
Reducing Lexical Features in Parsing by Word Embeddings

Hiroya Komatsu, Ran Tian, Naoaki Okazaki and Kentaro Inui
Tohoku University, Japan

{h-komatsu, tianran, okazaki, inui}@ecei.tohoku.ac.jp

Abstract

The high-dimensionality of lexical features in
parsing can be memory consuming and cause
over-fitting problems. We propose a general
framework to replace all lexical feature tem-
plates by low-dimensional features induced
from word embeddings. Applied to a near
state-of-the-art dependency parser (Huang et
al., 2012), our method improves the baseline,
performs better than using cluster bit string
features, and outperforms a recent neural net-
work based parser. A further analysis shows
that our framework has the effect hypothe-
sized by Andreas and Klein (2014), namely (i)
connecting unseen words to known ones, and
(ii) encouraging common behaviors among in-
vocabulary words.

1 Introduction

Lexical features are powerful machine learning in-
gredients for many NLP tasks, but the very high-
dimensional feature space brought by these features
can be memory consuming and cause over-fitting
problems. Is it possible to use low-dimensional
word embeddings to reduce the high-dimensionality
of lexical features? In this paper, we propose a gen-
eral framework for this purpose. As a proof of con-
cept, we apply the framework to dependency pars-
ing, since this is a task where lexical features are
essential.

Our approach is illustrated in Figure 1. Con-
sider a transition-based dependency parser (Yamada
and Matsumoto, 2003; Nivre et al., 2006; Zhang
and Clark, 2008; Huang and Sagae, 2010; Zhang

Templates:
s0w

Lexicon: … saw look …

s0wsaw = (… 1 0 …)

s0wlook = (… 0 1 …)

q0w
Lexicon: … you me …

q0wyou = (… 1 0 …)

q0wme = (… 0 1 …)
… …

⋮
W(s0wsaw)
W(s0wlook)

⋮
W(q0wyou)
W(q0wme)

⋮

Weights:

· = Scores

Features:
s0e1, … , s0ed q0e1, … , q0ed

s0esaw = (0.6, … , 0.2)

s0elook = (0.4, … , 0.3)

q0eyou = (0.5, … , 0.8)

q0eme = (0.7, … , 0.9)
… …

W(s0e1)
⋮

W(s0ed)
W(q0e1)
⋮

W(q0ed)

·
= Scores

Replace lexical feature templates
 by embedding features

Figure 1: Each lexical feature template is replaced by a
small number of embedding features.

and Nivre, 2011), in which the words on top of the
stack and the queue (denoted by s0w and q0w, re-
spectively) are typically used as features to calcu-
late scores of transitions. When s0w is used as a
feature template, the features in this template (e.g.
s0wsaw and s0wlook) can be viewed as one-hot vec-
tors of a dimension of the lexicon size (Figure 1).
Corresponding to s0w, a weight is assigned to each
word (e.g. W (s0wsaw) and W (s0wlook)) for calcu-
lating a transition score. Instead, we propose to
utilize a d-dimensional word embedding, and re-
place the feature template s0w by d features, namely
s0e1, . . . , s0ed. Given the vector representation of a
word (e.g., esaw = (0.6, . . . , 0.2)), we replace the
lexical feature (e.g. s0wsaw) by a linear combination
of the d features (e.g., s0esaw := 0.6s0e1 + . . . +
0.2s0ed). Then, instead of the weights in a num-
ber of lexicon size assigned to s0w, now we use d

PACLIC 29

106
29th Pacific Asia Conference on Language, Information and Computation pages 106 - 113

Shanghai, China, October 30 - November 1, 2015
Copyright 2015 by Hiroya Komatsu, Ran Tian, Naoaki Okazaki and Kentaro Inui

weights (i.e., W (s0e1), . . . ,W (s0ed)) to calculate
a transition score. In this work, we reduce feature
space dimensionality by replacing all lexical fea-
tures, including combined features such as s0wq0w,
by the word embedding features.

In experiments, we applied the framework to
a near state-of-the-art dependency parser (Huang
et al., 2012), evaluated different vector operations
for replacing combined lexical features, and ex-
plored different word embeddings trained from un-
labeled or automatically labeled corpora. We ex-
pect word embeddings to augment parsing accuracy,
by the mechanism hypothesized in Andreas and
Klein (2014), namely (i) to connect unseen words
to known ones, and (ii) to encourage common be-
haviors among in-vocabulary words. In contrast to
the negative results reported in Andreas and Klein
(2014), we find that our framework indeed has these
effects, and significantly improves the baseline. As
a comparison, our method performs better than the
technique of replacing words by cluster bit strings
(Koo et al., 2008; Bansal et al., 2014), and the results
outperform a neural network based parser (Chen and
Manning, 2014).

2 Related Work

A lot of recent work has been done on training
word vectors (Mnih and Hinton, 2009; Mikolov et
al., 2013; Lebret and Collobert, 2014; Pennington
et al., 2014), and utilizing word vectors in various
NLP tasks (Turian et al., 2010; Andreas and Klein,
2014; Bansal et al., 2014). The common approach
(Turian et al., 2010; Koo et al., 2008; Bansal et al.,
2014) is to use vector representations in new fea-
tures, added to (near) state-of-the-art systems, and
make improvement. As a result, the feature space
gets even larger. We instead propose to reduce lex-
ical features by word embeddings. To our own sur-
prise, though the feature space gets much smaller,
the resulted system performs better.

Another stream of research is to use word embed-
dings in whole neural network architectures (Col-
lobert et al., 2011; Socher et al., 2013; Chen and
Manning, 2014; Weiss et al., 2015; Dyer et al.,
2015; Watanabe and Sumita, 2015). Though this is a
promising direction and has brought breakthroughs
in the field, the question is left open on what exactly

saw

I

you with
stack queue

s0 q0 q1

s0l

s1s2s3 q2
 her

Figure 2: An internal state of a dependency parser.

has contributed to the power of neural based ap-
proaches. In this work, we conjecture that the power
may partly come from the low-dimensionality of
word embeddings, and this advantage can be trans-
ferred to traditional feature based systems. Our ex-
periments support this conjecture, and we expect the
proposed method to help more mature, proven-to-
work existing systems.

Machine learning techniques have been proposed
for reducing model size and imposing feature spar-
sity (Suzuki et al., 2011; Yogatama and Smith,
2014). Compared to these methods, our approach
is simple, without extra twists of objective functions
or learning algorithms. More importantly, by using
word embeddings to reduce lexical features, we ex-
plicitly exploit the inherited syntactic and semantic
similarities between words.

Another technique to reduce features is dimen-
sion reduction by matrix or tensor factorization (Ar-
gyriou et al., 2007; Lei et al., 2014), but typically
applied to supervised learning. In contrast, we use
word embeddings trained from unlabeled or auto-
matically labeled corpora, bringing the aspects of
semi-supervised learning or self-training.

3 Formalization

In this section, we formalize the framework of re-
ducing lexical features. We take transition-based
parsing as an example, but the framework can be ap-
plied to other systems using lexical features.

3.1 Transition-based Parsing
In typical transition-based parsing, input words are
put into a queue and partially built parse trees are
cached in a stack (Figure 2). At each step, a shift-
reduce action is selected, which consumes words
from the queue and/or build new structures in the
stack. For the set of actions, we adopt the arc-
standard system (Yamada and Matsumoto, 2003;
Nivre, 2008; Huang and Sagae, 2010), in which the
actions are:

PACLIC 29

107

1. Shift, which pops the top of the queue and
pushes it to the stack;

2. Reduce-Left, which replaces the top two
trees in the stack by their consolidated tree, left
as child;

3. Reduce-Right, which replaces the top two
trees in the stack by their consolidated tree,
right as child.

Following Huang et al. (2012), we use the max-
violation perceptron for global learning and beam-
search for decoding.

In order to select the appropriate action, a set of
features are used for calculating transition scores of
each action. The features are typically extracted
from internal states of the queue and the stack. For
example, if we denote the elements in the stack by
s0, s1, . . . from the top, and elements in the queue
by q0, q1, . . . from the front; then, the words such
as s0w and q0w, the POS-tags such as s0t, and the
combined word and POS-tags such as s0wt are used
as features. Other features include the POS-tag s0lt
(where s0l denotes the leftmost child of s0, and s0r
denotes the rightmost child of s0), and the combined
feature s0wq0w, etc.

If the corresponding words and POS-tags are
specified in a concrete state, we use subscripts of
w and t to denote the concrete feature. For ex-
ample, from the state illustrated in Figure 2, we
can extract features such as s0wsaw, q0wyou, s0tVBD,
s0wsawtVBD, s0ltPRP, and s0wsawq0wyou, etc.

For the purpose of this work, we mainly focus on
the words (e.g., wsaw, wyou) in the above features.
Other parts, including positions such as s0 and q0,
and POS-tags such as tVBD, are regarded as formal
symbols.

3.2 Reducing Lexical Features

Formally, we define lexial features as the features
comprising one or more words, possibly in combina-
tion with other symbols. We propose to replace lex-
ical features as follows, and leaving other features
(e.g. s0tVBD) unchanged in the system.

Lexical Feature of One Word Let sw be a one
word lexical feature, where w is the word and s
is an arbitrary symbol. Let e = (vi)1≤i≤d be a

d-dimensional vector representation of the word w,
where vi is the i-th entry. Then, we replace sw by
se, a linear combination of se1, . . . , sed:

se :=
d∑

i=1

vi · (sei).

For example, assume that the word “saw” has a vec-
tor representation esaw = (0.6, . . . , 0.2). Then, the
feature s0wsaw is replaced by

s0esaw := 0.6s0e1 + . . .+ 0.2s0ed.

In the above, s0e1, . . . , s0ed are introduced to re-
place the feature template s0w. Note that, instead of
using a different feature s0wx for each different word
x, now we only have d features, s0e1, . . . , s0ed,
commonly used by all words, across the feature tem-
plate s0w.

As another example, in the case of features com-
bining a word and its POS tag, such as s0tVBDwsaw,
we treat s0tVBD as a formal symbol and replace the
feature as the following:

s0tVBDesaw := 0.6s0tVBDe1 + . . .+ 0.2s0tVBDed.

Lexical Feature of Two or More Words For lex-
ical features of two or more words, such as s0wq0w,
we replace the words by a combination of the two or
more corresponding word vectors. More precisely,
for a two-word lexical feature sw1w2, assume that
the vectors e1 = (ui)1≤i≤d and e2 = (vi)1≤i≤d rep-
resent w1 and w2, respectively. Then, we propose the
following operations1 to replace sw1w2:

• OUTER PRODUCT (⊗):

s(e1 ⊗ e2) :=
d∑

i=1

d∑
j=1

uivj · (seiẽj),

For example, if esaw = (0.6, . . . , 0.2) and eyou =
(0.5, . . . , 0.8), then s0wsawq0wyou is replaced by:

s0q0(esaw ⊗ eyou) := (0.6× 0.5)s0q0e1ẽ1 + . . .

+ (0.6× 0.8)s0q0e1ẽd + . . .

+ (0.2× 0.8)s0q0edẽd.

Here, ẽ1, . . . , ẽd are copies of e1, . . . , ed.
1Operations for more than three word vectors are similar.

PACLIC 29

108

• SUM (+):

s(e1 + e2) :=

d∑
i=1

(ui + vi) · (sei).

Following the previous example, s0wsawq0wyou is
replaced by:

s0q0(esaw + eyou) := (0.6 + 0.5)s0q0e1 + . . .

+ (0.2 + 0.8)s0q0ed.

• CONCATENATION (⊕):

s(e1 ⊕ e2) :=
d∑

i=1

ui · (sei) +
d∑

j=1

vj · (sẽj).

Following the example, replace s0wsawq0wyou by

s0q0(esaw⊕eyou) := 0.6s0q0e1+ . . .+0.2s0q0ed

+ 0.5s0q0ẽ1 + . . .+ 0.8s0q0ẽd.

Theoretically, OUTER PRODUCT is the natural
operation, because if s0wx and q0wy are regarded
as high-dimensional one-hot vectors (Figure 1), the
feature combination s0wxq0wy corresponds to the
outer product of s0wx and q0wy (i.e., s0wxq0wy fires
when s0wx and q0wy fire). Empirically, we find that
OUTER indeed performs the best among the three
operations; however, the outer product also intro-
duces d2 embedding features, many more than the
d features in SUM or 2d features in CONCATENA-
TION. We also find that SUM performs better than
CONCATENATION, being both effective and low-
dimensional (Section 4.1).

4 Experiments

We reimplemented the parser of Huang et al. (2012)
and replaced all lexical feature templates by em-
bedding features, according to our framework. We
set beam size to 8, and report unlabeled attachment
scores (UAS) on the standard Penn Treebank (PTB)
split, using the data attached to Huang et al. (2012)’s
system2. POS-tags are assigned by Stanford Tag-
ger3. To highlight the effect of word embeddings on
unseen words, we also report UAS on 148 sentences
in the Dev. set which contain words in vocabulary

Dev Test Unseen
Huang et al. (2012) 91.93 91.68 89.01

Different Operations, using STATE embedding:
OUTER 92.57∗ 92.20∗ 90.27∗

SUM 92.25∗ 91.85 90.10∗

CONCATENATION 92.18 91.86 89.96
Different Embeddings, using OUTER operation:

PLAIN 92.33∗ 91.78 90.08∗

TREE 92.37∗ 92.09∗ 89.82
STATE 92.57∗ 92.20∗ 90.27∗

Cluster Bit String:
PLAIN 91.71 91.20 89.18
TREE 90.38 90.07 88.00
STATE 91.31 90.96 89.04

Bansal et al. (2014) 92.06 91.75 90.13
Neural Network (Chen and Manning, 2014):
Random 86.37 86.19 81.06
PLAIN 90.68 90.48 87.02
TREE 91.06 90.82 87.38
STATE 91.03 90.57 87.88

Table 1: Parsing Results (UAS). Numbers marked by as-
terisk (∗) are statistically significant (p < 0.05), com-
pared to the baseline (Huang et al., 2012) under a paired
bootstrap test.

of the embeddings but unseen in PTB training data
(Unseen).

We built 300 dimensional word embeddings from
6 months articles in New York Times Corpus4

(01/2007-06/2007, 1.5M sentences), for words of
frequencies greater than 50. Word vectors are ob-
tained from singular value decomposition (SVD) of
the PPMI matrices (Levy and Goldberg, 2014b), for
co-occurrence matrices of target words with various
types of contexts (Levy and Goldberg, 2014a), to be
specified later. We choose SVD for training word
vectors because it is fast; and recent research sug-
gests that SVD can perform as well as other embed-
ding methods (Levy et al., 2015).

We investigated the following types of contexts
for training word vectors: PLAIN, which uses words
within a window of 3 to each side of the target word
as contexts; TREE, which uses words within 3 steps
of the target in the dependency trees, obtained from
applying Huang et al. (2012)’s parser to the cor-
pus; and STATE, which records the internal states of

2http://acl.cs.qc.edu/˜lhuang/
3http://nlp.stanford.edu/software/corenlp.shtml
4https://catalog.ldc.upenn.edu/LDC2008T19

PACLIC 29

109

!"#$

!%#$

!#$

#$

%#$

!&'$!"'$!%'$ '$ %'$ "'$

!"#$

!%#$

!#$

#$

%#$

!%#$!%&$!#$ &$ #$ %&$ %#$

Figure 3: We plot X by the weight of the feature s0wx,
and Y by the weight of s0ex, for x of high (Left) and
middle (Right) frequency words.

Huang et al. (2012)’s parser, and uses words at posi-
tions {s1, s2, s3, s0l, s0r, s1l, s1r, q0, q1, q2} as con-
texts for a target s0. These positions are where pars-
ing features are extracted from. We expect TREE

and STATE to encode more syntactic related infor-
mation.

4.1 Parsing Results

The parsing results are shown in Table 1. We find
that, the OUTER operation used for combined fea-
tures and the STATE contexts for training word vec-
tors perform the best for transition-based parsing,
but other settings also improve the baseline (Huang
et al., 2012), especially for sentences containing un-
seen words. We conducted paired bootstrap test to
compare our proposed method with the baseline, and
find out that most improvements are statistically sig-
nificant.

We also compared with the method of replacing
words in lexical features by cluster bit strings (Koo
et al., 2008; Bansal et al., 2014). We use bit strings
constructed from hierarchical clusters induced from
the previous word embeddings; as well as the the bit
strings constructed in Bansal et al. (2014)5. Lengths
of the bit strings are set to 4, 6, 8, 12, 16, and 20. It
turns out that the performance gains are not as sig-
nificant as our proposed method.

For reference, we report results by a neural net-
work based parser (Chen and Manning, 2014), since
our method shares a similar motivation with Chen
and Manning’s work, i.e. to use low-dimensional
dense features instead of high-dimensional sparse
features in parsing, aiming to obtain better gener-
alization. For initializing word embeddings in the
neural network, we tried 300 dimensional random

5http://ttic.uchicago.edu/˜mbansal/

!"#$%

!"#&%

"%

"#&%

"#$%

"#'%

"% "#$% "#(% "#)% "#*% &%

!"#$%

!"#&%

"%

"#&%

"#$%

"#'%

"% "#&% "#$% "#'% "#(% "#)% "#*% "#+% "#,% "#-% &%

!"#$

!"%$

!"&$

!"'$

($

!$!"#$!"%$!"&$!"'$ ($

!"#$

!"%$

!"&$

!"'$

($

!$!"#$!"%$!"&$!"'$ ($

Figure 4: We plot X by cosine similarities between
words, and Y by cosine similarities of weights, learned
for lexical features (Upper) and embedding features
(Lower). Words are of high (Left) and middle (Right)
frequencies.

vectors and the PLAIN, TREE, STATE vectors as de-
scribed previously. We find that pre-trained word
embeddings can improve performance, with TREE

and STATE slightly better than PLAIN, suggesting
that TREE and STATE may contain more informa-
tion useful to parsing. However, the STATE vector is
not as powerful as used with Huang et al. (2012)’s
parser, suggesting that for a given baseline, it may
be more helpful to train word vectors from contexts
specific to that baseline. Chen and Manning’s parser
generally performs worse than Huang et al. (2012)’s
baseline, suggesting that we cannot immediately ob-
tain a better parser by switching to neural networks;
other factors, such as global optimization and care-
fully selected features may still have merits, which
makes our method useful for improving existing ma-
ture parsers.

4.2 Analysis

Is our modified parser really a feature reduction
of the baseline system, i.e. is the parsing model
trained for embedding features actually correlated
to the baseline parsing model using lexical fea-
tures? In Figure 3, we plot weights learned for
the feature s0wx as X , and weights for s0ex as
Y , where x ranges over high or middle frequency
words. The weight for s0ex is calculated by taking
inner product of the vector s0ex and the weight vec-
tor (W (s0e1), . . . ,W (s0ed)). As the direction of

PACLIC 29

110

(a) Using Lexical Features (Red is wrong)

... , it is of course conceivable that ...

root

(b) Using Embedding Features (Green is correct)

... , it is of course conceivable that ...

root

(a) Using Lexical Features (Green is correct)

... in Chicago, Columbus, Ohio, and a few other cities .

(b) Using Embedding Features (Red is wrong)

... in Chicago, Columbus, Ohio, and a few other cities .

1

“While it is possible that the Big Green initiative will be ruled unconsti-

tutional, it is of course conceivable that in modern California it could

slide through.”

Figure 5: Improved parsing results with unseen (bold)
words.

the regression lines show, weights learned for s0ex
are positively correlated to weights learned for s0wx.
It suggests that the parsing model trained for em-
bedding features is indeed correlated to the parsing
model of the baseline, which implies that the base-
line parser and our modified parser would have sim-
ilar behaviors. This may explain the significance
results reported in Table 1: though our improve-
ments against the baseline is fairly moderate, they
are still statistically significant because our modi-
fied parser behaves similarly as the baseline parser,
but would correct the mistakes made by the base-
line while preserving most originally correct labels.
Such improvements are easier to achieve statistical
significance (Berg-Kirkpatrick et al., 2012), and are
arguably indicating better generalization.

So how does our modified parser improve from
the baseline? In Figure 4, we plot cosine similar-
ities between word vectors as X , and cosine simi-
larities between weight vectors of all one-word lex-
ical features as Y , compared to the similarities of
weights of the corresponding embedding features.
The plots show that, for similar words, the learned
weights for the corresponding lexical features are
only slightly similar; but after the lexical features are
reduced to low-dimensional embedding features, the
learned weights for the corresponding features are
more strongly correlated. In other words, weights
for embedding features encourage similar behaviors
between similar words, due to a much lower di-

(a) Using Lexical Features (Red is wrong)

... , one of the fastest and most sensitive monochrome films .

(b) Using Embedding Features (Green is correct)

... , one of the fastest and most sensitive monochrome films .

2

“The Rochester, N.Y., photographic giant recently began marketing T-

Max 3200, one of the fastest and most sensitive monochrome films.”

Figure 6: Improved parsing results on parallel structure
of adjectives.

mensionality. This property may have two favor-
able effects on parsing, as hypothesized in Andreas
and Klein (2014): (i) to connect unseen words to
known ones, and (ii) to encourage common behav-
iors among in-vocabulary words.

The effects on unseen words have been observed
in the Unseen column in Table 1, and we present a
concrete example in Figure 5. In this example, “con-
ceivable” is unseen in the training data, thus cannot
be recognized by the baseline parser; however, its
word vector is similar to “subjective” and “undeni-
ably”, whose behaviors are learned and generalized
to “conceivable”, by our modified parser using em-
bedding features.

To illustrate the effects on in-vocabulary words,
we take a specific parallel structure of adjectives.
More precisely, we consider an internal state of the
parser such that: s1t and s0t have POS-tags JJ,
JJS or JJR; and s0lt has a POS-tag CC or Comma.
Then, in 98.8% instances of such a state in the train-
ing data, the golden label action is Reduce-Left,
suggesting a strong tendency of the state to become
a parallel structure of adjectives, such as “black
and white”. However, when we parse New York
Times data using the baseline parser, the proportion
of Reduce-Left action when facing the state de-
creases to 96.7%, suggesting that this tendency is

PACLIC 29

111

0.01 0.1 1
Used proportion of training data

82

84

86

88

90

92
UA

S
ac

ur
ac

y

baseline
STATE + OUTER

Figure 7: UAS on Dev. set, of models trained on less data.

not fully generalized as a rule for parallel structure
of adjectives. This is not astonishing, because POS-
tags and surface forms of lexical features are diverse
in the training data. However, when we use our mod-
ified parser, the proportion of Reduce-Left ac-
tion turns out to be 99.4%, significantly higher than
using the baseline parser according to a permutation
test. It suggests that our modified parser generalizes
and strengthens the rule of parallel structure, by en-
forcing similar behaviors among similar adjectives.
A concrete example of improvement is presented in
Figure 6.

In Figure 7, we vary the size of training data and
plot UAS of the obtained parsing models. As the
figure shows, our modified parser using embedding
features constantly outperforms the baseline. How-
ever, the performance of both settings decrease as
the training data size decreases, suggesting that there
may not be much syntactic information encoded in
the word embeddings, even though the word embed-
dings are trained on internal states of the baseline
parser, which is trained on full training data. We
believe this graph indicates that, word embeddings
can help parsing, but not because they encode ex-
tra syntactic information; rather, it is because word
embeddings bring better generalization.

5 Conclusion

We have proposed a framework for reducing lexi-
cal features by word embeddings, and applied the
framework to transition-based dependency parsing.

A near state-of-the-art parser is improved, even
though the features are reduced. This work is still
preliminary, as we have only tested on one parser;
however, our results are promising and our analysis
suggests that the proposed method may indeed bring
better generalization. We believe our framework can
help more systems to reduce lexical features and al-
leviate the risk of overfitting, thanks to its generality.

References

Jacob Andreas and Dan Klein. 2014. How much do word
embeddings encode about syntax? In Proceedings of
ACL.

Andreas Argyriou, Theodoros Evgeniou, and Massimil-
iano Pontil. 2007. Multi-task feature learning. In Ad-
vances in NIPS.

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In Proceedings of ACL.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in nlp. In Proceedings of EMNLP-CoNLL.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch. J.
Mach. Learn. Res., 12.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-term
memory. In Proceedings of ACL-IJCNLP.

Liang Huang and Kenji Sagae. 2010. Dynamic program-
ming for linear-time incremental parsing. In Proceed-
ings of ACL.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proceed-
ings of NAACL-HLT.

Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL.

Rémi Lebret and Ronan Collobert. 2014. Word em-
beddings through Hellinger PCA. In Proceedings of
EACL.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scoring
dependency structures. In Proceedings of ACL.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of ACL.

PACLIC 29

112

Omer Levy and Yoav Goldberg. 2014b. Neural word em-
bedding as implicit matrix factorization. In Advances
in NIPS.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Trans. ACL, 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Distributed representations
of words and phrases and their compositionality. In
Advances in NIPS.

Andriy Mnih and Geoffrey E. Hinton. 2009. A scalable
hierarchical distributed language model. In Advances
in NIPS.

Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit,
and Svetoslav Marinov. 2006. Labeled pseudo-
projective dependency parsing with support vector ma-
chines. In Proceedings of CoNLL.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Comput. Linguist.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with compositional
vector grammars. In Proceedings of ACL.

Jun Suzuki, Hideki Isozaki, and Masaaki Nagata. 2011.
Learning condensed feature representations from large
unsupervised data sets for supervised learning. In Pro-
ceedings of ACL-HLT.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and general
method for semi-supervised learning. In Proceedings
of ACL.

Taro Watanabe and Eiichiro Sumita. 2015. Transition-
based neural constituent parsing. In Proceedings of
ACL-IJCNLP.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of ACL-
IJCNLP.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
In Proceedings of IWPT.

Dani Yogatama and Noah A. Smith. 2014. Linguistic
structured sparsity in text categorization. In Proceed-
ings of ACL.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings
of EMNLP.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of ACL.

PACLIC 29

113

