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Abstract 

Relation classification is an important se-

mantic processing, which has achieved 

great attention in recent years. The main 

challenge is the fact that important infor-

mation can appear at any position in the 

sentence. Therefore, we propose bidirec-

tional long short-term memory networks 

(BLSTM) to model the sentence with 

complete, sequential information about all 

words. At the same time, we also use fea-

tures derived from the lexical resources 

such as WordNet or NLP systems such as 

dependency parser and named entity rec-

ognizers (NER). The experimental results 

on SemEval-2010 show that BLSTM-

based method only with word embeddings 

as input features is sufficient to achieve 

state-of-the-art performance, and import-

ing more features could further improve 

the performance.  

1 Introduction 

The automatic classification of semantic relations 

is an important task, which could offer useful in-

formation for many applications, such as question 

answering, information extraction, the construc-

tion and completion of semantic or relational 

knowledge base.  

In this work, we focus on the classification of 

semantic relations between pairs of nominals 

(Hendrickx et al., 2010). Given a sentence S with 

annotated pairs of nominal e1 and e2, the task is to 

classify which of the following nine semantic re-

lations holds between the nominals: Cause-Effect, 

Instrument-Agency, Product-Producer, Content-

Container, Entity-Origin, Entity-Destination, 

Component-Whole, Member-Collection, Mes-

sage-Topic, or Other if it does not belongs to any 

of the nine annotated relations. 

For example, News and commotion are con-

nected in a Cause-Effect relation in the sentence 

“The news brought about a commotion in the of-

fice.” In this instance, the relation between news 

and commotion could be inferred by the meaning 

of the two nominals and the context of “brought 

about” around them. Therefore, how to grasp and 

represent the lexical and context information are 

the key research points for semantic relation clas-

sification. 

Supervised methods with carefully handcrafted 

features from lexical and semantic resources have 

achieved high performance (Hendrickx et al., 

2010; Rink and Harabagiu, 2010). However, the 

selection of features and the effective integration 

of knowledge sources into relation classification 

seem to be difficult.  

Recently, deep neural networks has been ap-

plied with the aim of reducing the number of 

handcrafted features, and getting effective fea-

tures from lexical and sentence level (Socher et al., 

2012; Zeng et al., 2014; Yu et al., 2014).  

Different from previous work, we propose bi-

directional long short-term memory networks 

(BLSTM) to solve the relation classification. For 

every word in a given sentence, BLSTM has com-

plete, sequential information about all words be-

fore and after it. Long distance relationship may 

be solved in some extent in this networks. At the 

same time, we also use features derived from the 

lexical resources such as WordNet or NLP tools 

such as dependency parser and named entity rec-

ognizers (NER). The experimental results show 

that only using word embedding as input features 

is enough to achieve state-of-the-art results. Im-

porting more features could further improve the 

performance of the relation classification.  
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2 Related Work 

SemEval-2010 task 8 focused on semantic rela-

tion classification, it provides a standard testbed 

to evaluate and compare the performance of dif-

ferent approaches.  

SVM (Rink and Harabagiu, 2010): Using SVM 

classifier and a number of features derived from 

NLP tools and many external resources, it 

achieves the highest performance among the par-

ticipating systems (10 teams, 28 runs). 

Neural network has got great achievement in 

many applications, it has also been utilized in re-

lation classification as shown in the followings: 

MV-RNN (Socher et al., 2012): They propose 

a recursive neural network model to learn compo-

sitional vector representations for phrases and 

sentences of arbitrary syntactic type and length.  

CNN (Zeng et al. (2014): Sentence level fea-

tures are learned using a convolutional model, and 

concatenated with lexical features to form the fi-

nal extracted feature vector. 

FCM (Yu et al., 2014): They decompose the 

sentence into substructures, and extract features 

for each substructure. Finally they combine these 

features with the embeddings of words in this sub-

structure to form a substructure embedding.  

CR-CNN (Santos et al., 2015): They propose 

network to learn a distributed vector representa-

tion for each relation class. A ranking loss func-

tion is proposed to reduce the impact of artificial 

classes. 

DepNN (Liu et al., 2015): Using a recursive 

neural network to model the subtrees, and a con-

volutional neural network to capture the most im-

portant features on the shortest path. 

From the above works, we can see that many 

different neural network models have been ap-

plied to solve relation classification recently. The 

main target is to learn the effective features in lex-

ical and sentence level to represent the latent rela-

tion between the given nominals.  

Our work has the same target, and we try to ap-

ply BLSTM to mine the sentence level features 

with its advantage of capturing long distance rela-

tionship in a sentence. We also study the influence 

of adding features obtained from NLP tools and 

resources on the final classification performance. 

3 Long Short Term Memory 

The Long Short Term Memory architecture was 

proposed and extended (Hochreiter and Schmid-

huber, 1997; Gers et al., 2002) with the  motiva-

tion on an analysis of Recurrent Neural Nets 

(Hochreiter et al., 2001), which found that long 

time lags were inaccessible to existing architec-

tures, because backpropagated error either blows 

up or decays exponentially.  

A LSTM layer consists of a set of recurrently 

connected blocks, known as memory blocks. Each 

one contains one or more recurrently connected 

memory cells and three multiplicative units - the 

input, output and forget gates - that provide con-

tinuous analogues of write, read and reset opera-

tions for the cells. LSTM has achieved the best 

known results in handwriting recognition (Graves 

et al., 2009) and speech recognition (Graves et al., 

2013). 

 

 
Fig. 1. LSTM memory block with one cell 

 

Figure 1 shows one cell of LSTM memory 

block. More precisely, the input xt to the cells is 

multiplied by the activation of the input gate, the 

output to the net is multiplied by that of the output 

gate, and the previous cell values are multiplied 

by the forget gate. The net can only interact with 

the cells via the gates. 

The basic idea of bidirectional LSTM is to pre-

sent each training sequence forwards and back-

wards to two separate recurrent nets, both of 

which are connected to the same output layer. 

This means that for every point in a given se-

quence, the network has complete, sequential in-

formation about all points before and after it. The 

structure of BLSTM is shown in Figure 2. 

 

 
Fig. 2. Bidirectional LSTM 
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4 Methodology 

We propose bidirectional long short-term memory 

networks (BLSTM) to solve the relation classifi-

cation. It includes the following parts:  

(1) Initial feature extraction: extract from the 

input sentence. 

(2) Features embedding: transform all initial 

features into real-valued vector representa-

tion. 

(3) BLSTM-based sentence level representa-

tion: get high level feature representation 

from step (2). 

(4) Constructing feature vector: get lexical 

level and sentence level features from step 

(2) and step (3), and concatenate them to 

form the final feature vector. 

(5) Classifying: feed final feature vector into a 

multilayer perceptron (MLP) and softmax 

layer to get the probability distribution of 

relation labels. 

4.1 Initial Feature Extraction 

Besides word and position features, we utilize 

NLP tools and resources to get POS, NER, de-

pendency parse and hypernyms features. We aim 

to grasp more features which may indicate the re-

lationship of the pair of two nominals. All these 

features could be classified into two types: lexical 

features and relative position relationship features. 

We extract word, POS, NER and hypernyms as 

lexical features. The WordNet hypernyms are 

adopted as MVRNN (Socher et al., 2012). 

Three different relative position relationship 

features are extracted and shown in Figure 3. 

In this work we also utilize the relative word 

position proposed by Zeng et al. (2014). The po-

sition feature (PF) is derived from the relative dis-

tances of the current word to the target nominals 

e1 and e2. For instance, the word sat in the sen-

tence shown in Figure 3, its relative distance to the 

target nominal cat (e1) and mat (e2) are 1 and -3. 

We also chose the Stanford dependency parser 

to capture long distance relationships between 

two nominals in a sentence. Our dependency fea-

tures are based on paths in the dependency tree. 

Here, we extract two types of features: 

Relative dependency features: 

 Relative root feature: r_r (root node), r_c 

(child node of root), r_o (others) 

 Relative e1 feature: e1_e1 (e1 node), e1_c 

(child node of e1), e1_p (parent node of 

e1), e1_o (others) 

 Relative e2 feature: e2_e2 (e2 node), e2_c 

(child node of e2), e2_p (parent node of 

e2), e2_o (others) 

Dep features: the tag of the current word to its 

parent node on the dependency tree 

The above features represent the relationship 

between the current word and the target node, in-

cluding the root, e1, e2 and their parent node. Fig-

ure 4 gives an example of dependency parser re-

sults. 

 
Fig. 3. Example of relative position relationship features 

 

 
Fig. 4. Example of dependency parser results 

4.2 Feature Embedding 

Word Embedding is to map each word into a 

real-valued vector to represent syntactic and se-

mantic information about the words. 

Given an embedding matrix 
| |wwrd d VW R , 

where V is the size of word vocabulary. Each word 

w has its embedding by using the matrix-vector 

product: 
w wrd wr W v  

where 
wv is one-hot represenation, to get one 

column of the matrix Wwrd.  

The size of the word embedding 
wd  is a hy-

perparameter, which is usually set 50 or 100.  

For other kinds of initial features, we also trans-

form them into a vector representation rkj, where j 

means the jth type of feature, the dimension is dkj. 

The initial value of the vector is random generated 

with the method proposed by Glorot and Bengio 

(2010).  

Given a sentence x={w1,w2,…,wn}, all the initial 

feature embeddings are concatenated according to 

the following format to represent each word: 

𝑥𝑖 = [𝑟𝑖
𝑤 , 𝑟𝑖

𝑘1, 𝑟𝑖
𝑘2 … , 𝑟𝑖

𝑘𝑚]   

where 𝑟𝑖
𝑤 is the word embedding of word xi, 𝑟𝑖

𝑘𝑗
is 

embedding of the jth types of features.  

PACLIC 29

75



The parameter m is the size of features. Its 

value is 6 in this paper, because we choose the fol-

lowing six kinds of features: POS, NER, hyper-

nyms(WNSYN), position feature (PF), depend-

ency feature (Dep), relative-dependency feature 

(Relative-Dep).  

4.3 BLSTM-based Sentence Level Repre-

sentation 

It is well known that humans can exploit longer 

context to mine the relationship of two nominals 

in a sentence. LSTM has shown its merit on cap-

turing long distance relationship in different fields. 

With this motivation, we adopt BLSTM to get the 

sentence level representation. 

The LSTM equations are given for a single 

memory block. 

Input Gates: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) 

Forget Gates: 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) 

Cells: 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

Output gates: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) 

Cell Outputs: 

ℎ𝑡 = 𝑜𝑡 tanh 𝑐𝑡 
where σ is the activation function, and i, f, o and c 

are respectively the input gate, forget gate, output 

gate and memory cell.  

As shown in Figure 2, the network contained 

two sub-networks for the left and right sequence 

context. The outputs of these subnets for the ith 

word are integrated in the following way: 

𝐹𝑖 = [𝐹_ℎ𝑖, 𝐹_𝑐𝑖, 𝐵_ℎ𝑖, 𝐵_ℎ𝑖] 
where F and B refer to forward and backward di-

rections.  

4.4 Constructing Feature Vector 

Inspired by the work from Zeng et al. (2014), 

we extract and concatenate sentence level features 

and lexical level features to form the finally ex-

tracted feature vector. 

Lexical level features are focused on the two 

target nominals e1and e2. We concatenate the vec-

tor got from feature embeddings and BLSTM 

layer to represent the two nominals as [xe1, Fe1, xe2, 

Fe2]. 

Sentence level features are focused on the con-

text information, which are constructed from the 

output of BLSTM layer. As shown in Figure 5, the 

matrix got from BLSTM could be divided into A, 

B and C parts by e1 and e2. Max pooling operation 

is adopted to extract the vector from A and B parts, 

B and C parts respectively. The vector m1 and m2 

is concatenated to form the sentence level repre-

sentation.  

 
Fig. 5. Constructing sentence level feature vector 

 

The motivation of constructing sentence level 

in this way is to strengthen the influence of the 

context between two entities, which are usually 

contained more information for indicating the re-

lationship.  

4.5 Classifying 

A multilayer perceptron (MLP) will be used for 

combining sentence level feature and lexical fea-

ture into the final extracted feature vector. Finally, 

the final extracted features are fed into a softmax 

classifier to predict the sematic relation labels. 

5 Experiments 

5.1 Data and metrics 

Experiments are conducted on the SemEval-2010 

task 8 dataset (Hendrickx et al., 2010). It includes 

8,000 training instances and 2,717 test instances. 

There are 9 relation types, and each type has two 

directions. If the instance could not refer to any of 

9 relation types, there is a type Other. 

We adopt the official evaluation metric to eval-

uate our systems, which is based on macro-aver-

aged F1-score for the nine proper relations and 

others. 

5.2 Experiments setting 

The dimension of feature embeddings used in 

the experiments are listed in the following. 
Features Embedding Dimension 

WF 50, 100 

PF 2*5 

POS 20 

NER 20 

WNSYN 20 

DEP 20 

RELATIVE-DEP 3*10 
Table 1. Embedding dimension 

A B C 

PACLIC 29

76



We select two available trained word embed-

dings to see its influence to the classification per-

formance. One is from Turian et al. (2010), the di-

mension of word embedding is 50. The other is 

from Jeffrey Pennington et al. (2014), the dimen-

sion of word embedding is 100.  

As shown in the above, position feature (PF) 

contains two elements, and relative-dependency 

feature (Relative-Dep) contains three elements. 

Therefore, embedding dimension of PF is 2*5, 

that of RELATIVE-DEP is 3*10. 

The BLSTM layer contains 400 units for each 

direction, and MLP layer contains 1000 units. 

5.3 Results and Analysis 

Firstly, we testify the performance of proposed 

BLSTM-based method with two feature set. One 

only uses word embedding as input, the other uses 

all features shown in section 4.1. We also list the 

results of CNN and CR-CNN methods as refer-

ence. 

 
Model Feature Set F1 

CNN 

(Zeng et 

al., 2014) 

Only word embeddings 69.7 

word embeddings, word posi-

tion embeddings,word pair, 

words around word pair, Word-

Net 

82.7 

CR-CNN 

(Santos et 

al., 2015) 

Only word embeddings 

word embeddings, word posi-

tion embeddings 

82.8 

 

84.1 

BLSTM 
Only word embedding (100) 

All features 

82.7 

84.3 
Table 2. Comparison with previously published results 

 

In table 2, only using word embedding as input 

features, BLSTM-based method achieves F1 of 

82.7, which is similar to the results of CNN with 

multiple features, and CR-CNN with only word 

embedding features. However, CR_CNN use 

word embeddings of size 400, our method use 

word embeddings of size 100. It proves that 

BLSTM-based method is effective to mine the re-

lationship between two nominals. With more fea-

tures, the performance achieves F1 of 84.3, which 

testifies general features gotten from NLP tools 

could improve the classification performance. 

Secondly, we testify the influence of different 

features for the classification by removing one 

type of features from feature set in each time. 

From Table 3, we see that the performance has 

very slight change by removing position and NER 

features. It shows that BLSTM has better repre-

sentation on sentence level relationship without 

position features. The information of position fea-

tures is already contained in BLSTM networks. 

The whole features are considered from lexical 

and sentence level. The performances of remov-

ing PF or NER feature don’t change obviously, 

maybe the information they contained is repre-

sented by other features.  

 
Removed Feature F1  

PF  84.2 

POS 83.9 

NER  84.2 

WNSYN 83.2 

DEP  83.5 

Table 3. Results of removing one kind of feature 
 

Finally, we compare the results in different 

word embedding size. In Table 4 we give the re-

sult with using word embedding of size 50. It 

achieves a F1 of 83.6, about 0.7% less than that 

with using word embedding of size 100, which 

shows larger size of dimension of word embed-

ding may contain more information, and it could 

improve the performance. 

We also compare the LSTM based method with 

only one direction such as forward or backward. 

The results shows BLSTM has a slight advantage 

over unidirectional LSTM.  

Compared with proposed constructing sentence 

level feature vector in figure 5, we use Max pool-

ing operation directly from A+B+C parts. The re-

sult shows F1 of 83.1, which is lower than our 

method with F1 of 83.6. It proves that our pro-

posed method is effective. 

 
Model (word embedding 50) F1  

BLSTM  83.6 

Forward-LSTM 82.1 

Backward-LSTM 82.4 

Single-max model 83.1 

Table 4. Results of removing one kind of feature 
 

6 Conclusion 

In this paper, we propose bidirectional long short-

term memory networks (BLSTM) to solve the re-

lation classification. BLSTM is proposed to mine 

the sentence level representation. The experiment 

results show that only using word embedding as 

input features is enough to achieve state-of-the-art 

results. Importing more features could further im-

prove the performance of the relation classifica-

tion. 
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