo, - - -, wi6). By this  Mtd-L-M , Mtd-G-S = Mtd-L-S , ans Ours-G-S

p3T) | we evalutate the methddtd-A for the do- < Mtd-L-S are established. The results@firs-G-M

main adaptair — 7. We have 6 types o§ — 7', and Ours-L-M are almost the same. Therefore, the

so 6 p(ST) are obtained. We evaluate the methodinear kernel has better effectiveness than the Gaussian

Mtd-A by taking average of ﬁ(ST). kernel. The proposed meth@urs-L-S in this paper _
has the highest average accuracy rate. In each domain

The methodMtd-A is Compqsed of two ap'-' adaptation, it shows the highest accuracy rate, excluding
proaches, a method of calculating the probabilityn—, ppg.

2The word “A % (hairu)” has three senses in the dictionary, Here, we must note that the difference between
but there are four senses in OC and PB. This is because our ugédr proposed methodOurs-L-S ) and the baseline
sense tagged corpus accepts new senses. (Base-S ) is slight, and we could not get statistical sig-

220



PACLIC 29

Table 2: Experimental results (average precisions)
y [OC—~PB[PB—>PN]PN—OC][OC—PN[PN—PBJ[PB—OC [ Average|

Base-M 0.7163 0.7700 0.6920 0.6778 0.7474 0.6991 0.7171
Base-S 0.7141 0.7676 0.6907 0.6880 0.7452 0.7011 0.7178
Mtd-G-M 0.7008 0.7289 0.6854 0.6840 0.7110 0.6760 0.6977
Mtd-G-S 0.7143 0.7692 0.6903 0.6900 0.7455 0.7034 0.7189
Mtd-L-M 0.7145 0.7339 0.6907 0.6887 0.7144 0.7008 0.7055
Mtd-L-S 0.7134 0.7699 0.6905 0.6898 0.7450 0.7045 0.7189
Ours-G-M 0.7145 0.7670 0.6907 0.6787 0.7446 0.7008 0.7160
Ours-G-S 0.7129 0.7707 0.6911 0.6884 0.7451 0.7021 0.7184
Ours-L-M 0.7145 0.7665 0.6907 0.6787 0.7445 0.7008 0.7159
Ours-L-S 0.7197 0.7723 0.6971 0.6936 0.7416 0.7062 0.7218
(Proposed Method

nificance. However, without taking account on the PN
domain, our proposed method is statistical significant for
the baseline. Further the use of weighted SVM is also sijg— ‘ Average\
nificant for the use of weighted ME. From these points;

Table 3: Importance of instances

our proposed method has its value. Base-S 07178
Ours-L-S 0.7218

7 Discussion Ours-L-S-small (only small weight, case 1) 0.7183
Ours-L-S-large (only large weight, case 2) 0.7176

7.1 Effectiveness of Small and Large Weights

Our proposed method converts the weight estimated by
uLSIF to 0.1, 1.1 or 2.1 according to the volume of the

weight. In this section, we investigate which is effective> e data in training data decrease the precision of

small weight 0.1 or large weight 2.1. To do it, we modifythe classifier. These data is called misleading data

our proposed method by following two cases: (case.fyiang and Zhai, 2007).

In our method, we change the weight 2.1 to the normal |n this section, we discuss the relation of our

weight 1.1, and other weights are not changed. (case ﬁ}oposed method and misleading data. First, we

we?“r:tTelthgga g&gﬁiﬁ?ehtgzgeég?iﬁéi to (;he normalonfirm the presence of misleading data in training
ght +., g ged. data. To do it, Yoshida (Yoshida and Shinnou, 2014)

We conducted experiments of the above two modifi- . L :
cation. The result is shown in Table 3. “Ours-L-S-smal’checked each training data is misleading data or not

and “Ours-L-S-large” in Table 3 denote (case 1) and (cas¥ne by one.
2), respectively. Here, we introduce the above Yoshida’s method.
This result shows that small weight 0.1 is more effecin the domain adaptation from the source domgin

tive than large weight 2.1 in our proposed method, bet— the target domaiff’, labeled dataD in S of the
cause the (case 2) is worse than baseline but the (case %I) ’

is better than baseline. However, our proposed methodﬁ% get wordw exits. First, we measure the precision

better than the (case 1). That is, the use of both weighty for 7" by the classifier learned through. Sec-
is more effective than only small weight or only largeOnd, we remove a data from D and measure the

weight. precisionp; for T' by the classifier learned through
_ _ _ D —x. In the case op; > po, the datar is regarded
7.2 Deletion of Misleading Data as the misleading data. We apply this procedure for

In the previous section, we mentioned that smablill data inD to find the misleading data of the target
weight is effective, that is, it is effective to decreasevord w in the domain adaptation froi to T". The

the weight of unimportant training data in our taskresult of the number of misleading data is shown in
The reason comes from that there are misleadinable 4. The number in parentheses is the total num-
data in the training data. Misleading data is a prolber of the training data. Note that this method uses
lem of domain adaptation. In domain adaptationables inT’, so it cannot detect misleading data. This
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Table 4: Number of the misleading data

[ word |OC—>PB|[PB—PN|[PN—OC|OC—PN|[PN—PB[ PB—OC |
GE)) 159 (666) | 75 (1114)| 82 (363) | 158 (666)| 35 (363) | 127 (1114)
ireru(AiL%) | 6(73) | 15(56) | 3 (32) 28(73) | 1(32) 19 (56)
kaku@E<) | 21(99) | 2(62) | 12(27) | 39(99) | 15 (27) 0 (62)
Kku(B1<) | 26(124) | 0(123) | 4(52) | 21(124) | 27(52) | 26 (123)
kodomo(r%) | 5 (77) 1(93) | 1229 | 0(77) | 13(29) | 12(93)
jikan () 1(53) 0 (74) 0 (59) 8 (53) 5 (59) 0 (74)
jbun(B75) | 13(128) | 0(308) | O0(71) | 25(128) | 1(71) 0 (308)
deru(fi ) | 14 (131) | 32(152) | 22(89) | 10(131) | 10(89) | 39 (152)
toru(i %) 6(61) | 18(81) | 12(43) | 5(61) | 22(43) | 10(81)
baaifi %) 0(126) | 13(137) | 14(73) | 0(126) | 9(73) 7 (137)
hairu(N%) | 36(68) | 27 (118) | 27(65) | 11(68) | 42(65) | 38 (118)
mae@i) 8(105) | 1(160) | 15(106) | 5(105) | 2(106) | 10 (160)
miru(5.%5) | 10 (262) | 12 (273) | 8(87) | 3(262) | 28(87) | 3(273)
motsufFo) | 8(62) | 11(153) | 1 (59) 0 (62) 1(59) 2 (153)
yaru(e2) 0(117) | 0(156) | 0(27) | 0(117) | 0(27) 0 (156)
yuku@<) | 17(219) | 1(133) | 3(27) | 0(219) | 3(27) | 15(133)

Table 5: Deletion of the misleading data
] | OC—PB|PB—PN|PN—OC|OC—PN[PN—PB][PB—OC | Average|

Base-S 0.7141 0.7676 0.6907 0.6880 0.7452 0.7011 0.7178
Ours-L-S| 0.7197 0.7723 0.6971 0.6936 0.7416 0.7062 0.7218
Mislead 0.7459 0.7927 0.7450 0.7213 0.7869 0.7334 0.7542
Mislead2 | 0.7117 0.7627 0.6833 0.6920 0.7399 0.6984 0.7146

method is just to confirm the presence of misleadingey points: (1) calculation of the weight of an in-
data. stance and (2) weighted learning. For the first point,
The result of SVM using the training data withoutwe used uLSIF and improved it by weighting only
misleading data is shown in Table 5. “Mislead” inthe particular instances and by using a linear rather
Table 5 denotes the average accuracy rate. This t&an a Gaussian kernel in uLSIF. For the second
sult is highest in our experiments. To remove of thgoint, we used a weighted SVM rather than the com-
misleading data is to assign the weight of the data tmonly used weighted ME.
0. Therefore, it is possible to improve the precision

by just adjusting the weight. Three corpora in BCCWJ and 16 target words (96
Now, we conduct the experiment that the datgomain adaptation tasks) were used in our experi-
with quite small probability density ratio is regardedment. This experimental results show that the pro-
as the misleading data whose weight is 0. The “Misposed method demonstrates the highest average pre-
lead2” in Table 5 shows the result. However, thigision. The proposed method is statistically signifi-
approach is not effective. Probably, we cannot de:ant for the baseline without considering the PN do-

tect the misleading data using only the probabilitynain. In addition, the use of the weighted SVM is
density ratio. The method to detect misleading datggnificant for the weighted ME.

is our future work.

In future, we will investigate why weighted learn-
ing does not work well for thd®N — PB domain
We have solved domain adaptation for WSD bydaptation.
learning under covariate shift. This learning has two

8 Conclusion
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