
Bidirectional Long Short-Term Memory Networks for

Relation Classification

Shu Zhang1, Dequan Zheng2, Xinchen Hu2 and Ming Yang1
1 Fujitsu Research and Development Center, Beijing, China

{zhangshu, yangming}@cn.fujitsu.com

2 School of Computer Science and Technology, Harbin Institute of Technology,

Harbin, China
{dqzheng, xchu}@mtlab.hit.edu.cn

Abstract

Relation classification is an important se-

mantic processing, which has achieved

great attention in recent years. The main

challenge is the fact that important infor-

mation can appear at any position in the

sentence. Therefore, we propose bidirec-

tional long short-term memory networks

(BLSTM) to model the sentence with

complete, sequential information about all

words. At the same time, we also use fea-

tures derived from the lexical resources

such as WordNet or NLP systems such as

dependency parser and named entity rec-

ognizers (NER). The experimental results

on SemEval-2010 show that BLSTM-

based method only with word embeddings

as input features is sufficient to achieve

state-of-the-art performance, and import-

ing more features could further improve

the performance.

1 Introduction

The automatic classification of semantic relations

is an important task, which could offer useful in-

formation for many applications, such as question

answering, information extraction, the construc-

tion and completion of semantic or relational

knowledge base.

In this work, we focus on the classification of

semantic relations between pairs of nominals

(Hendrickx et al., 2010). Given a sentence S with

annotated pairs of nominal e1 and e2, the task is to

classify which of the following nine semantic re-

lations holds between the nominals: Cause-Effect,

Instrument-Agency, Product-Producer, Content-

Container, Entity-Origin, Entity-Destination,

Component-Whole, Member-Collection, Mes-

sage-Topic, or Other if it does not belongs to any

of the nine annotated relations.

For example, News and commotion are con-

nected in a Cause-Effect relation in the sentence

“The news brought about a commotion in the of-

fice.” In this instance, the relation between news

and commotion could be inferred by the meaning

of the two nominals and the context of “brought

about” around them. Therefore, how to grasp and

represent the lexical and context information are

the key research points for semantic relation clas-

sification.

Supervised methods with carefully handcrafted

features from lexical and semantic resources have

achieved high performance (Hendrickx et al.,

2010; Rink and Harabagiu, 2010). However, the

selection of features and the effective integration

of knowledge sources into relation classification

seem to be difficult.

Recently, deep neural networks has been ap-

plied with the aim of reducing the number of

handcrafted features, and getting effective fea-

tures from lexical and sentence level (Socher et al.,

2012; Zeng et al., 2014; Yu et al., 2014).

Different from previous work, we propose bi-

directional long short-term memory networks

(BLSTM) to solve the relation classification. For

every word in a given sentence, BLSTM has com-

plete, sequential information about all words be-

fore and after it. Long distance relationship may

be solved in some extent in this networks. At the

same time, we also use features derived from the

lexical resources such as WordNet or NLP tools

such as dependency parser and named entity rec-

ognizers (NER). The experimental results show

that only using word embedding as input features

is enough to achieve state-of-the-art results. Im-

porting more features could further improve the

performance of the relation classification.

PACLIC 29

73
29th Pacific Asia Conference on Language, Information and Computation pages 73 - 78

Shanghai, China, October 30 - November 1, 2015
Copyright 2015 by Shu Zhang, Dequan Zheng, Xinchen Hu and Ming Yang

2 Related Work

SemEval-2010 task 8 focused on semantic rela-

tion classification, it provides a standard testbed

to evaluate and compare the performance of dif-

ferent approaches.

SVM (Rink and Harabagiu, 2010): Using SVM

classifier and a number of features derived from

NLP tools and many external resources, it

achieves the highest performance among the par-

ticipating systems (10 teams, 28 runs).

Neural network has got great achievement in

many applications, it has also been utilized in re-

lation classification as shown in the followings:

MV-RNN (Socher et al., 2012): They propose

a recursive neural network model to learn compo-

sitional vector representations for phrases and

sentences of arbitrary syntactic type and length.

CNN (Zeng et al. (2014): Sentence level fea-

tures are learned using a convolutional model, and

concatenated with lexical features to form the fi-

nal extracted feature vector.

FCM (Yu et al., 2014): They decompose the

sentence into substructures, and extract features

for each substructure. Finally they combine these

features with the embeddings of words in this sub-

structure to form a substructure embedding.

CR-CNN (Santos et al., 2015): They propose

network to learn a distributed vector representa-

tion for each relation class. A ranking loss func-

tion is proposed to reduce the impact of artificial

classes.

DepNN (Liu et al., 2015): Using a recursive

neural network to model the subtrees, and a con-

volutional neural network to capture the most im-

portant features on the shortest path.

From the above works, we can see that many

different neural network models have been ap-

plied to solve relation classification recently. The

main target is to learn the effective features in lex-

ical and sentence level to represent the latent rela-

tion between the given nominals.

Our work has the same target, and we try to ap-

ply BLSTM to mine the sentence level features

with its advantage of capturing long distance rela-

tionship in a sentence. We also study the influence

of adding features obtained from NLP tools and

resources on the final classification performance.

3 Long Short Term Memory

The Long Short Term Memory architecture was

proposed and extended (Hochreiter and Schmid-

huber, 1997; Gers et al., 2002) with the motiva-

tion on an analysis of Recurrent Neural Nets

(Hochreiter et al., 2001), which found that long

time lags were inaccessible to existing architec-

tures, because backpropagated error either blows

up or decays exponentially.

A LSTM layer consists of a set of recurrently

connected blocks, known as memory blocks. Each

one contains one or more recurrently connected

memory cells and three multiplicative units - the

input, output and forget gates - that provide con-

tinuous analogues of write, read and reset opera-

tions for the cells. LSTM has achieved the best

known results in handwriting recognition (Graves

et al., 2009) and speech recognition (Graves et al.,

2013).

Fig. 1. LSTM memory block with one cell

Figure 1 shows one cell of LSTM memory

block. More precisely, the input xt to the cells is

multiplied by the activation of the input gate, the

output to the net is multiplied by that of the output

gate, and the previous cell values are multiplied

by the forget gate. The net can only interact with

the cells via the gates.

The basic idea of bidirectional LSTM is to pre-

sent each training sequence forwards and back-

wards to two separate recurrent nets, both of

which are connected to the same output layer.

This means that for every point in a given se-

quence, the network has complete, sequential in-

formation about all points before and after it. The

structure of BLSTM is shown in Figure 2.

Fig. 2. Bidirectional LSTM

PACLIC 29

74

4 Methodology

We propose bidirectional long short-term memory

networks (BLSTM) to solve the relation classifi-

cation. It includes the following parts:

(1) Initial feature extraction: extract from the

input sentence.

(2) Features embedding: transform all initial

features into real-valued vector representa-

tion.

(3) BLSTM-based sentence level representa-

tion: get high level feature representation

from step (2).

(4) Constructing feature vector: get lexical

level and sentence level features from step

(2) and step (3), and concatenate them to

form the final feature vector.

(5) Classifying: feed final feature vector into a

multilayer perceptron (MLP) and softmax

layer to get the probability distribution of

relation labels.

4.1 Initial Feature Extraction

Besides word and position features, we utilize

NLP tools and resources to get POS, NER, de-

pendency parse and hypernyms features. We aim

to grasp more features which may indicate the re-

lationship of the pair of two nominals. All these

features could be classified into two types: lexical

features and relative position relationship features.

We extract word, POS, NER and hypernyms as

lexical features. The WordNet hypernyms are

adopted as MVRNN (Socher et al., 2012).

Three different relative position relationship

features are extracted and shown in Figure 3.

In this work we also utilize the relative word

position proposed by Zeng et al. (2014). The po-

sition feature (PF) is derived from the relative dis-

tances of the current word to the target nominals

e1 and e2. For instance, the word sat in the sen-

tence shown in Figure 3, its relative distance to the

target nominal cat (e1) and mat (e2) are 1 and -3.

We also chose the Stanford dependency parser

to capture long distance relationships between

two nominals in a sentence. Our dependency fea-

tures are based on paths in the dependency tree.

Here, we extract two types of features:

Relative dependency features:

 Relative root feature: r_r (root node), r_c

(child node of root), r_o (others)

 Relative e1 feature: e1_e1 (e1 node), e1_c

(child node of e1), e1_p (parent node of

e1), e1_o (others)

 Relative e2 feature: e2_e2 (e2 node), e2_c

(child node of e2), e2_p (parent node of

e2), e2_o (others)

Dep features: the tag of the current word to its

parent node on the dependency tree

The above features represent the relationship

between the current word and the target node, in-

cluding the root, e1, e2 and their parent node. Fig-

ure 4 gives an example of dependency parser re-

sults.

Fig. 3. Example of relative position relationship features

Fig. 4. Example of dependency parser results

4.2 Feature Embedding

Word Embedding is to map each word into a

real-valued vector to represent syntactic and se-

mantic information about the words.

Given an embedding matrix
| |wwrd d VW R ,

where V is the size of word vocabulary. Each word

w has its embedding by using the matrix-vector

product:
w wrd wr W v

where
wv is one-hot represenation, to get one

column of the matrix Wwrd.

The size of the word embedding
wd is a hy-

perparameter, which is usually set 50 or 100.

For other kinds of initial features, we also trans-

form them into a vector representation rkj, where j

means the jth type of feature, the dimension is dkj.

The initial value of the vector is random generated

with the method proposed by Glorot and Bengio

(2010).

Given a sentence x={w1,w2,…,wn}, all the initial

feature embeddings are concatenated according to

the following format to represent each word:

𝑥𝑖 = [𝑟𝑖
𝑤 , 𝑟𝑖

𝑘1, 𝑟𝑖
𝑘2 … , 𝑟𝑖

𝑘𝑚]

where 𝑟𝑖
𝑤 is the word embedding of word xi, 𝑟𝑖

𝑘𝑗
is

embedding of the jth types of features.

PACLIC 29

75

The parameter m is the size of features. Its

value is 6 in this paper, because we choose the fol-

lowing six kinds of features: POS, NER, hyper-

nyms(WNSYN), position feature (PF), depend-

ency feature (Dep), relative-dependency feature

(Relative-Dep).

4.3 BLSTM-based Sentence Level Repre-

sentation

It is well known that humans can exploit longer

context to mine the relationship of two nominals

in a sentence. LSTM has shown its merit on cap-

turing long distance relationship in different fields.

With this motivation, we adopt BLSTM to get the

sentence level representation.

The LSTM equations are given for a single

memory block.

Input Gates:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖)

Forget Gates:

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓)

Cells:

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)

Output gates:

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜)

Cell Outputs:

ℎ𝑡 = 𝑜𝑡 tanh 𝑐𝑡
where σ is the activation function, and i, f, o and c

are respectively the input gate, forget gate, output

gate and memory cell.

As shown in Figure 2, the network contained

two sub-networks for the left and right sequence

context. The outputs of these subnets for the ith

word are integrated in the following way:

𝐹𝑖 = [𝐹_ℎ𝑖, 𝐹_𝑐𝑖, 𝐵_ℎ𝑖, 𝐵_ℎ𝑖]
where F and B refer to forward and backward di-

rections.

4.4 Constructing Feature Vector

Inspired by the work from Zeng et al. (2014),

we extract and concatenate sentence level features

and lexical level features to form the finally ex-

tracted feature vector.

Lexical level features are focused on the two

target nominals e1and e2. We concatenate the vec-

tor got from feature embeddings and BLSTM

layer to represent the two nominals as [xe1, Fe1, xe2,

Fe2].

Sentence level features are focused on the con-

text information, which are constructed from the

output of BLSTM layer. As shown in Figure 5, the

matrix got from BLSTM could be divided into A,

B and C parts by e1 and e2. Max pooling operation

is adopted to extract the vector from A and B parts,

B and C parts respectively. The vector m1 and m2

is concatenated to form the sentence level repre-

sentation.

Fig. 5. Constructing sentence level feature vector

The motivation of constructing sentence level

in this way is to strengthen the influence of the

context between two entities, which are usually

contained more information for indicating the re-

lationship.

4.5 Classifying

A multilayer perceptron (MLP) will be used for

combining sentence level feature and lexical fea-

ture into the final extracted feature vector. Finally,

the final extracted features are fed into a softmax

classifier to predict the sematic relation labels.

5 Experiments

5.1 Data and metrics

Experiments are conducted on the SemEval-2010

task 8 dataset (Hendrickx et al., 2010). It includes

8,000 training instances and 2,717 test instances.

There are 9 relation types, and each type has two

directions. If the instance could not refer to any of

9 relation types, there is a type Other.

We adopt the official evaluation metric to eval-

uate our systems, which is based on macro-aver-

aged F1-score for the nine proper relations and

others.

5.2 Experiments setting

The dimension of feature embeddings used in

the experiments are listed in the following.
Features Embedding Dimension

WF 50, 100

PF 2*5

POS 20

NER 20

WNSYN 20

DEP 20

RELATIVE-DEP 3*10
Table 1. Embedding dimension

A B C

PACLIC 29

76

We select two available trained word embed-

dings to see its influence to the classification per-

formance. One is from Turian et al. (2010), the di-

mension of word embedding is 50. The other is

from Jeffrey Pennington et al. (2014), the dimen-

sion of word embedding is 100.

As shown in the above, position feature (PF)

contains two elements, and relative-dependency

feature (Relative-Dep) contains three elements.

Therefore, embedding dimension of PF is 2*5,

that of RELATIVE-DEP is 3*10.

The BLSTM layer contains 400 units for each

direction, and MLP layer contains 1000 units.

5.3 Results and Analysis

Firstly, we testify the performance of proposed

BLSTM-based method with two feature set. One

only uses word embedding as input, the other uses

all features shown in section 4.1. We also list the

results of CNN and CR-CNN methods as refer-

ence.

Model Feature Set F1

CNN

(Zeng et

al., 2014)

Only word embeddings 69.7

word embeddings, word posi-

tion embeddings,word pair,

words around word pair, Word-

Net

82.7

CR-CNN

(Santos et

al., 2015)

Only word embeddings

word embeddings, word posi-

tion embeddings

82.8

84.1

BLSTM
Only word embedding (100)

All features

82.7

84.3
Table 2. Comparison with previously published results

In table 2, only using word embedding as input

features, BLSTM-based method achieves F1 of

82.7, which is similar to the results of CNN with

multiple features, and CR-CNN with only word

embedding features. However, CR_CNN use

word embeddings of size 400, our method use

word embeddings of size 100. It proves that

BLSTM-based method is effective to mine the re-

lationship between two nominals. With more fea-

tures, the performance achieves F1 of 84.3, which

testifies general features gotten from NLP tools

could improve the classification performance.

Secondly, we testify the influence of different

features for the classification by removing one

type of features from feature set in each time.

From Table 3, we see that the performance has

very slight change by removing position and NER

features. It shows that BLSTM has better repre-

sentation on sentence level relationship without

position features. The information of position fea-

tures is already contained in BLSTM networks.

The whole features are considered from lexical

and sentence level. The performances of remov-

ing PF or NER feature don’t change obviously,

maybe the information they contained is repre-

sented by other features.

Removed Feature F1

PF 84.2

POS 83.9

NER 84.2

WNSYN 83.2

DEP 83.5

Table 3. Results of removing one kind of feature

Finally, we compare the results in different

word embedding size. In Table 4 we give the re-

sult with using word embedding of size 50. It

achieves a F1 of 83.6, about 0.7% less than that

with using word embedding of size 100, which

shows larger size of dimension of word embed-

ding may contain more information, and it could

improve the performance.

We also compare the LSTM based method with

only one direction such as forward or backward.

The results shows BLSTM has a slight advantage

over unidirectional LSTM.

Compared with proposed constructing sentence

level feature vector in figure 5, we use Max pool-

ing operation directly from A+B+C parts. The re-

sult shows F1 of 83.1, which is lower than our

method with F1 of 83.6. It proves that our pro-

posed method is effective.

Model (word embedding 50) F1

BLSTM 83.6

Forward-LSTM 82.1

Backward-LSTM 82.4

Single-max model 83.1

Table 4. Results of removing one kind of feature

6 Conclusion

In this paper, we propose bidirectional long short-

term memory networks (BLSTM) to solve the re-

lation classification. BLSTM is proposed to mine

the sentence level representation. The experiment

results show that only using word embedding as

input features is enough to achieve state-of-the-art

results. Importing more features could further im-

prove the performance of the relation classifica-

tion.

PACLIC 29

77

Reference

Bryan Rink and Sanda Harabagiu. 2010. UTD: Classi-

fying Semantic Relations by Combining Lexical and

Semantic Resources. In Proceedings of 5th Interna-

tional Workshop on Semantic Evaluation, pages

256–259.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,

and Jun Zhao. 2014. Relation Classification via

Convolutional Deep Neural Network. In Proceed-

ings of the 25th International Conference on Com-

putational Linguistics (COLING), pages 2335–2344.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,

Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian

Padó, Marco Pennacchiotti, Lorenza Romano, and

Stan Szpakowicz. 2010. Semeval-2010 Task 8:

Multi-way Classification of Semantic Relations Be-

tween Pairs of Nominals. In Proceedings of the 5th

International Workshop on Semantic Evaluation,

pages 33–38.

Richard Socher, Brody Huval, Christopher D. Manning,

and Andrew Y. Ng. 2012. Semantic Compositional-

ity through Recursive Matrix-Vector Spaces. In Pro-

ceedings of the Joint Conference on Empirical

Methods in Natural Language Processing and Com-

putational Natural Language Learning, pages 1201–

1211.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,

and Houfeng Wang. 2015. A Dependency-based

Neural Network for Relation Classification. In Pro-

ceedings of the 53rd Annual Meeting of the Associ-

ation for Computational Linguistics and the 7th In-

ternational Joint Conference on Natural Language

Processing (Short Papers), pages 285-290.

Cícero Nogueira dos Santos, Bing Xiang, and Bowen

Zhou. 2015. Classifying Relations by Ranking with

Convolutional Neural Networks. In Proceedings of

the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing,

pages 626–634.

Alex Graves, Marcus Liwicki, Santiago Fernández,

Roman Bertolami, Horst Bunke, Jürgen Schmidhu-

ber. 2009. A Novel Connectionist System for Im-

proved Unconstrained Handwriting Recognition.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 31(5): 855-868.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey

Hinton. 2013. Speech Recognition with Deep Re-

current Neural Networks. IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP), pages 6645–6649.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.

Word Representations: A Simple and General

Method for Semi-Supervised Learning. In Proceed-

ings of the 48th annual meeting of the association

for computational linguistics, pages 384-394.

Jeffrey Pennington, Richard Socher, and Christopher

Manning. 2014. GloVe: Global Vectors for Word

Representation. In Proceedings of the Empirical

Methods in Natural Language Processing, pages

1532-1543.

Xavier Glorot and Yoshua Bengio. 2010. Understand-

ing the Difficulty of Training Deep Feedforward

Neural Networks. International conference on artifi-

cial intelligence and statistics, pages 249-256.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2014.

Factor-based Compositional Embedding Models. In

NIPS Workshop on Learning Semantics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

Short-Term Memory. Neural Computation,

9(8):1735–1780.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and

Jürgen Schmidhuber. 2001. Gradient Flow in Recur-

rent Nets: the Difficulty of Learning Long-Term

Dependencies. In Kremer, S. C.and Kolen, J. F., ed-

itors, A Field Guide to Dynamical Recurrent Neural

Networks. IEEE Press.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen

Schmidhuber. 2002. Learning Precise Timing with

LSTM Recurrent Networks. Journal of Machine

Learning Research, 3:115–143.

PACLIC 29

78

