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Abstract

A common approach to unsupervised relation
extraction builds clusters of patterns express-
ing the same relation. In order to obtain clus-
ters of relational patterns of good quality, we
have two major challenges: the semantic rep-
resentation of relational patterns and the scal-
ability to large data. In this paper, we ex-
plore various methods for modeling the mean-
ing of a pattern and for computing the similar-
ity of patterns mined from huge data. In order
to achieve this goal, we apply algorithms for
approximate frequency counting and efficient
dimension reduction to unsupervised relation
extraction. The experimental results show that
approximate frequency counting and dimen-
sion reduction not only speeds up similarity
computation but also improves the quality of
pattern vectors.

1 Introduction

Semantic relations between entities are essential
for many NLP applications such as question an-
swering, textual inference and information extrac-
tion (Ravichandran and Hovy, 2002; Szpektor et al.,
2004). Therefore, it is important to build a compre-
hensive knowledge base consisting of instances of
semantic relations (e.g., authorOf) such as authorOf
⟨Franz Kafka, The Metamorphosis⟩. To recognize
these instances in a corpus, we need to obtain pat-
terns (e.g., “X write Y”) that signal instances of the
semantic relations.

For a long time, many researches have targeted
at extracting instances and patterns of specific rela-
tions (Riloff, 1996; Pantel and Pennacchiotti, 2006;

De Saeger et al., 2009). In recent years, to acquire
a wider range knowledge, Open Information Extrac-
tion (Open IE) has received much attention (Banko
et al., 2007). Open IE identifies relational patterns
and instances automatically without predefined tar-
get relations (Banko et al., 2007; Wu and Weld,
2010; Fader et al., 2011; Mausam et al., 2012). In
other words, Open IE acquires knowledge to han-
dle open domains. In Open IE paradigm, it is nec-
essary to enumerate semantic relations in open do-
mains and to learn mappings between surface pat-
terns and semantic relations. This task is called
unsupervised relation extraction (Hasegawa et al.,
2004; Shinyama and Sekine, 2006; Rosenfeld and
Feldman, 2007).

A common approach to unsupervised relation ex-
traction builds clusters of patterns that represent the
same relation (Hasegawa et al., 2004; Shinyama and
Sekine, 2006; Yao et al., 2011; Min et al., 2012;
Rosenfeld and Feldman, 2007; Nakashole et al.,
2012). In brief, each cluster includes patterns corre-
sponding to a semantic relation. For example, con-
sider three patterns, “X write Y”, “X is author of
Y” and “X is located in Y”. When we group these
patterns into clusters representing the same relation,
patterns “X write Y” and “X is author of Y” form
a cluster representing the relation authorOf, and the
pattern “X is located in Y” does a cluster for locate-
dIn. In order to obtain these clusters, we need to
know the similarity between patterns. The better we
model the similarity of patterns, the better a cluster-
ing result correspond to semantic relations. Thus,
the similarity computation between patterns is cru-
cial for unsupervised relation extraction.
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We have two major challenges in computing the
similarity of patterns. First, it is not clear how to
represent the semantic meaning of a relational pat-
tern. Previous studies define a feature space for pat-
terns, and express the meaning of patterns by using
such as the co-occurrence statistics between a pat-
tern and an entity pair, e.g., co-occurrence frequency
and pointwise mutual information (PMI) (Lin and
Pantel, 2001). Some studies employed vector repre-
sentations of a fixed dimension, e.g., Principal Com-
ponent Analysis (PCA) (Collins et al., 2002) and La-
tent Dirichlet Allocation (LDA) (Yao et al., 2011;
Riedel et al., 2013). However, the previous work
did not compare the effectiveness of these represen-
tations when applied to a collection of large-scaled
unstructured texts.

Second, we need design a method scalable to a
large data. In Open IE, we utilize a large amount of
data in order to improve the quality of unsupervised
relation extraction. For this reason, we cannot use
a complex and inefficient algorithm that consumes
the computation time and memory storage. In this
paper, we explore methods for computing pattern
similarity of good quality that are scalable to huge
data, for example, with several billion sentences. In
order to achieve this goal, we utilize approximate
frequency counting and dimension reduction. Our
contributions are threefold.

• We build a system for unsupervised relation ex-
traction that is practical and scalable to large
data.

• Even though the proposed system introduces
approximations, we demonstrate that the sys-
tem exhibits the performance comparable to the
one without approximations.

• Comparing several representations of pattern
vectors, we discuss a reasonable design for rep-
resenting the meaning of a pattern.

2 Methods

2.1 Overview

As mentioned in Section 1, semantic representations
of relational patterns is key to unsupervised rela-
tion extraction. Based on the distributional hypoth-
esis (Harris, 1954), we model the meaning of a re-

lational pattern with a distribution of entity pairs co-
occurring with the pattern. For example, the mean-
ing of a relational pattern “X write Y” is represented
by the distribution of the entity pairs that fills the
variables (X, Y) in a corpus. By using vector repre-
sentations of relational patterns, we can compute the
semantic similarity of two relational patterns; for ex-
ample, we can infer that the patterns “X write Y” and
“X is author of Y” present the similar meaning if the
distribution of entity pairs for the pattern “X write
Y” is similar to that for the pattern “X is author of
Y”.

Researchers have explored various approaches to
vector representations of relational patterns (Lin and
Pantel, 2001; Rosenfeld and Feldman, 2007; Yao
et al., 2011; Riedel et al., 2013). The simplest ap-
proach is to define a vector of a relational pattern
in which an element in the vector presents the co-
occurrence frequency between a pattern and an en-
tity pair. However, the use of raw frequency counts
may be inappropriate when some entity pairs co-
occur with a number of patterns. A solution to this
problem is to use a refined co-occurrence measure
such as PMI (Lin and Pantel, 2001). In addition, we
may compress a vector representation with a dimen-
sionality reduction method such as PCA because
pattern vectors tend to be sparse and high dimen-
sional (Yao et al., 2011; Riedel et al., 2013).

Meanwhile, it may be difficult to implement the
above procedures that can handle a large amount
of data. Consider the situation where we find 1.1
million entity pairs and 0.7 million relational pat-
terns from a corpus with 15 billion sentences. Even
though the vector space is sparse, we need to keep
a huge number of frequency counts that record co-
occurrences of the entity pairs and relational patterns
in the corpus.

In order to acquire pattern vectors from a large
amount of data, we explore two approaches in this
study. One approach is to apply an algorithm for ap-
proximate counting so that we can discard unimpor-
tant information in preparing pattern vectors. An-
other approach is to utilize distributed representa-
tions of words so that we can work on a semantic
space of a fixed and compact size. In short, the for-
mer approach reduces the memory usage for com-
puting statistics, whereas the latter compresses the
vector space beforehand.
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Figure 1: Overview of the system for unsupervised relation extraction

Figure 1 illustrates the overview of the system
of unsupervised relation extraction presented in this
paper. We extract a collection of triples each of
which consists of an entity pair and a relational pat-
tern (Section 2.2). Because this step may extract
meaningless triples, we identify entity pairs and re-
lational patterns occurring frequently in the corpus.
We compute co-occurrence statistics of entity pairs
and relational patterns to obtain pattern vectors. Sec-
tion 2.3 describes this process, followed by an on-
line variant of PCA in Section 2.4. Furthermore, we
present two approaches that improve the scalability
to large data in Section 2.5.

2.2 Extracting triples
In this study, we define a triple as a combination
of an entity pair and a relational pattern that con-
nects the two entities. In order to extract meaningful
triples from a corpus, we mine a set of entities and
relational patterns in an unsupervised fashion.

2.2.1 Extracting entities
We define an entity mention as a sequence of nouns.
Because quite entity mentions consist of two or more
nouns (e.g., “Roadside station” and “Franz Kafka”),
we adapt a simple statistical method (Mikolov et al.,
2013) to recognize noun phrases. Equation 1 com-
putes the score of a noun bigram wiwj ,

score(wi, wj) = cor(wi, wj) ∗ dis(wi, wj), (1)

cor(wi, wj) = log
f(wi,wj)−δ
f(wi)×f(wj)

, (2)

dis(wi, wj) =
f(wi,wj)

f(wi,wj)+1
min{f(wi),f(wj)}

min{f(wi),f(wj)}+1 . (3)

Here, f(wi) denotes the frequency of the noun wi,
and f(wi, wj) does the frequency of the noun bi-

gram wiwj . The parameter δ is a constant value to
remove infrequent noun sequences. Consequently,
cor(wi, wj) represents the degree of the connection
between wi and wj . However, cor(wi, wj) becomes
undesirably large if either f(wi) or f(wj) is small.
We introduce the function dis(wi, wj) to ‘discount’
such sequences.

We form noun phrases whose scores are greater
than a threshold. In order to obtain noun phrases
longer than two words, we run the procedure four
times, decreasing the threshold value1. In this way,
we can find, for example, “Franz Kafka” as an en-
tity in the first run and “Franz Kafka works” in the
second run. After identifying a set of noun phrases,
we count the frequency of the noun phrases in the
corpus, and extract noun phrases occurring no less
than 1,000 times as a set of entities.

2.2.2 Extracting entity pairs
After determining a set of entities, we discover en-
tity pairs that may have semantic relationships in or-
der to locate relational patterns. In this study, we
extract a pair of entities if the entities co-occur in
more than 5,000 sentences. We denote the set of en-
tity pairs extracted by this procedure E.

2.2.3 Extracting patterns
As a relational pattern, this study employs the short-
est path between two entities in a dependency tree,
following the previous work (Wu and Weld, 2010;
Mausam et al., 2012; Akbik et al., 2012). Here, we
introduce a restriction that a relational pattern must
include a predicate in order to reject semantically-

1The threshold values are 10 (first time), 5 (second time),
and 0 (third and fourth times).
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Figure 2: Example of parsed sentence and extracting pat-
terns

ambiguous patterns such as “X of Y”. Addition-
ally, we convert an entity into a variable (i.e., X
or Y). Consider the sentence shown in Figure 2 as
an example. An arrow between words expresses
a dependency relationship. This sentence contains
three entities: “Kafka”, “The Metamorphosis” and
“German”. Therefore, we obtain three patterns, “X
nsubj←−−− wrote

dobj−−→ Y”, “X
nsubj←−−− wrote

prep in−−−−→ Y”
and “X

dobj←−− wrote
prep in−−−−→ Y”2. Counting the fre-

quency of a pattern, we extract one appearing no less
than 1,500 times in the corpus. We denote the set of
relation patterns P hereafter.

2.3 Building pattern vectors

We define a vector of a relational pattern as the dis-
tribution of entity pairs co-occurring with the pat-
tern. Processing the whole collection of the corpus,
we extract mentions of triples (p, e), p ∈ P, e ∈ E.
For example, we obtain a triple,

p = X
nsubj←−−− wrote

dobj−−→ Y,

e = ⟨“Franz Kafka”, “The Metamorphosis”⟩,

from the sentence “Franz Kafka wrote The Meta-
morphosis.” The meaning of the pattern p is rep-
resented by the distribution of the entity pairs co-
occurring with the pattern.

In this study, we compare two statistical measures
of co-occurrence: the raw frequency (FREQ) and
PMI (PMI). In FREQ setting, a relational pattern p
is represented by a vector whose elements present
the frequency of co-occurrences f(p, e) of every en-

2In the experiments, we use a collection of Japanese Web
pages. However, we explain the procedure with an English sen-
tence because the procedure for extracting patterns is universal
to other languages.

tity pair e ∈ E. PMI refines the strength of co-
occurrences with this equation,

PMI(p, e) = log
f(p,e)
M

Σi∈P f(i,e)
M

Σj∈Ef(p,j)
M

× dis(p, e).

(4)
Here, f(p, e) presents the frequency of co-
occurrences between a pattern p and an entity pair
e; and M =

∑P
i

∑E
j f(i, j). The discount factor

dis(p, e) is defined similarly to Equation 3. In PMI

setting, we set zero to the value for an entity pair e
if PMI(p, e) < 0.

2.4 Dimensionality reduction for pattern
vectors

The vector space defined in Section 2.3 is extremely
high dimensional and sparse, encoding all entity
pairs as separate dimensions. The space may be
too sparse to represent the semantic meaning of re-
lational patterns; for example, entity pairs (“Franz
Kafka”, “the Metamorphosis”) and (“Kafka”, “the
Metamorphosis”) present two different dimension
even though “Franz Kafka” and “Kafka” refer to the
same person. In addition, we need an associative ar-
ray to compute the similarity of two sparse vectors.

In order to map the sparse and high dimensional
space into a dense and compact space, we use Prin-
cipal Component Analysis (PCA). In essence, PCA
is a statistical procedure that finds principal compo-
nents and scores of a matrix. PCA is closely related
to Singular Value Decomposition (SVD), which fac-
tors an m× n matrix A with,

A = UΣVt. (5)

Here, U is an m × m orthogonal matrix, V is an
n × n orthogonal matrix and Σ is an m × n diago-
nal matrix storing singular values. Each column of
V corresponds to a principal component, and each
column of UΣ corresponds to a score of a principal
component of A.

However, a full SVD requires heavy computa-
tions while we only need principal components cor-
responding to the top r singular values of A. This
hinders the scalability of the system, which obtains
a huge co-occurrence matrix between patterns and
entity pairs. We solve this issue by using the ran-
domized algorithm proposed by Halko et al. (2011).

PACLIC 29

99



Algorithm 1 Space saving for each pattern
Input: N : counter size for each pattern
Input: D: a set of triples (p, e)
Output: cp,e: counter for each pattern p

1: for all (p, e) ∈ D do
2: if Tp does not exist then
3: Tp ← ∅
4: end if
5: if e ∈ Tp then
6: cp,e ← cp,e + 1
7: else if |Tp| < N then
8: Tp ← T ∪ {e}
9: cp,e ← 1

10: else
11: i← argmini∈Tp

cp,i
12: cp,e ← cp,i + 1
13: Tp ← T ∪ {e} \ {i}
14: end if
15: end for

The goal of this algorithm is to find an r × n matrix
B storing the compressed information of the rows of
A. We first draw an n × r Gaussian random matrix
Ω. Next, we derive the m× r matrix Y = AΩ. We
next construct an m × r matrix Q whose columns
form an orthonormal basis for the range of Y. Here,
QQtA ≈ A is satisfied. Finally, we obtain the ma-
trix B = QtA, in which Qt compresses the rows of
A.

We compute principal component scores for r di-
mensions by applying SVD to B. The computation
is easy because r ≪ m. In this study, we used
redsvd3, an implementation of Halko et al. (2011).
We represents the meaning of a pattern with the
scores of r principle components.

2.5 Improving the scalability to large data

As described previously, it may be difficult and inef-
ficient to count the exact numbers of co-occurrences
from a large amount of data. In this study, we ex-
plore two approaches: approximate counting (Sec-
tion 2.5.1) and distributed representations of words
(Section 2.5.2).

2.5.1 Approximate counting
We may probably not need exact counts of co-
occurrences for representing pattern vectors because
a small amount of elements in a pattern vector

3https://code.google.com/p/redsvd/wiki/
English

greatly influence the similarity computation. In
other words, it may be enough to find top-k entity
pairs with larger counts of co-occurrences for each
pattern, and to ignore other entity pairs with smaller
counts. The task of finding top-k frequent items has
been studied extensively as approximate counting
algorithms.

We employ Space Saving (Metwally et al., 2005),
which is the most efficient algorithm to obtain top-k
frequent items. Algorithm 1 outlines the Space Sav-
ing algorithm adapted for counting frequencies of
co-occurrences. The space saving algorithm main-
tains at most N counters of co-occurrences for each
pattern p.

For each triple (p, e), where p and e present a pat-
tern and an entity pair, respectively, the algorithm
checks if the co-occurrence count for the triple (p, e)
is available or not. If it is available (Line 5), we in-
crement the counter as usual (Line 6). If it is unavail-
able but the number of counters kept for the pattern
is less than N (Line 7), we initialize the counter with
one (Lines 8 and 9). If the count is unavailable and
if the pattern has already maintained N counters, the
algorithm removes a counter cp,i with the least value,
and creates a new counter for the entity pair e with
the approximated count cp,i + 1 (Lines 11–13).

This algorithm has the nice property that the error
of the frequency count of a frequent triple is within a
range specified by the number of counters N . In ad-
dition, Metwally et al. (2005) describes a data struc-
ture for finding the least frequent triple efficiently
in Line 11. We can obtain the frequency counts of
the top-k frequent triples if we set the number of
counters N much larger than k. In this way, we can
find the frequency count of the top-k frequent triple
f(p, e) approximately, and assume frequency counts
of other triples zero.

2.5.2 Building pattern vectors from word
vectors

A number of NLP researchers explored approaches
to representing the meaning of a word with fixed-
length vectors (Bengio et al., 2003; Mikolov et al.,
2013). In particular, word2vec4, an implementation
of Mikolov et al. (2013), received much attention in
the NLP community.

4https://code.google.com/p/word2vec/
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Switching our attention to the pattern feature vec-
tor, our goal is to express the semantic meaning of a
relational pattern with a distribution of entity pairs.
Here, we explore the use of low-dimensional word
vectors learned by word2vec from the large corpus:
the meaning of a pattern is represented by the distri-
bution of entity vectors. Thus, we obtain the vector
representation of a relational pattern p,

p =
∑
e∈E

f(p, e)

[
ve0
ve1

]
. (6)

Here, ve0 denotes the vector for an entity e0 in the
entity pair e, and ve1 does the vector for another en-
tity e1 in the pair e.

3 Experiments

3.1 Data
For our experimental corpus, we collected 15 bil-
lion Japanese sentences by crawling web pages. To
remove noise such as spam and non-Japanese sen-
tences, we apply a filter that checks the length of a
sentence, determines whether the sentence contains
a specific character in Japanese (hiragana), and then
checks the number of symbols. As a result of fil-
tering, we obtained 6.3 billion sentences. We then
parsed these sentences using Cabocha5, a Japanese
dependency parser. For preprocessing, we extracted
1 million entities, 1.1 million entity pairs, and 0.7
million patterns. Finally, we extracted about 1.5 bil-
lion triples from the corpus.

We then manually checked some of the pattern
pairs extracted from Wikipedia that were also con-
tained within the 6.3 billion sentence corpus. Specif-
ically, we first extracted frequent patterns from some
domains in Wikipedia for obtaining the patterns rep-
resenting a specific relation. We selected patterns re-
ferring to an illness, an author, and an architecture as
target domains. Next, we gathered patterns sharing
many entity pairs because these patterns may rep-
resent the same relation. We obtained 527 patterns
and 4,531 pattern pairs. Four annotators classified
these pairs into the same relation or not. We then
randomly sampled 90 pairs and found an average of
0.63 for the Cohen’s kappa value for two annotators.
We annotated the 4,531 pairs by two or more anno-
tators. Therefore, if two or more annotators labeled

5https://code.google.com/p/cabocha/

a pair with the same relation, we regarded the pair as
the same relation. Finally, we acquired 720 pairs ex-
pressing the same relation. We applied each method
to 4,531 pairs and we identified patterns with higher
than threshold. We investigated whether the pair is
included in the same relation pairs.

3.2 Experimental settings

We evaluated the quality of pattern vectors build by
the proposed approaches on the similarity calcula-
tion. Concretely, we investigated the impact on ac-
curacy and computation time. For the evaluation, we
computed the cosine similarity based on the feature
vectors obtained by each method. We compared the
following methods.
Exact counting (baseline): We counted the co-
occurrence frequency between an entity pair and a
pattern in triples using a machine with 256GB of
memory (EXACT-FREQ). In addition, we calcu-
lated PMI defined in equation 4 based on the co-
occurrence frequency (EXACT-PMI).
Exact counting + PCA: Using PCA, we converted
EXACT-FREQ and EXACT-PMI into the fixed di-
mensional vector EXACT-FREQ+PCA and EXACT-
PMI+PCA. We determined the number of dimen-
sions as 1,024 based on comparisons6 between 256,
512, 1,024, and 2,048.
Approximate counting: We counted the co-
occurrence frequency using approximate counting
explained in Section 2.5.1 (APPROX-FREQ). The
counter size N was 10,240 and we used the top
5,120 frequent entity pairs as a feature. Moreover,
we obtained PMI based on the result of approximate
counting (APPROX-PMI).
Approximate counting + PCA: Using PCA, we
converted APPROX-FREQ and APPROX-PMI into
the fixed dimensional vector APPROX-FREQ+PCA
and APPROX-PMI+PCA. Similar to Exact counting
+ PCA, we selected the dimension of feature vectors
as 1,024.
Exact counting + word2vec: We obtained pat-
tern feature vectors using the result of word2vec
(EXACT-FREQ+WORD2VEC). Moreover, instead
of calculating the feature vector by co-occurrence
frequency, we weight the entity vector with PMI

6The result of 1,024 dimensional vector is close to the one
of 2,048. We selected 1,024 since the smaller the number of
feature dimensions are, the faster we calculate similarity.
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Figure 3: Precision and recall of each method

(EXACT-PMI+WORD2VEC). We trained word2vec
using all entities, verbs, and adverbs in the corpus
on four AMD Opteron 6174 processors (12-core,
2.2GHz). It took about 130 hours to train word2vec
(the number of threads was 42 and window size was
5). Similar to PCA, we selected the dimension of
each word vector as 512: namely, the dimension of
pattern vectors was 1,024 because of concatenating.

3.3 Evaluating accuracy of each method
Figure 3 shows the precision and recall of each
method. We illustrated this graph by changing the
threshold value. We focus attention on the difference
between exact counting and approximate count-
ing. These results of EXACT-FREQ and APPROX-
FREQ were about the same. On the other hand,
APPROX-PMI outperformed EXACT-PMI in most
areas. These results demonstrated that approximate
counting is enough to compute co-occurrence fre-
quency between a pattern and an entity pair. The
results also suggest that approximate counting pos-
sibly improves the performance.

Comparing the results with PCA and without
PCA, the figure shows that PCA does not always
improve the performance. However, APPROX-
PMI+PCA achieved the best performance in most
areas. For computation time, we verify that PCA is
important in this aspect.

In contrast, feature vectors based on word2vec
worsened the performance against not only approxi-
mate counting but also exact counting. Although we
expected that the vector formed by word2vec was
appropriate for representing the meaning of a pat-
tern, EXACT-FREQ+WORD2VEC was worse than all
the other methods in Figure 3. We suspect that this

Method 10k 100k all (664k)
EXACT-PMI 55m 121hr 8,499hr
APPROX-PMI 38m 110hr 7,441hr
APPROX-PMI+PCA 4m 7hr 785hr

Table 1: Similarity calculation time of each method with
one thread

result was caused by separating entity pairs into en-
tities in feature generation. Concretely, for obtaining
pattern feature vectors using word2vec, we concate-
nate the sum of vectors assigned to one side of entity
pairs and the ones assigned to the other side. There-
fore, there is a possibility that we obtain pattern pairs
with a high similarity when both of the patterns con-
tain one of the same entity types. In other words, we
need to encode not entities separately but maintain-
ing entity pair as a pattern feature vector.

From Figure 3, approximate counting is effective
for the similarity calculation. In addition, PCA is
useful for representing the meaning of a pattern in
the compact space.

3.4 Evaluating computation time

Table 1 demonstrates the similarity calculation
time of EXACT-PMI, APPROX-PMI and APPROX-
PMI+PCA for processing 10k patterns, 100k pat-
terns, and 664k patterns (the maximum). We ex-
ecuted a program written in C++ on four AMD
Opteron 6174 processors (12-core, 2.2GHz) with
256GB of the memory. We measured the calculation
time using a single thread. Note that, we split the
calculation targets and predicted computation time
based on the result of division and split number, be-
cause much time is required to complete the calcu-
lation for 100k and 664k patterns. For 100k pat-
terns, we split the calculation targets into 48 groups.
For 664k pattern, we split the calculation targets into
4,096 groups.

APPROX-PMI executed quicker than EXACT-
PMI because APPROX-PMI decreased the num-
ber of non-zero features for each pattern. Nev-
ertheless, APPROX-PMI took a large amount of
time for the similarity calculation. On the other
hand, the computation time of APPROX-PMI+PCA
was much smaller than that of EXACT-PMI and
APPROX-PMI. As a result, it is necessary to reduce
the amount of dimensions because APPROX-PMI
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would take 7,441 hours (about a year) to calculate
all pattern similarity with one thread. We conclude
that it is necessary to prepare low dimensional fea-
ture vectors using dimension reduction or word vec-
tors for completing similarity calculation in a realis-
tic time.

4 Related work

Unsupervised relation extraction poses three major
challenges: extraction of relation instances, repre-
senting the meaning of relational patterns, and ef-
ficient similarity computation. A great number of
studies proposed methods for extracting relation in-
stances (Wu and Weld, 2010; Fader et al., 2011;
Fader et al., 2011; Akbik et al., 2012). We do not
describe the detail of these studies, which are out of
the scope of this paper.

Previous studies explored various approaches to
represent the meaning of relational patterns (Lin and
Pantel, 2001; Yao et al., 2012; Mikolov et al., 2013).
Lin and Pantel (2001) used co-occurrence statistics
of PMI between an entity and a relational pattern.
Even though the goal of their research is not on re-
lation extraction but on paraphrase (inference rule)
discovery, the work had a great impact to the re-
search on unsupervised relation extraction. Yao et
al. (2012) modeled sentence themes and document
themes by using LDA, and represented the mean-
ing of a pattern with the themes together with the
co-occurrence statistics between patterns and enti-
ties. Recently, methods inspired by neural language
modeling received much attentions for representa-
tion learning (Bengio et al., 2003; Mikolov et al.,
2010; Mikolov et al., 2013). In this study, we com-
pared the raw frequency counts, PMI, and word em-
beddings (Mikolov et al., 2013).

In order to achieve efficient similarity computa-
tion, some researchers used entity types, for exam-
ple, “Franz Kafka” as a co-referent of writer (Min
et al., 2012; Nakashole et al., 2012). Min et
al. (2012) obtained entity types by clustering enti-
ties in a corpus. When computing the similarity val-
ues of patterns, they restricted target pattern pairs
to the ones sharing the same entity types. In this
way, they reduced the number of similarity compu-
tations. Nakashole et al. (2012) also reduced the
number of similarity computations by using entity

types obtained from existing knowledge bases such
as Yago (Suchanek et al., 2007) and Freebase (Bol-
lacker et al., 2008). However, it is not so straightfor-
ward to determine the semantic type of an entity in
advance because the semantic type may depends on
the context. For example, “Woody Allen” stands for
an actor, a movie director, or a writer depending on
the context. Therefore, we think it is also important
to reduce the computation time for pattern similar-
ities by simplifying the semantic representation of
relational patterns.

The closest work to ours is probably Goyal et
al. (2012). Their paper proposes to use algorithms
of count-min sketch (approximate counting) and ap-
proximate nearest neighbor search for NLP tasks.
They applied these techniques for obtaining feature
vectors, reducing the dimension of the vector space,
and searching similar items to a query. Even though
they demonstrated the efficiency of the algorithms,
they did not demonstrate the effectiveness of the ap-
proach in a specific NLP task.

5 Conclusion

In this paper, we presented several approaches to
unsupervised relation extraction on a large amount
of data. In order to handle large data, we ex-
plored three approaches: dimension reduction, ap-
proximate counting, and vector representations of
words. The experimental results showed that ap-
proximate frequency counting and dimension reduc-
tion not only speeds up similarity computation but
also improved the quality of pattern vectors.

The use of vector representation of words did not
show an improvement. This is probably because
we need to learn a vector representation specialized
for patterns that encode the distributions of entity
pairs. A future direction of this research is to es-
tablish a method to learn the representations of pat-
terns jointly with the representations of words. Fur-
thermore, it would be interesting to incorporate the
meaning of constituent words of a pattern into the
representation.
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