
CHULA TTS: A Modularized Text-To-Speech Framework

Natthawut Kertkeidkachorn Supadaech Chanjaradwichai

1Department of Computer Engineering
Faculty of Engineering, Chulalongkorn

University Bangkok, Thailand
2Department of Informatics

The Graduate University for Advanced
Studies, Tokyo, Japan

Natthawut@nii.ac.jp

Proadpran Punyabukkana
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn
University Bangkok, Thailand

Proadpran.p@chula.ac.th

Department of Computer Engineering
Faculty of Engineering, Chulalongkorn

University Bangkok, Thailand
Supadaech.C@student.chula.ac.th

Atiwong Suchato
Department of Computer Engineering

Faculty of Engineering, Chulalongkorn
University Bangkok, Thailand
Atiwong.s@chula.ac.th

Abstract

Spoken and written languages evolve
constantly through their everyday usages.
Combining with practical expectation for
automatically generating synthetic speech
suitable for various domains of context,
such a reason makes Text-to-Speech (TTS)
systems of living languages require
characteristics that allow extensible
handlers for new language phenomena or
customized to the nature of the domains in
which TTS systems are deployed.
ChulaTTS was designed and implemented
with a modularized concept. Its framework
lets components of typical TTS systems
work together and their combinations are
customized using simple human-readable
configurations. Under .NET development
framework, new text processing and signal
synthesis components can be built while
existing components can simply be
wrapped in .NET dynamic-link libraries
exposing expected methods governed by a
predefined programming interface. A case
of ChulaTTS implementation and sample
applications were also discussed in this
paper.

1 Introduction

A Text-to-Speech (TTS) system is a system which
artificially produces human speech by converting a
target text into its corresponding acoustic signal.
TTS systems are crucial components to many
kinds of computer applications, particularly
applications in assistive technology, E.g.
applications for assisting the visually-impaired to
access information on the Internet (Chirathivat et
al. 2007), applications for automatically producing
digital talking books (DTB) (Punyabukkana et al.
2012), and etc.,

Over the past decades, several TTS systems had
been developed to fulfill applications on various
computing platforms including mobile devices
(Chinathimatmongkhon et al. 2008). Given
specific domains, some applications of TTS
systems require the systems to produce word
pronunciations or generating speech signals that
sound more natural to the listeners than ones
generated with systems designed for texts of more
general domains. For example, an application to
read text from a social media web site might need a
TTS system that performs a normalization of
wordplays rather than attempting to pronounce
them straightforwardly according to their exact
spellings. While such a TTS system produced more

PACLIC 28

414

Copyright 2014 by Natthawut Kertkeidkachorn, Supadaech Chanjaradwichai,
Proadpran Punyabukkana, and Atiwong Suchato

28th Pacific Asia Conference on Language, Information and Computation pages 414–421

naturally-sounded speech utterances (Hirankan et
al. 2014), the normalization process might degrade
a TTS’s performance on a domain involving more
formal texts where wordplays are scarce. For a
TTS system aiming for expressive speech
utterances, with multiple handlers, each of which is
responsible for handling a different expression, the
system could produce better results as well as
easier handler development. A TTS system that
allows interoperation of components, such as
Grapheme-To-Phoneme (G2P) or signal generation
components, deploying different speech and text
processing algorithms without re-compiling of the
system is obviously desirable. Still, many TTS
systems were not designed with such abilities.

In this paper, we therefore reported our recent
attempt on designing and implementing a
modularized TTS framework, namely ChulaTTS.
The goal of the design of ChulaTTS was to allow a
TTS system to incorporate multiple speech and
text processing components and allow them to
work together with minimal development efforts.
Components with similar classes of functionality
must interoperate despite the differences in their
underlying algorithms or the differences in
phonetic units primitive to each of the components.
With that goal in mind, ChulaTTS is suitable for
conducting speech synthesis experiments to
observe the performance of newly-developed
algorithms in a complete TTS system
conveniently. Furthermore, ChulaTTS can be
easily configured into a TTS system expected to
handle special phenomena appearing in the domain
that it is deployed.

The rest of the paper was organized as follows.
Related works were reviewed and discussed in the
Section 2. In Section 3, we reported the design of
our modularized TTS framework, and described
the details of an implementation of a TTS system
based on the modularized framework in Section 4.
Section 5 discussed real applications of ChulaTTS
systems. Finally, we concluded the paper in the last
section.

2 Literature Review

In order to allow a TTS system to incorporate
extensible handlers, several TTS frameworks
(Orhan et al. 2008; Malcangi and Grew 2009; Wua
et al. 2009) had been introduced. Orhan (2008)
presented the Turkish syllable-based concatenation

TTS framework. In their work, linguistic rules on
Turkish were designed for handling exceptional
cases such as special characters or symbols in
Turkish. Although their framework installed the
handler to provide a choice for applications, its
choice was very limited to normal text and some
special characters. Consequently, when a language
had been evolved, the framework could not be
extensible to support that evolution. Malcangi
(2009) therefore introduced the rule-based TTS
framework for mixed-languages, which allowed
linguists to define multiple rule-based handlers to
cope with various kinds of text. Even though their
framework could be extensible to support the
evolution of languages by simply adding a new
rule-based handler, the new handler might cause
ambiguity in the selecting handler process, in
which an input text might follow conditions of
many handlers, especially when handlers were
become more and more. For this reason, the
framework was not flexible to directly install new
handlers, since we might have to modify the
existing handlers in order to avoid ambiguity
among handlers. Later, Wua (2009) proposed a
unified framework for a multilingual TTS system.
Their framework was designed to support
extensible handlers of a TTS system by using a
speech synthesis markup language (SSML)
specification in which the mark-up tag provided a
name of a particular method which should process
the value in the mark-up. Unlike Malcangi’s
framework, the SSML markup clearly identified a
handler which had to operate in order to avoid
unclear situation in the handler selection. By
following the SSML specification the framework
could properly allow extensible handlers without
causing any trouble to existing handlers. Still,
some parts of their framework did not allow
extensible handlers such as their waveform
production.

Considering many related works above, we
found that the aim of TTS frameworks was to
enable ability to install extensible handlers. Still,
there were many limitations to incorporate and
extend new handlers in such frameworks. Our
recent attempt therefore was to design and
implement the modularized TTS framework, which
supported extensible handlers in any stages of TTS
systems without troubling other existing handlers.

PACLIC 28

415

3 The Modularized Framework

Typically, TTS systems have a common
architecture similar to the illustration shown in
Figure 1. This architecture consisted of two parts:
the text analysis part and the speech synthesis part.
An input text is fed into a text analysis block to
generate its sequence of phonetic representation
comprising phoneme and prosody annotation and
then the sequence is passed to the speech synthesis
block in order to generate real signal associated
with the sequence of phonetic representation.
Algorithms implemented in each processing step
usually vary from system to system. According to
the architecture in Figure 1, there are components
whose underlying algorithms could be varied or
allowing options in applying different algorithms
to different portions of the text input. These
components involve how the input texts are
processed in order to obtain both underlying
phonetic sequences and their suprasegmental
information such as prosodic information
governing how each phonetic unit in the sequence
should be uttered and how speech signal should be
generated. Typically, algorithms used for each
component in a TTS system are predetermined and
developed as an entire system.

Figure 1. An architecture of a typical TTS system

Contrary to the architecture of a typical TTS
system, we proposed a modularized TTS
framework called ChulaTTS in which
implementation of different text and speech signal
processing are considered modules that can
interoperate with one another. The aim of the
framework is to provide flexibility in
experimenting with different algorithms that could
affect only a part of the whole system as well as to
enable interoperability of multiple modules
responsible for similar tasks of the TTS process.
The latter makes a TTS system extensible when a
new module is introduced and incorporated among
existing ones in the system. Programming-wise,
neither shuffling modules of a system nor adding
additional modules to the system requires re-
compiling of the source code of any modules
already deployed in the system. To build a
functional TTS system with the ChulaTTS
framework, ones implement the TTS system by
exposing components involving in the TTS process
in the forms of modules consistent with the
framework’s specification and configuring the
framework to utilize them.

Before elaborating on the classes of module in
ChulaTTS, let’s consider the typical architecture in
Figure 1. Based on the architecture, if multiple
processors were to simply process the input texts in
parallel, there would be situations when
ambiguities arisen from the different processors
produced inconsistent results in some parts of the
input. Some decision making components could be
introduced to handle such inconsistent parts. In the
ChulaTTS framework, we adopted multiple (or
single) segment taggers that independently tagged
each segment of the input with different algorithms
as well as different sets of tags. A tag selector was
deployed to determine how all the tagged segments
be processed later on in the TTS process. With the
mentioned segment tagging part, the overall
architecture of the ChulaTTS framework is shown
in Figure 2. The architecture is divided into three
stages: 1) Segment tagging, 2) Text analyzer, and
3) Speech synthesizer. The details of the tasks to
be performed in each of the three stages, classes of
modules and their contractual (programming)
interfaces, software implementation requirements,
and how the resulting TTS system is configured
are elaborated in Section 3.1 to Section 3.5.

PACLIC 28

416

3.1 Segment Tagging Stage
Segment Tagging in ChulaTTS is dedicated to
segmenting an input text into smaller pieces of
text, each of which with a proposed tag. Segment
tags identify which modules process the tagged
segments in later stages of the TTS process. Three
steps are performed in this segment tagging stage:
1) Segmentation step, 2) Segment tagging step, and
3) Tag selector step.

Segmentation: The segmentation step inserts
word or phrase boundaries into the input text
string. Portions of texts located between adjacent
boundaries are called “segments”, each of which
will then be marked with a tag in the next step. In
an implementation of the ChulaTTS framework,
one segmentation module can be selected via the
corresponding configuration. All modules
performing as a segmentation module must provide
at least one segmentation function that receives the
input text in the form of a string of characters and
returns its corresponding sequence of segments.

Segment tagging: The segment tagging assigns
an appropriate tag to each segment. Modules
performing this step can have their own set of tags
and conduct the tagging independently from other
modules. An implementation without alternative
algorithms for steps of the TTS process needs only
a single tagger. Figure 3 depicts a conceptual
example of the need for the later steps of the TTS
process to heterogeneously handle different parts
of input text motivates the inclusion of segment
tagging. In the figure, segment tags can be used to
process and synthesize speech with different
personalities or expressions.

Figure 3. Conceptual examples of tags for the later
stages1

All modules performing as a segment tagging
module must provide at least one tagging function
that receives a sequence of segments and provides
a single tag for each of the input segment.

Tag selector: In cases of conflicting segment
tags due to multiple segment tagging modules, this
step decides on which of the conflicting tags
should be kept and used as parameters in selecting
modules in the later steps of the TTS process. A
single tag selector module capable of handling all
tags produced by all active segment tagging
modules is required in a ChulaTTS
implementation. The tag selector modules provide
at least one function returning a sequence of tagged
segments.

3.2 Text Analyzer Stage
The text analyzer stage is for producing a sequence
of phonetic units with prosodic parameters. It
consists of two steps: 1) G2P conversion, and 2)
Prosodic annotation. The first step produces

1 The example text from Harry Potter and the Sorcerer's Stone

Figure 2. The Modularized Text-To-Speech Framework

PACLIC 28

417

phonetic units from the input sequence of
segments. One or more G2P conversion module
can be deployed in a single ChulaTTS
implementation providing that they cover all
possible tags in the implementation. Each segment
tag must be associated with a G2P module while
each G2P module can handle multiple segment
tags. Segments are fed to G2P modules according
to the implementation configuration. For a
segment, the G2P module responsible for the
segment produces a sequence of corresponding
phonetic units, each of which can be declared by
the module itself. Different phonetic units must use
unique symbols. Phonetic units with similar
symbols are considered the same type of units
regardless of which modules handle the G2P
conversion.

Prosodic annotator modules are deployed in the
prosodic annotation step. Different modules are
activated based on the segment tag according to the
configuration of the implementation. Similarly to
the phoneme units, prosodic markers produced by
the modules must be supported in the Speech
Synthesizer stage of the implementation.

3.3 Speech Synthesizer Stage
The role of this stage is to generate synthetic
speech signals based on the phonetic representation
and the prosodic parameters provided by the Text
Analyzer stage. This stage involves three
configurable parts: 1) Pre-processing, 2)
Synthesizer Engine, and 3) Acoustic Models. A
pair of Synthesizer Engine module and its
corresponding Pre-processing module, responsible
for adjusting the format of the phonetic
representation and prosodic parameters so that they
are consistent with the input interface of the
Synthesizer Engine, must be configured to handle
all segments tagged with a segment tag, while
Acoustic Models can also be selected by the
configuration, providing that their phonetic units
and file formats are supported by the associated
Synthesizer Engine module. All modules
performing as a Synthesizer Engine module must
provide at least one signal synthesis function that
generates a waveform file that will be treated as
the final synthesized speech by the ChulaTTS
framework.

3.4 Module Development
An option that we chose in order to maximize
interoperability of modules and, at the same time,
avoid steep learning curves for researchers who
wish to evaluate algorithms in ChulaTTS is to
adhere to the .NET development framework on
Windows platform for module development. The
framework was written in C# and all classes of
modules (described in Section 3.1 to Section 3.3)
to be integrated to an implementation of the
framework are expected to be in the form of .NET
Dynamic-Link Library (DLL) exposing functions
whose signatures are consistent with the
contractual interface defined by the framework
according to their module classes. New modules
can be developed using any .NET targeted
programming languages while existing executables
can be wrapped inside .NET

3.5 Implementation Configurations
Configuring the ChulaTTS implementation is
performed by modifying three key configuration
files: Segment Tagging configuration which
determines how the framework should execute
steps in the three stages listed in Section 3.
Configuration files are all in plain text format read
by the framework at run-time. In each
configuration file, the name of the DLL file
together with the name of the function residing in
that DLL file associated with its corresponding
step in the TTS process must be specified in a pre-
defined format. The framework checks for the
consistency of these functions with their
corresponding contractual interface defined by the
framework.

The next section reports an example case of the
implementation of the ChulaTTS framework. The
case showed a sample scenario in which a newly
developed algorithm was evaluated via subjective
tests in a complete TTS system using the
ChulaTTS framework.

4 Implementation

4.1 System Implementation
We put ChulaTTS framework to the test by
implementing a complete TTS system called
ChulaTTS. ChulaTTS inherently employ .NET

PACLIC 28

418

framework and C#, where all handlers are
implemented and compiled as DLL.

Segment Tagging Implementation: To identify
segments in ChulaTTS, we consider all white
spaces in input text and break them into segments.
We use single Tagger handler that was
implemented by using regular expression to
determine the tags for each segment. The four
available tags are (1) Thai, (2) English, (3) Number,
and (4) Symbol. Table 1 shows example of
segments and their corresponding tags. Because
ChulaTTS only uses one tagger handler, naturally,
there is no confusing tag. Thus, tag selector was
not executed in this case.

Segment Results of Tagging
สวสัดี2 <1>สวสัดี</1>
Hello <2>Hello</2>
2014 <3>2014</3>

น่ารักจุงเบยยยย3554 <1>น่ารักจุงเบยยยย</1> <3>55</3>
ขอบคุณ5:) <1>ขอบคุณ</1> <4>:)</4>

Table 1. The example of segments and tags

Text Analyzer Implementation: Four G2P

handlers; G2P1, G2P2, G2P3, and G2P4,
corresponding to the four tags were developed for
ChulaTTS. The G2P1 handler was responsible for
parsing Thai text into phonemes. It employed
TLEX (Haruechaiyasak and Kongyoung 2009) to
extract Thai words from each segment. Then, the
phonemes were generated by looking a Thai
dictionary. In addition, because Thai is a tonal
language, tone marker was also supplied for each
and every word. G2P2 handler employed an
English dictionary to produce phonemes. Moreover,
with the situation of out-of-vocabulary, the
resulting phonemes would be the spelling
pronunciation. G2P3 handler was to convert
numbers into the right pronunciation using Thai
rule-based technique for numbers. Finally, G2P4
handler was used for converting symbols to
pronunciation using dictionary-based method. In
this implementation, prosodic annotator, namely
tone parameter, were embedded in all four GSP
handlers.

2 ‘Hello’ in Thai
3 ‘So cute’ in Thai
4 Pronounced as ‘haha’ in Thai
5 ‘Thank you’ in Thai

Speech Synthesizer Implementation: In
Speech Synthesizer, an acoustical model was
implemented. One male speaker spoke 600
utterance sentences randomly selected from the T-
Sync speech corpus (Hansakunbuntheung et al.
2003), in order to construct a speech corpus for
training the acoustical model. The recording
process was conducted in the sound proof chamber
with the sampling rate of 16,000 Hz. After the
recording process, a transcriber manually added
short pause marks into the transcriptions and force
align phoneme and recorded audio. In the
ChulaTTS-based system, HTS (PukiWiki 2013)
was selected as the synthesizer engine handler, and
use it to train our acoustical model. Furthermore,
we also developed a preprocessor handler to
transform the results from text analyzer block into
the format compatible to that of the HTS engine.

4.2 System Testing
To learn about the performance of ChulaTTS, a
subjective test was conducted, using five-scaled
Mean Opinion Score (MOS) approach (Orhan and
Görmez 2008; Zeki et al. 2010). Six participants
were recruited in order to perceive a set of stimuli
synthesized from randomly selected text from
BEST corpus (Nectec 2009), in which each
stimulus was randomly presented and played from
the same handset. Each participant was asked to
listen to 30 stimuli and score each utterance on a
five-scale basis, excellent (5), good (4), fair (3),
poor (2) and bad (1). The overall MOS was 3.64.

4.3 System Improvement
Since ChulaTTS framework provides the ability to
add extensible handlers to cope with new tasks, we
implemented a new handler to evaluate how users
may opt to prefer the new system. We used the
implementation of ChulaTTS system described
above as baseline. Curious how social media
played its role in TTS, we extended our baseline by
implementing a Tagger handler which could tag
wordplay following the algorithm reported by
(Hirankan et al. 2014).We defined tag of wordplay
as “5”. An example of Tagging results between
baseline system and the extended system were
shown in Table 2. We also implemented a new
G2P handler, G2P5, which corresponded to tag “5”
to handle wordplay as the technique introduced by
(Hirankan et al. 2014).

PACLIC 28

419

Systems Results of Tagging
Baseline <1>น่ารักจุงเบยยยย</1> <3>55</3>
Extended <5>น่ารักจุงเบยยยย</5> <3>55</3>

Table 2. The example of tagging chunks of

“น่ารักจุงเบยยยย55”

To understand the performances of both the
baseline and the extended systems, another
subjective test was conducted. Eight users were
recruited to give the opinion on the stimuli
produced from both systems. All stimuli were
synthesized from randomly selected text on
Facebook. Each user was asked to compare ten
stimuli produced from the two systems. We use
ten-scaled MOS and asked the users to rate the
quality of the sound. Score of five signifies
indifference between the two systems. Scores less
than five means the user prefers sounds generated
from the baseline system, the lower the number,
the more confidence the user have with the
baseline system. On the contrary, Scores greater
than five shows that the users prefer the extended
system, the higher the score, the more confidence.
The score of comparing performances was at 7.19,
which indicated higher preference of the extended
system.

5 Applications

ChulaTTS system has been implemented in two
applications: Chula DAISY (Punyabukkana et al.
2012), an audio book generation system; and Chula
FungPloen (Limpanadusadee et al. 2012), a
universal listening device. Since ChulaTTS
employs .NET framework, applying it to
applications built on .NET framework was a
simple task, regardless of the difference in
domains.

Since Chula DAISY aimed to handle Thai book
contents, the domain of the application was
generally Thai well-written text. Consequently, a
standard Thai G2P handler and a standard Thai
synthesizer engine handler were sufficient
Punyabukkana et al. 2012). However, For Chula
Fungploen, the domain of input text became more
sophisticated because the task in Chula Fungploen
largely dealt with text appeared on the internet. For
this reason, only the standard Thai G2P, and the
Thai synthesizer engine handler were insufficient.

Without ChulaTTS framework, one would have to
implement another TTS system to fit each task.
However, with the nature of ChulaTTS framework,
it allowed flexibility to enhance new handlers to
support this task without the redesign of the
system. In Chula Fungploen, there were needs to
cope with non-Thai text, especially numbers,
symbols and English texts. The number tagger
handler, the symbol tagger handler, the English
tagger handler, the number G2P handler, the
symbol G2P handler, the English G2P handler and
the English synthesizer engine handler were simply
installed into the existing TTS system. By adding
those new handlers, Chula TTS was able to support
the task of Chula Fungploen as reported in
(Limpanadusadee et al. 2012). This scenario
clearly demonstrated the extensibility of Chula
TTS framework, which implies time savings as
well as extra efforts.

6 Conclusion

Conventional TTS development cycle can be
improved with the proposed ChulaTTS framework,
which provides extensibility and flexibility for
implementing a TTS system in a modular fashion.
ChulaTTS framework comprises three parts,
Segment Tagging, Text Analyzer, and Speech
Synthesizer. This paper describes not only the
framework itself, but also the sample of a real-
world implementation scenario that proved to be
effective.

References
Jirasak Chirathivat, Jakkrapong. Nakdej, Proadpran

Punyabukkana and Atiwong Suchato. 2007. Internet
explorer smart toolbar for the blind, In Proceedings
of i-CREATe 2007: 195-200.

Proadpran Punyabukkana, Surapol Vorapatratorn, Nat
Lertwongkhanakool, Pawanrat Hirankan, Natthawut
Kertkeidkachorn and Atiwong Suchato. 2012.
ChulaDAISY: an automated DAISY audio book
generation, In Proceedings of i-CREATe 2012.

Nipon Chinathimatmongkhon, Atiwong Suchato and
Proadpran Punyabukkana. 2008. Implementing Thai
text-to-speech synthesis for hand-held devices, In
Proceedings of ECTI-CON 2008.

Pawanrat Hirankan, Atiwong Suchato and Proadpran
Punyabukkana. 2014 Detection of wordplay
generated by reproduction of letters in social media
texts, In Proceedings of JCSSE 2014.

PACLIC 28

420

Zeynep Orhan and Zeliha Görmez, The framework of
the Turkish syllable-based concatenative text-to-
speech system with exceptional case handling. 2008.
In WSEAS Transactions on Computers, 7(10):1525-
1534.

Mario Malcangi and Philip Grew. 20009 “A framework
for mixed-language text-to-speech synthesis, In
Proceedings of CIMMACS 2009: 151-154.

Zhiyong Wua, Guangqi Caoa, Helen Menga and
Lianhong Caib. 2009. A unified framework for
multilingual text-to-speech synthesis with SSML
specification as interface, In Tsinghua Science and
Technology, 14(4): 623-630.

PukiWiki. HMM-based Speech Synthesis System (HTS)
http://hts.sp.nitech.ac.jp/ 2013.

Choochart Haruechaiyasak and Sarawoot Kongyoung,
2009. TLex: Thai Lexeme Analyzer Based on the
Conditional Random Fields, In Proceedings of 8th
International Symposium on Natural Language
Processing 2009.

Chatchawarn Hansakunbuntheung, Virongrong
Tesprasit and Virach Sornlertlamvanich. 2003. Thai
tagged speech corpus for speech synthesis, In
processing of O-COCOSDA 2003: 97-104.

Mustafa Zeki, Othman O. Khalifa and A. W. Naji. 2010.
Development of an Arabic text-to-speech system, In
Proceedings of ICCCE 2010: 1-5

 Nectec. 2009. BEST 2009 : Thai Word Segmentation
Software Contest”, http://thailang.nectec.or.th/best/

Worasa Limpanadusadee, Varayut Lerdkanlayanawat,
Surada Lerkpatomsak, Proadpran Punyabukkana and
Atiwong Suchato, 2012. Chula-FungPloen: assistive
software for listening to online contents, In
Proceedings of i-CREATe 2012.

PACLIC 28

421

