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Abstract

Traditional sentiment classification methods
often require polarity dictionaries or crafted
features to utilize machine learning. How-
ever, those approaches incur high costs in
the making of dictionaries and/or features,
which hinder generalization of tasks. Ex-
amples of these approaches include an ap-
proach that uses a polarity dictionary that can-
not handle unknown or newly invented words
and another approach that uses a complex
model with 13 types of feature templates. We
propose a novel high performance sentiment
classification method with stacked denoising
auto-encoders that uses distributed word rep-
resentation instead of building dictionaries or
utilizing engineering features. The results
of experiments conducted indicate that our
model achieves state-of-the-art performance
in Japanese sentiment classification tasks.

1 Introduction

As the popularity of social media continues to rise,
serious attention is being given to review informa-
tion nowadays. Reviews with positive/negative rat-
ings, in particular, help (potential) customers with
product comparisons and to make purchasing deci-
sions. Consequently, automatic classification of the
polarities (such as positive and negative) of reviews
is extremely important.

Traditional approaches to sentiment analysis uti-
lize polarity dictionaries or classification rules. Al-
though these approaches are fairly accurate, they
depend on languages that may require significant
amounts of manual labor. Further, dictionary-based
methods have difficulty dealing with new or un-
known words.
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Machine learning-based methods are widely
adopted in sentiment classification in order to miti-
gate the problems associated with the making of dic-
tionaries and/or rules. One of the most basic features
used in machine learning-based sentiment classifi-
cation is the bag-of-words feature (Wang and Man-
ning, 2012; Pang et al., 2002). In machine learning-
based frameworks, the weights of words are auto-
matically learned from a training corpus instead of
being manually assigned.

However, the bag-of-words feature cannot take
syntactic structures into account. This leads to mis-
takes such as “a great design but inconvenient” and
“inconvenient but a great design” being deemed
to have the same meaning, even though their nu-
ances are different; the former is somewhat nega-
tive whereas the latter is slightly positive. To solve
this syntactic problem, Nakagawa et al. (2010) pro-
posed a sentiment analysis model that used depen-
dency trees with polarities assigned to their subtrees.
However, their proposed model requires specialized
knowledge to design complicated feature templates.

In this study, we propose an approach that uses
distributed word representation to overcome the first
problem and deep neural networks to alleviate the
second problem. The former is an unsupervised
method capable of representing a word ~ s meaning
without using hand-tagged resources such as a po-
larity dictionary. In addition, it is robust to the data
sparseness problem. The latter is a highly expressive
model that does not utilize complex engineering fea-
tures or models.

Our research makes the following two main con-
tributions:
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e We show that distributed word representation
learned from a large-scale corpus and multi-
ple layers (more than three layers) contributes
significantly to classification accuracy in senti-
ment classification tasks.

e We achieve state-of-the-art performance in
Japanese sentiment classification tasks without
designing complex features and models.

2 Related Works

In this section, we discuss related works from
two areas: sentiment classification and deep learn-
ing (distributed word representation and multi-layer
neural networks).

2.1 Sentiment classification

Sentiment classification has been researched ex-
tensively in the past decade. Most of the previ-
ous approaches in this area rely on either time-
consuming hand-tagged dictionaries or knowledge-
intensive complex models.

Ikeda et al. (2008) proposed a method that clas-
sifies polarities by learning them within a window
around a word. Their proposed method works well
with words registered in a dictionary. However,
building a polarity dictionary is expensive and their
approach is not able to cope with unknown words. In
contrast, our proposed approach does not use a po-
larity dictionary and works robustly even when there
are infrequent words in the test data.

In a similar manner, Choi et al. (2008) proposed a
method in which rules are manually built up and po-
larities are classified considering dependency struc-
tures. However, the rules are based on English,
which cannot be applied directly to other languages.
This is unlike our method, which does not employ
any language-specific rules.

Nakagawa et al. (2010) proposed a supervised
model that uses a dependency tree with polarity as-
signed to each subtree as hidden variables. The pro-
posed approach further classifies sentiment polari-
ties in English and Japanese sentences with Condi-
tional Random Field (CRF), considering the interac-
tions between the hidden variables. The dependency
information enables them to take syntactic structures
into account in order to model polarity flip. How-
ever, their proposed method is so complex that it has
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to create multiple feature templates. In contrast, our
model is quite simple and does not require the engi-
neering of such features.

2.2 Deep learning

One of the great advantages of deep learning is that
it reduces the need to hand-design features. In-
stead, it automatically extracts hierarchical features
and enhances the end-to-end classification perfor-
mance learned through backpropagation. As a con-
sequence, it avoids the engineering of task-specific
ad-hoc features using copious amounts of prior
knowledge. Further, it sometimes surpasses human-
level performance (He et al., 2015). Two of the most
actively studied areas in deep learning for NLP ap-
plications are representation learning and deep neu-
ral networks.

Representation learning Several studies have at-
tempted to model natural language texts using deep
architectures. Distributed word representations, or
word embeddings, represent words as vectors. Dis-
tributed representations of word vectors are not
sparse but dense vectors that can express the mean-
ing of words. Sentiment classification tasks are sig-
nificantly influenced by the data sparseness prob-
lem. As a result, distributed word representation is
more suitable than traditional 1-of-K representation,
which only treats words as symbols.

In our proposed method, to learn the word embed-
dings, we employ a state-of-the-art word embedding
technique called word2vec (Mikolov et al., 2013b;
Mikolov et al., 2013a), which we discuss in Sec-
tion 3.1. Although several word embedding tech-
niques currently exist (Collobert and Weston, 2008;
Pennington et al., 2014), word2vec is one of the
most computationally efficient and is considered to
be state-of-the-art. Collobert et al. (2008) presented
a model that learns word embedding by jointly per-
forming multi-task learning using a deep convolu-
tional architecture. Their method is considered to be
state-of-the-art as well, but it is not readily applica-
ble to Japanese.

Multi-layer neural networks A stacked denois-
ing auto-encoder (SdA) is a deep neural network that
extends a stacked auto-encoder (Bengio et al., 2007)
with denoising auto-encoders (dA). Stacking multi-
ple layers and introducing noise to the input layer
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adds high generalization ability to auto-encoders.
This method is used in speech recognition (Dahl et
al., 2011), image processing (Xie et al., 2012) and
domain adaptation (Chen et al., 2012); further, it ex-
hibits high representation ability.

Glorot et al. (2011) used SdAs to perform domain
adaptation in sentiment analysis. After learning sen-
timent classification in four domains of the reviews
of products on Amazon, they tested each model with
different domains. Although the task and method are
similar to those of our proposed approach, they only
use the most frequent verbs as input.

Dos Santos et al. (2014) and Tang et al. (2014)
researched sentiment classification of microblogs
such as Twitter using the distributed representation
learned by the methods of Collobert et al. (2008)
and Mikolov et al. (2013b; 2013a). Those two tasks
are the same task as ours, but the former generats
sentence vectors using string-based convolution net-
works while the latter utilizes a model that treats
the distributed word representation itself as polari-
ties. Our proposed approach makes sentence vectors
by simply averaging the distributed word represen-
tation, yet achieves state-of-the-art performance in
Japanese sentiment classification tasks.

Kim (2014) classified the polarities of sentences
using convolutional neural networks. He built a sim-
ple CNN with one layer of convolution, whereas our
model uses multiple hidden layers.

Socher et al. (2011; 2013) placed common auto-
encoders recursively (recursive neural networks)
and concatenated input vectors to take syntactic in-
formation such as the order of words into account. In
addition, they arranged auto-encoders (AEs) to syn-
tactic trees to represent the polarities of each phrase.
Recursive neural networks construct sentence vec-
tors differently from our approach. Compared to
their model, our distributed sentence representation
is quite simple yet effective for Japanese sentiment
classification.

3 Sentiment Classification with Stacked
Denoising Auto-Encoder using
Distributed Word Representation

In this study, we treated the task of classifying the
polarity of a sentence as a binary classification.

Our proposed approach makes a sentence vector
from the input sentence, and then inputs the sen-
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tence vector to a classifier. The sentence vector is
computed from the average of word vectors in the
sentence, based on distributed word representation.

In Section 3.1 we introduce distributed represen-
tation of words and sentences, and in Section 3.2 we
explain multi-layer neural networks.

3.1 Distributed representation

1-of-K representation is a traditional word vector
representation for making bag-of-words. The di-
mension of a word vector in 1-of-K is the same as
the size of the vocabulary, and the elements of a
dimension correspond to words. 1-of-K treats dif-
ferent words as discrete symbols. However, 1-of-K
representation fails to model the shared meanings of
words. For example, the word vectors “dog” and
“cat” should share “animal” or “pet” meanings to a
certain degree, but 1-of-K representation is not able
to capture this similarity. Consequently, we propose
distributed word representation.

The task of learning distributed representation is
called representation learning and has been of sig-
nificant interest in the NLP literature in the last few
years. Distributed word representation learns a low-
dimension dense vector for a word from a large-
scale text corpus to capture the word’s features from
its context.

3.1.1 Distributed word representation

Let the number of vocabularies be |V|, the dimen-
sion of a vector representing words be d, 1-of-K vec-
tor be b € RIVI and the matrix of all word vectors
be L € R¥™ VI, The kth target word vector wy, is
consequently represented as in Equation 1.

wy, = Lby, (D

Continuous Bag-of-Words (CBOW) and Skip-
gram models in word2vec (Mikolov et al., 2013b;
Mikolov et al., 2013a) have attracted tremendous
attention as a result of their effectiveness and effi-
ciency. The former is a model that predicts the tar-
get word using contexts around the word, whereas
the latter is a model that predicts the surround-
ing context from the target word. According to
Mikolov’s work, skip-gram shows higher accuracy
than CBOW!. Therefore, we used skip-gram in our
experiments.

'"We carried out a preliminary experiment using CBOW
representation and found that skip-gram considerably outper-
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Figure 1: The sentence vector construction method.

3.1.2 Distributed sentence representation

In our approach, we construct a sentence matrix
S € RIMIX4 from the corpus containing |M| sen-
tences.

First, we describe how to create a sentence vector
from word vectors. The z'th (1 < i < M) input
sentence composed of | N ()| words is used to make
a sentence vector S(0 € R? with the word vectors.

The jth (1 < j < d) element of sentence vec-
tor S is calculated by averaging the correspond-
ing element of the word vectors in the sentence as
expressed in Equation 2 (Figure 1).

1 N (@)

() _ i

S’ = NG Z“’é) )
n=1

Finally, the sentence matrix .S is defined by Equa-
tion 3.

ST
ST
S=1] ", 3)

3.2 Auto-Encoder

An auto-encoder is an unsupervised learning method
devised by Hinton and Salakhutdinov (2006) that
uses neural networks. It learns shared features of the
input at the hidden layer. By restricting the dimen-
sion of the hidden layer to be smaller than that of
an input layer, it reduces the dimension of the input
layer. The encode function that calculates a hidden
layer from an input is shown in Equation 4, and the

formed it. Therefore, we present only the experiments con-
ducted using skip-gram in this paper.
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Figure 2: The learning process of a four layer stacked
denoising auto-encoder.

decode function that calculates an output layer from
the hidden layer is shown in Equation 5 below.

= s(Wx + b) 4)

z=s(W'y+1¥t) )

s(*) represents nonlinear functions such as tanh or
sigmoid, W, W' are weight matrices and b, b’ are
bias terms, respectively.

The parameters of auto-encoders are learned by
minimizing the following loss functions. The loss
function measures the difference between input vec-
tor & and output vector z using the cross entropy
(Equation 6). We use Stochastic Gradient Descent
(SGD) to minimize the loss function.

d
Ly Zwklogzk+ (1—xg) log(1—2zg)]
k=1

(6)
3.2.1 Denoising Auto-Encoder

Regularization is usually used in the loss func-
tion in traditional multi-layer perceptrons. Denois-
ing techniques play the same role as regularization
in auto-encoders.

A denoising auto-encoder is a stochastic exten-
sion of a regular auto-encoder that adds noise ran-
domly to the input during training to obtain higher
generalization ability. Because the loss function of
denoising auto-encoders evaluates the input without
adding noise, denoising auto-encoders can be ex-
pected to extract better representations than auto-
encoders (Vincent et al., 2008). DropOut (Hinton
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et al., 2012) achieves similar regularization objec-
tives by ignoring the hidden nodes, not input, with a
uniform probability.

3.2.2 Stacked Denoising Auto-Encoder

A stacked denoising auto-encoder piles dAs into
multiple layers and improves representation ability.
The deeper the layers go, the more abstract features
will be extracted (Vincent et al., 2010). The train-
ing procedure used for SdAs comprises two steps.
Initially, dAs are used to pre-train each layer via
unsupervised learning, after which the entire neu-
ral network is fine-tuned via supervised learning. In
the pre-training phase, feature extraction is carried
out by the dAs from input A;, and the extracted
hidden representation is treated as the input to the
next hidden layer. After the final pre-training pro-
cess, the last hidden layer is classified with softmax
and the resulting vector is passed to the output layer.
The fine-tuning phase backpropagates supervision to
each layer to update weight matrices (Figure 2).

In Figure 2, the input vector is obtained from
Equation 2 and dA1 is applied with the weight ma-
trix of the first layer W7 to calculate the first hid-
den layer. Note that the numbers of hidden layers
and hidden nodes are hyperparameters. We define
n; to be the number of hidden nodes of the ¢th layer.
Therefore, using Equation 4 the dimension of weight
matrix W7 will be ny x d. Similarly, the weight ma-
trices up to the [ — 1th layer will be W; € R™*"i-1
(¢ > 2). At the final /th layer, we need to convert the
dimension of the hidden layer into dj,pe;, the dimen-
sion of the label, so the dimension of weight matrix
W should become dj pe; X 1j—1.

4 Experiments
4.1 Methods

To demonstrate the effectiveness of a nonlinear SdA,
we compared it with a linear classifier (logistic re-
gression, LogRes-w2v).? In addition, to investigate
the usefulness of distributed word representation, we
compared methods using bag-of-features (LogRes-
BoF, SdA-BoF). We constructed sentence vectors
S e RIVI with 1-of-K representation in the same
manner as Equation 2, and performed dimension

?Both SdA and logistic regression were implemented using
Theano version 0.6.0.
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reduction to d = 200 using Principal Component
Analysis (PCA).?

We introduce a weak baseline (most frequent
sense) and a strong baseline (state-of-the-art). The
latter is a method by Nakagawa et al. (2010), which
uses the same corpus.

MFS. The most frequent sense baseline. It always
selects the most frequent choice (in this case,
negative).

Tree-CRF. The state-of-the-art baseline with
hidden variables learned by tree-structured
CRF (Nakagawa et al., 2010).

LogRes-BoF. Performs sentiment classification us-
ing bag-of-features with a linear classifier (lo-
gistic regression).

SdA-BoF. Classifies polarity with the same input
vectors as LogRes-BoF.

LogRes-w2v. Classifies polarity with a linear clas-
sifier (logistic regression) using the sentence
vector computed by distributed word represen-
tation.

SdA-w2v. Our proposed method that classifies po-
larity with a SdA using the same input as
LogRes-w2v.

SdA-w2v-neg. Similar to Nakagawa et al. (2010),
we pre-processed negation before creating dis-
tributed word representation as in SdA-w2v.

We adjusted the noise rate, the numbers of hidden
layers and hidden nodes, as follows.

To demonstrate the denoising efficiency, we var-
ied the noise rate (0%, 10%, 20%, 30%, 40% and
50%) for SdAs. We then performed denoising by
zeroing a vector with binomial distribution at a spec-
ified rate.

To show the effect of stacking, we increased the
number of hidden layers (from 1 to 6).

To examine the representation ability of the net-
work, we varied the number of hidden nodes (100,
300, 500, and 700).

3We used scikit-learn version 0.10.
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Figure 3: Accuracy of each method with standard error.
4.2 Corpus and tools

We obtained distributed word representations us-
ing word2vec* with Skip-gram (Mikolov et al.,
2013b; Mikolov et al., 2013a). We used Japanese
Wikipedia’s dump data (2014.11) to learn the 200
dimension distributed representation with word2vec
after word-segmentation with MeCab 3. The vocab-
ulary of the models contains 426,782 words (without
processing negation) and 431,782 words (with pro-
cessing negation).

The corpus used in the experiment was the
Japanese section of NTCIR-6 OPINION (Seki et al.,
2007). The data used in our research were the sen-
tences from The Mainichi Newspaper and The Japan
News articles with polarities annotated by three an-
notators. For each sentence, we took the union of the
annotations of the three annotators. When the anno-
tations were split to both positive and negative, we
always used the annotation of the specific annotator.
The resulting corpus contained 2,599 sentences. The
positive instances comprised 765 sentences whereas
the negative instances comprised 1,830 sentences.
Although a neutral polarity existed, we ignored it
because our task is binary classification.

We performed 10-fold cross validation with 10
threads of parallel processing and evaluated the per-
formance of binary classification with accuracy.

4.3 Results

First, Figure 3 shows the accuracy and standard er-
rors of each method for the NTCIR-6 corpus.
It can be clearly seen that our method is superior

*https://code.google.com/p/word2vec/
SMeCab version-0.996, IPADic version-2.7.0
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Table 1: Accuracies of SAA models with different hyper-
parameters.

Parameters Accuracy

0% 81.1%

10% 81.5%

. 20% 81.4%

Noise rate 30% 30.9%

40% 81.1%

50% 81.6%

80.6%

2 80.4%

. 3 81.1%

Number of hidden layers 4 81.6%
5 81.4%

6 81.1%

100 81.1%

: 300 81.2%

Number of hidden nodes 500 81.3%
700 81.2%

to all baselines, including the state-of-the-art Nak-
agawa et al. (2010)’s method by up to 11.3 points.
This result shows that the distributed word represen-
tation is sufficiently effective on the Japanese sen-
timent classification task, even though only a sim-
ple word embedding model, not a complex tuned
representation learning model such as dos Santos et
al. (2014)’s, is used.

Note that the parameters of the SdAs above are
the best combination of noise rate, number of hid-
den layers, and number of hidden nodes (noise rate:
10%, four layers, and 500 dimensions). 6

Table 1 contrasts the various hyperparameters.
We changed one parameter at a time, while leaving
all other parameters fixed. The upper row compares
the accuracy of the system with changing noise rate.
The best result was obtained when the noise rate was
set to 50%. Compared with the standard stacked
auto-encoder (noise rate: 0%, accuracy: 81.1%), an
SdA with a noise rate of 50% exhibits better accu-
racy (81.6%). In the middle of the table, we changed
the number of hidden layers. It turned out that, the
classifier worked best with four layers. As can be
seen, the stacked auto-encoder is superior to the un-
stacked one by 1.0 accuracy point. At the bottom
of the table, we changed the dimension of hidden
nodes. We changed hidden nodes in intervals of
200 dimensions, but the accuracy only fluctuated by
+0.1 point. The accuracy was highest when the di-
mension was 500.

SWe carried out 10-fold cross validation without using the
development set.
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5 Discussion

In this section, we discuss the results of the models
(Figure 3), parameter tuning (Table 1), and examples
(Table 2).

5.1 Methods

BoF vs. Distributed word representation. When
the model was fixed to a linear classifier (lo-
gistic regression), the accuracies with Bag-
of-Features and distributed word representa-
tion were 70.8% and 79.5%, respectively. In
contrast, using an SdA, the result for Bag-
of-Features was 76.9% and that of distributed
word representation was 81.7%. Considering
these outcomes, it can be seen that a 4.8 to 8.7
point increase in accuracy occurred when dis-
tributed word representation was used. Hence,
the contribution of distributed word representa-
tion is the largest among the different experi-
mental settings.

Linear classifier vs. SAA. The accuracies of lo-
gistic regression and SdAs with the same
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word vectors made from Bag-of-Features were
70.8% and 76.9%, respectively. With dis-
tributed word representation, the accuracy of
the linear classifier was 79.6% and that of SdA
was 81.7%. Thus, a 2.2 to 6.1 point improve-
ment was obtained using SdAs over a tradi-
tional linear classifier.

Negation handling. As can be seen in Figure 3,
the accuracy of SdA-w2v-neg decreased by 0.8
point compared with SdA-w2v. This differs
from Nakagawa et al. (2010)’s report. The
reason for this phenomenon may be the data
sparseness problem caused by the negation pro-
cess. We checked the number of negations in
the corpus and found that the numbers of types
and tokens are 326 (3.8%) and 1,239 (1.0%),
respectively. Thus, the negation process may
have little influence on the accuracy.

5.2 Parameters

Figures 4 and 5 show the total training time obtained
with 10 parallel processes by changing the numbers
of hidden layers and hidden nodes.

Figure 4 shows that the training time grew grad-
ually as the number of hidden layers increased. In
contrast, Figure 5 shows that the training time dou-
bled when the number of hidden nodes was in-
creased by 200. These results originate from the
structure of SdAs. The nodes of the two adjacent
hidden layers are fully connected. Hence, if the
network has [ layers and n dimensional nodes, the
number of connections will be | x n x n = In?.
That indicates the relationship between the number
of layers and connections is linear, but the number
of connections grows exponentially with the num-
ber of nodes. Consequently, a small increase in the
number of nodes results in a long training time. In
contrast, as can be seen from Table 1, the number
of nodes has little or no effect on accuracy, whereas
changing the number of layers helps to improve the
performance.

5.3 Examples

Several examples are presented in Table 2. The val-
ues P and N represent the prediction of positive and
negative, respectively.

Looking at the top of the correct answer, it can
be seen that our model classified polarity robustly



PACLIC 29

Table 2: Correct and incorrect examples. BoF, LR, AE, Neg, SdA and Gold represent Bag-of-Features, LogRes,
Auto-Encoder (one layer SdA without stacking), Negation Processed, Proposal and the Gold answer, respectively.

Correct examples

BoF

LR

AE

Neg

SdA

Gold

Examples

N

N

N

N

P

P

[ 2 5 HoHFH & OBRMA T TIE, BRFELR O WEBTF 23
T 1 OERDBHEDRRZ ML T7 2 € Y Xbd~—aticii
Fvtwsg, Llzik-o 7z,

In the exclusive interview with The Mainichi Newspaper in the same
month on the 25th, he lined up small numbers such as poverty rate and
stressed the result of the regime in the decade, thrusting out his chest say-
ing “Fujimorism is rooted in Peru throughout”.

BT L e 7 m— B2 ANGRTS 2 DI3EEL W 2 & T,
It is not difficult to adapt the clone technology succeed with cows to hu-
mans.

Incorrect examples

BoF

LR

AE

Neg

SdA

Gold

Examples

LIV LB LT E TP - R E S5 ERBZITNILE,
He regrets “there must be other ways of writing that should be more
thoughtful”.

LEAOWE TELERIER I IER OB 2 KT XS TH Y, Z29)
LTI 2HWIRICIEL WL BIZ b 78, BEIOPHZ LTS
%5y EHEHIL 7.

In the discourse of Ministry of Education, he criticized “History textbooks
should reflect the truth of history, and only that can make the younger
to have the correct view of history so that it can prevent to playing the
tragedy again”.
FITHEENICEE S, ZOESZFDHTL50uR,

I would like him not to yield to the pressure and to keep his declaration to

the end.

against the data sparseness problem, such as with
the coined word “7 ¥ € Y A A (Fujimorism)” with
which the BoF model is weak. Further, linear clas-
sifiers and the unstacked AE fail to handle double
negative sentences such as at the bottom. Regard-
less of the difficulties, our model copes well with
the situation.

Moving on to the wrong answers, it can be seen
that our proposed model made human-like mistakes.
For example, it mistook the top one containing the
word “JZ<44 (thinking over, reflection, regret),” but
it is an ambiguous sentence that might be labeled as
positive. Similarly, it failed to classify the middle
sentence containing the phrase “7& &0 i % f 1k
§ % (prevent to replay the tragedy),” which ends
with “ft¥] L 7 (criticize).” The annotations of the
above two examples were divided into both positive
and negative’. At the bottom, the proposed method
did not successfully identify the polarity flipping
with the phrase “H /123 (not yield to the pres-
sure).” Because the model with negation handling

7As explained in Section 4.2, we arbitrarily determined the
polarity of a sentence when the annotations were split.
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answered it correctly, there remains much room for
improvement on how to deal with interactions be-
tween syntax and semantics (Tai et al., 2015; Socher
et al., 2013).

6 Conclusion

In this study, we presented a high performance
Japanese sentiment classification method that uses
distributed word representation learned from a large-
scale corpus with word2vec and a stacked denois-
ing auto-encoder. The proposed method requires no
dictionaries, complex models, or the engineering of
numerous features. Consequently, it can easily be
adapted to other tasks and domains without the need
for advanced knowledge from experts. In addition,
due to the nature of learning with vectors, our sys-
tem does not depend on languages.

As our future works, we will try to create the
distributed sentence representation using the Recur-
rent Neural Networks (Irsoy and Cardie, 2014) and
Recursive Neural Networks (Socher et al., 2011;
Socher et al., 2013) to capture global information.
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