PACLIC-27

Effects of Parsing Errors on Pre-reordering Performance
for Chinese-to-Japanese SMT

Dan Han'?

Pascual Martinez-Gomez

Katsuhito Sudoh*
!The Graduate University For Advanced Studies
“National Institute of Informatics, *The University of Tokyo
“NTT Communication Science Laboratories, NTT Corporation
{handan, pascual, yusuke}@nii.ac. jp
{sudoh.katsuhito,nagata.masaaki}@lab.ntt.co.jp

Abstract

Linguistically motivated reordering meth-
ods have been developed to improve word
alignment especially for Statistical Ma-
chine Translation (SMT) on long dis-
tance language pairs. However, since they
highly rely on the parsing accuracy, it is
useful to explore the relationship between
parsing and reordering. For Chinese-to-
Japanese SMT, we carry out a three-stage
incremental comparative analysis to ob-
serve the effects of different parsing errors
on reordering performance by combining
empirical and descriptive approaches. For
the empirical approach, we quantify the
distribution of general parsing errors along
with reordering qualities whereas for the
descriptive approach, we extract seven in-
fluential error patterns and examine their
correlation with reordering errors.

1 Introduction

Statistical machine translation is a challenging and
well established task in the community of compu-
tational linguistics. One of the key components
of statistical machine translation systems are word
alignment techniques, where the words from sen-
tences in a source language are mapped to words
from sentences in a target language. When esti-
mating the most appropriate word alignments, it
is unfeasible to explore every possible word cor-
respondence due to the combinatorial complexity.
Considering local permutations of words might be
effective to translate languages with a similar sen-
tence structure, but these methods have a limited
performance when translating sentences from lan-
guages with different syntactical structures.

An effective technique to translate sentences
between distant language pairs is pre-reordering,
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where words in sentences from the source lan-
guage are re-arranged with the objective to resem-
ble the word order of the target language. Re-
arranging rules are automatically extracted (Xia
and McCord, 2004; Genzel, 2010), or linguisti-
cally motivated (Xu et al., 2009; Isozaki et al.,
2010; Han et al., 2012; Han et al., 2013). We work
following the latter strategy, where the source sen-
tence is parsed to find its syntactical structure, and
linguistically-motivated rules are used in combi-
nation with the structure of the sentence to guide
the word reordering. The language pair under con-
sideration is Chinese-to-Japanese, which despite
their common roots, it is a well known language
pair for their different sentence structure.

However, syntax-based pre-reordering tech-
niques are sensitive to parsing errors, but insight
into their relationship has been elusive. The con-
tribution of this work is two fold. First, we provide
an empirical analysis where we quantify the aggre-
gated impact of parsing errors on pre-reordering
performance. Second, we define seven patterns
of the most common and influential parsing errors
and we carry out a descriptive analysis to exam-
ine their relationship with reordering errors. We
combine an empirical and descriptive approach
to present a three-stage incremental comparative
analysis to observe the effect of different parsing
errors on reordering performance.

In Section 2, after a brief description on the pre-
reordering method that we use for experiments, we
will introduce some related works on parsing error
analysis and analysis on the relation between pars-
ing and machine translation. From a general per-
spective, we describe our analysis methods for this
work in Section 3. Then, we carry out the analysis
and exhibit the results in Section 4 and Section 5.
The last two sections are dedicated to discussion,
future directions and summarize our findings.
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Vb-H | VWV VEVC VAP

BEI LB SB

RM-D | NN NR NT PN OD CD M FW CC
ETCLCDEV DT 1J SP 1IJ ON

Table 1: Lists of POS tags for identifying words
as Vb-H, RM-D, and BEI. (Han et al., 2013)

2 Background
2.1 Reordering Model

Since local reordering models which are inte-
grated in phrase-based SMT systems do not per-
form well for distant language pairs due to their
different syntactic structures, pre-reordering meth-
ods have been proposed to supply the need for
improving the word alignment. Han et al. (2013)
described one of the latest pre-reordering meth-
ods (DPC) which was based on dependency pars-
ing. The authors were using an unlabeled depen-
dency parser to extract the syntactic information
of Chinese sentences, and then by combining with
part-of-speech (POS) tags', they defined a set of
heuristic reordering rules to guide the reordering.
The essential idea of DPC is to move so-called
verbal block (Vb)? to the right-hand side of its
right-most dependent (RM-D) for a Subject-Verb-
Object (SVO) language to resemble a Subject-
Object-Verb (SOV) language’s word order. Ta-
ble 1 shows the POS tags that are used to identify
words as Vb-H, RM-D, or BEI (a Vb-H involves
in a bei-construction) in a sentence from Han et al.
(2013).

Figure 1 shows an example of unlabeled de-
pendency parse tree of a Chinese sentence aligned
with its Japanese translation. According to the re-
ordering method, “went” will be reordered behind
of “bookstore” while “buy -ed” will be reordered
to the right-hand side of “book”, and thus the sen-
tence will follow a SOV word order as Japanese.
However, if “book” was wrongly recognized as the
dependent of “went” in the dependency structure,
“went” will be wrongly reordered to the right-
hand side of “book™. Therefore, syntactic struc-
ture based reordering methods highly rely on the
parsing accuracy. In order to further improve word
alignments or refine existing reordering models, it

In this work, POS tag definitions follow the POS tag
guidelines of the Penn Chinese Treebank v3.0.

2According to (Han et al., 2013), a Vb includes the head
of the Vb (Vb-H) and an optional component (Vb-D).
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PinYin: tal qu4 shuldian4 mai3 le5 yil ben3 shul
Chinese: fi5 &% BE X T — F B
English: He went (to) bookstore buy -ed a book
Japanese: % (X)) FE (I2) T-T X (%) B- 1=

Figure 1: Example of unlabeled dependency parse
tree of a Chinese sentence (SVO) with word
aligned to its Japanese counterpart (SOV). Arrows
are pointing from heads to dependents.

is important to observe the effects of parsing errors
on reordering performance.

In this analysis, we borrow this state-of-the-art
pre-reordering model for our experiments since it
is a rule-based pre-reordering method for a dis-
tant language pair based on dependency parsing
as well as its extensibility to other language pairs.

2.2 Related Work

Although there are studies on analyzing parsing
errors and reordering errors, as far as we know,
there is not any work on observing the relationship
between these two types of errors.

One most relevant work to ours is observing
the impact of parsing accuracy on a SMT system
introduced in Quirk and Corston-Oliver (2006).
They showed the general idea that syntax-based
SMT models are sensitive to syntactic analysis.
However, they did not further analyze concrete
parsing error types that affect task accuracy.

Green (2011) explored the effects of noun
phrase bracketing in dependency parsing in En-
glish, and further on English to Czech machine
translation. But the work focused on using noun
phrase structure to improve a machine translation
framework. In the work of Katz-Brown et al.
(2011), they proposed a training method to im-
prove a parser’s performance by using reordering
quality to examine the parse quality. But they
did not study the relationship between reordering
quality and parse quality.

There are more works on parsing error analy-
sis. For instance, Hara et al. (2009) defined sev-
eral types of parsing error patterns on predicate
argument relation and tested them with a Head-
driven phrase structure grammar (HPSG) (Pol-
lard and Sag, 1994) parser (Miyao and Tsujii,
2008). McDonald and Nivre (2007) explored pars-
ing errors for data-driven dependency parsing by
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comparing a graph-based parser with a transition-
based parser, which are representing two domi-
nant parsing models. At the same time, Dredze et
al. (2007) provided a comparison analysis on dif-
ferences in annotation guidelines among treebanks
which were suspected to be responsible for depen-
dency parsing errors in domain adaptation tasks.
Unlike analyzing parsing errors, authors in Yu et
al. (2011) focused on the difficulties in Chinese
deep parsing by comparing the linguistic proper-
ties between Chinese and English.

There are also works on reordering error analy-
sis like Han et al. (2012) which examined an ex-
isting reordering method and refined it after a de-
tailed linguistic analysis on reordering issues. Al-
though they discovered that parsing errors affect
the reordering quality, they did not observe the
concrete relationship. On the other hand, Giménez
and Marquez (2008) proposed an automatic error
analysis method of machine translation output, by
compiling a set of metric variants. However, they
did not provide insight on what SMT component
caused low translation performance.

3 Analysis Method

We combine an empirical approach with a de-
scriptive approach to observe the effects of pars-
ing errors on pre-reordering performance in three
stages: preliminary experiment stage, POS tag
level stage, and dependency type level stage. First,
we provide a general idea of the sensitiveness of
parsing errors on reordering method. Then, we use
POS tags to identify parsing errors and quantify
the aggregate impact on reordering performance.
Finally, we define several concrete error patterns
and examine their effects on reordering qualities.
In order to test for an upper bound of the re-
ordering performance and examine the specific
parsing errors that affect reordering, one way is
to contrast the reordering based on error-free parse
trees with the reordering based on auto-parse trees.
Error-free parse trees are considered as gold trees.
In the preliminary experiment stage, we set
up two benchmarks in two scenarios. For sce-
nario 1, the benchmark is manually reordered Chi-
nese sentence on the basis of Japanese reference.
By measuring the word order similarities between
the benchmark and the gold-tree based reordered
sentence as well as between the benchmark and
the auto-parse tree based reordered sentence sepa-
rately, we quantify the extent of parsing errors that
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influence reordering. Meanwhile, the former mea-
surement shows additionally the general figure of
the upper bound of the reordering method. How-
ever, since it is not only time-consuming but also
labor-intensive to set up the benchmark in scenario
1, we use the Japanese reference as the benchmark
in scenario 2 and follow the same strategies as in
scenario 1 to calculate the word order similarities.
More detailed description on the preliminary ex-
periment is given in Section 4.

In POS tag level stage, we compare the gold-
tree with auto-parse tree along with reordering
quality to explore the relationship between general
parsing errors and reordering from two aspects:
the percentages of top three most frequent depen-
dent’s POS tags that point to wrong heads and the
percentages of top two most frequent head’s POS
tags that are recognized wrongly. The percentages
of other POS tags are not provided because they
are negligible. Our objective is to profile general
parsing errors’ distribution. However, this does
not imply that those errors are the cause of the re-
ordering errors. Section 5.1 includes more con-
crete analysis results.

In dependency type level stage, we classify the
most influential parsing errors on reordering into
three superclasses and seven subclasses according
to the methodology of the reordering method. We
then plot the distribution of these parsing errors
for various reordering qualities. In Section 5.2, we
illustrate these parsing errors with examples.

4 Preliminary Experiment

4.1 Gold Data

In order to build up gold parse tree sets for com-
parison, we used the annotated sentences from
Chinese Penn Treebank ver. 7.0 (CTB-7) which
is a well known corpus that consists of parsed
text in five genres. They are Chinese newswire
(NS), magazine news (NM), broadcast news (BN),
broadcast conversation programs (BC), and web
newsgroups, weblogs (NW).

We first randomly selected 517 unique sen-
tences (hereinafter set-1) from all five genres in
development set of CTB-7 which is split accord-
ing to (Wang et al., 2011). However, we found
that sentences in BC and NW are mainly from spo-
ken language, which tend to have faults like rep-
etitions, incomplete sentences, corrections, or in-
correct sentence segmentation. Therefore, we ran-
domly selected another 2,126 unique sentences
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BN BC NM NS NW | Total
set-1 100 100 100 117 100 | 517
set-2 797 - 578 751 - 2,126
Total | 897 100 678 868 100 | 2,643
AL 29.8 200 335 284 259 | 29.8
Voc. | 55K 690 BHK 51K 972 | 95K

Table 2: Statistics of selected sentences in five
genres of CTB-7. AL stands for the average length
of sentences, while Voc. for vocabulary.

(hereinafter set-2) within a limit to three genres:
NS, NM, and BN. Table 2 shows the statistics of
all selected sentences in five genres respectively.

For converting CTB-7 parsed text to depen-
dency parse trees, we used an open utility
Penn2Malt® which converts Penn Treebank into
MaltTab format containing dependency informa-
tion. Since the head rules that Penn2Malt rec-
ommended for converting on its website do not
contain three new annotation types in CTB-7, we
added three new ones for them as follows: FLR
(Fillers) and DFL (Disfluency) head on right-hand
branch; INC (Incomplete sentences) follows the
same head rule as FRAG (Fragment).

Meanwhile, professional human translators
translated all Chinese sentences in both set-1 and
set-2 into Japanese. Thereafter, according to the
Japanese references, Chinese sentences in set-1
have been manually reordered as the same word
orders as their Japanese counterparts by a bilin-
gual speaker of Chinese and Japanese for the ex-
periments in scenario 1. For example, the Chinese
sentence in Figure 1 is following the word order
of “He bookstore went (to) a book buy (-ed) .”
in the handcrafted reordered set since it resembles
the Japanese word order.

4.2 Evaluation

We use Kendall’s tau (7) rank correlation coeffi-
cient (Isozaki et al., 2010) to measure word or-
der similarities between sentences in two different
scenarios. In the first scenario, we use the set of
manually reordered Chinese sentences from set-1
as benchmark and compare it with the set of au-
tomatically reordered Chinese sentences. In the
second scenario, we combine set-1 and set-2 to
obtain a larger data set. The set of Japanese ref-
erences plays the role of benchmark and is com-
pared with the set of automatically reordered Chi-

3http://stp.lingfil.uu.se/ nivre/research/Penn2Malt.html
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Baseline  Gold-DPC  Auto-DPC
M-reordered 0.82 0.90 0.88
Gold-DPC - - 0.95

Table 3: The average value of Kendall’s tau (7) of
517 Chinese sentences by comparing manually re-
ordered sentences, unreordered sentences, and au-
tomatically reordered sentences. M-reordered is
short for manually reordered.

nese sentences. Word alignments are produced by
MGIZA++ (Gao and Vogel, 2008).

In both scenarios, we carry out the reorder-
ing method DPC (See Section 2.1). Auto-parse
trees are generated by an unlabeled Chinese de-
pendency parser, Corbit* (Hatori et al., 2011).
Gold trees’ are converted from CTB-7 parsed text
which are created by human annotators. More
specifically, we refer to auto-parse tree based re-
ordering system as Auto-DPC and to gold-tree
based reordering system as Gold-DPC. Baseline
system uses unreordered Chinese sentences.

Scenario 1 Preliminary observation about the
effects of parsing errors on reordering perfor-
mance is to compare word order similarities be-
tween manually reordered Chinese sentences and
automatically reordered Chinese sentences from
set-1. Table 3 shows the average 7 value.

For baseline system, the average T value shows
how similar these 517 Chinese sentences between
manually reordered ones and non-reordered ones
are. Comparing with manually reordered Chinese,
both Auto-DPC and Gold-DPC achieved higher
average 7 value than baseline, which imply that
the reordering method DPC positively reordered
the Chinese sentences and improved the word
alignment. Nevertheless, a slightly lower average
7 value of Auto-DPC shows that DPC is sensitive
on parsing errors. This assumption is also con-
firmed by the average T value between Auto-DPC
and Gold-DPC. However, the difference of 7 val-
ues are limited. We hence increase the test data by
adding set-2 for further experiments in scenario 2.

Scenario 2 Since we do not have manually re-
ordered Chinese sentences as benchmark for set-
2, we calculate the Kendall’s tau between Chi-
nese sentences and their Japanese counterparts for
both data sets by using the MGIZA++ alignment

*http://triplet.cc/software/corbit
>Note that Corbit was tuned with the development set of
CTB-7.
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Figure 2: The distribution of Kendall’s tau values
for 2,236 bilingual sentences (Chinese-Japanese)
in which the Chinese is from three systems of
baseline, Auto-DPC, and Gold-DPC.

file, ch-ja.A3.final. The comparison im-
plies how monotonically the Chinese sentences
have been reordered to align with Japanese. We
use MeCab® (Kudo and Matsumoto, 2000) to seg-
ment Japanese sentences and also filter out sen-
tences with more than 64 tokens. There are 2, 236
valid Chinese-Japanese bilingual sentences in to-
tal. Figure 2 shows the distribution of Kendall’s
tau from three systems in which the baseline is
built up by using ordinary Chinese.

In Figure 2, baseline system contains a large
numbers of non-monotonic aligned sentences,
whereas both Auto-DPC and Gold-DPC increased
the amount of sentences that achieved high 7 val-
ues. Reordering based on gold-tree reduced more
percentage of low 7 sentences than reordering
based on automatically parsed trees. Especially,
the amount of sentence difference in 0.9 < 7 <=
1 between Gold-DPC and Auto-DPC shows that
reordering method DPC has a high sensitivity on
parsing errors, which enhances the conclusions
from the preliminary observation in scenario 1.
Furthermore, the performance of reordering sys-
tem Gold-DPC sketches the figure of upper bound
of the reordering method.

5 Analysis on Causes of Reordering
Errors

Preliminary experiments in Section 4 provide a
general idea of the effects of parsing errors on re-
ordering. In order to achieve more explicit rela-
tionship between specific parsing errors and re-
ordering issues, we first identify concrete pars-
ing errors by comparing gold-trees with auto-parse

Shttp://mecab.googlecode.com
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Chinese: b, = BE X T — F P
English: He went (to) bookstore buy -ed a book
POS tag: PN \A% NN VWV AS CD M NN PU

Figure 3: A possible wrong dependency parse tree
of the example in Figure 1.

trees. Since the syntactic information that guides
reordering in DPC is limited to dependency struc-
ture and POS tags, for analysis on the causes of
reordering errors, we examine parsing errors from
these two linguistic categories. In this section, the
value of Kendall’s tau measures the word order
similarity between Gold-DPC and Auto-DPC.

5.1 Part-of-Speech Tag Error

There are two types of parsing errors to a token
in a dependency parse tree. One is that the to-
ken points to a wrong head, namely dependent-
error, and another one is that the token is recog-
nized wrongly as a head of other tokens, namely
head-error. For example, Figure 3 presents a
possible wrong parse tree of the example shown
in Figure 1. By comparing with the gold-tree in
Figure 1, tokens (POS tag) of “he (PN)”, “went
(VV)”, “bookstore (NN)”, “buy (VV)”, “a (CD)”,
and “. (PU)” in the dependency tree in Fig-
ure 3 all point to different wrong heads, which are
dependent-errors. Concurrently, tokens (POS tag)
of “went (VV)”, “buy (VV)”, and “book (NN)” are
wrongly recognized as heads of other tokens (e.g.,
“he”, “bookstore”, “a”), which are head-errors.
According to the definition, every head-error has
at least one corresponding dependent-error. How-
ever, in the case that a token is not the root in a
gold-tree but is root in the wrong tree, this token
is a dependent-error corresponding with no head-
error. An example is the dependent-error “went
(VV)” in Figure 3.

We count the number of POS tag mis-
recognitions separately for dependent- and head-
errors. In the example of Figure 3, dependent-
error counts are for VV, 2 errors, and PN, NN,
CD, PU each 1 error. The number of POS tag
mis-recognitions for head-errors are VV with 2 er-
rors, and NN with 1 error. In our analysis, we
will compute these counts for all POS tags at every
sentence in our data set. However, our reordering
method performed differently at each sentence in
our data set, and the reordering quality varied from
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Figure 4: The distribution of top three dependent-
error POS tags and their tendency lines.

sentence to sentence. With the objective of observ-
ing the correlation between reordering quality and
each type of error, we will first group sentences ac-
cording to their Kendall’s 7 values. Then, we will
compute proportions of POS tag errors at each 7
value, for every type of POS tag error.

Figure 4 shows the distribution of top three
dependent-error POS tags, which means that they
are the three most frequent POS tags that point to
a wrong head in auto-parse trees. VV represents
all verbs except predicative adjective (VA), copula
(VC), and you3’ as the main verb (VE). PU rep-
resents punctuation and NN represents all nouns
except proper noun (NR), temporal noun (NT),
and the ones for locations which cannot modify
verb phrases with or without de0®. The dependent-
error on VV accounts for a larger proportion in low
reordering accuracy sentences whereas more NN
dependent-error occurred in high reordering accu-
racy sentences. On the other hand, the proportion
of PU dependent-error is more consistent.

Figure 5 shows the distribution of top two head-
error POS tags, which means that they are the
two most frequent POS tags that are recognized
wrongly as heads in auto-parse trees. Comparing
to Figure 4, the tendency of both VV and NN is
the same but distincter.

The analysis results on the proportion distribu-
tions of dependent-error POS tags and head-error
POS tags in different reordering quality sentence
groups exhibit that there are more parsing errors
on verbs than nouns in low reordering accuracy
sentences and thus the parsing errors on verbs
influence more on the reordering performance.
However, it is still difficult to reveal the effects of
more concrete parsing errors on reordering consid-

A Chinese character expresses possession and existence.
8 A Chinese character is specially used to connect the verb
phrase and its modifier.

100% *

90% "
80% 2 per. Mov. Avg. (W)
70% —-—- 2 per. Mov. Avg. (NN)
60% ‘
50% |
40% [
30% . [
20% . \
10% I P }
1

*

Percent of Errors

0% =
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Kendall's tau (t)

Figure 5: The distribution of top two head-error
POS tags and their tendency lines.

ering that not all verb parsing errors influence the
reordering. As an illustration, in Figure 3, if the
head of “bookstore” were “went”, the VV head-
error of “went” would not cause any reordering er-
ror since it would be reordered consistently to the
right-hand side of its RM-D “bookstore”. Conse-
quently, we use a descriptive approach to analyze
dependency types to explore the effects from more
concrete parsing errors in the next section.

5.2 Dependency Type Error

As introduced in Section 2.1, DPC first identifies
Vb, RM-D, and then reorders necessary words.
Thus, DPC reorders not only Vb-H, but also Vb-D
in a Vb, which means that the failure on identi-
fying Vbs may also cause unexpected reordering
on particles, such as aspect markers. However, in
this work, we only focus on reordering issues of
Vb-H candidates’. To discover the effects of more
concrete parsing errors on reordering, we distin-
guish three categories of dependency types, i.e.,
ROOT, RM-D, and BEIL. Among them, ROOT
denotes whether the Vb-H candidate is the root of
the sentence or not, RM-D is the right-most ob-
ject dependent of the Vb-H candidate if it has one,
and BEI denotes whether the Vb-H candidate is
involved in a bei-construction.

According to the methodology of the reorder-
ing method DPC, we define seven patterns of pars-
ing error phenomena and classify them into three
types by comparing the gold-tree (GT) with auto-
parse tree (Corbit-tree, CT). Table 4 lists all pars-
ing error patterns in three error types, ROOT error,
RM-D error and BEI error by considering three
dependency types ROOT, RM-D and BEI. Sym-
bols of “\/”, “x”, “?” represent the status of a cer-

9We use “Vb-H candidate” in this work for the reason that
if the Vb-H is involved into a bei-construction, then it can not
be Vb-H according to (Han et al., 2013).
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BEI ROOT RM-D
GT[CT [GT[CT[GT | CT
ROOT Error
Root-C X X X N X
Root-G X x | v | % X X
RM-D Error
RMD-C | x X X X X vV
X X X Vol ox Vv
X x |+ | % X Vv
x | x | v | v ] x|V
RMD-G | X X X X v X
X X X vVl vV X
X x | V| x|V X
x | x | v v ]v] x
RMD-D | x X X X v/ | diff.
X X X Vo | V| diff
X X v | % v/ | diff.
X X v ol V| V] diff
BEI Error
BEI-C X vViiVv? X ?
X Vol X ? V4 ?
X N RV 4 ?
BEI-G Vo] % ? N4 ? X
v o ox ? X ? 4
JIix vl v

Table 4: Seven error patterns (Root-C, Root-
G, RM_D-C, RM_D-G, RM_D-D, BEI-C, BEI-G)
that cause three types of reordering issues (ROOT
error, RM-D error, and BEI error). GT stands for
gold-tree, and CT stands for Corbit-tree. Symbols
“V7, X, “7” represent the status of True, False,
and Unknown, respectively. “diff.” means that the
RM-Ds exist in both GT and CT but are different.

tain dependency type in gold-tree or Corbit-tree.
For every Vb-H candidate, the 6 status are condi-
tions to match the error pattern. For example, to
match a Root-C error pattern, the Vb-H candidate
needs to satisfy the following conditions: in gold-
tree, it is not the root, and does not have any RM-D
or bei dependent; in Corbit tree, it does not have
any RM-D or bei dependent, but it is the root.

Root-C is the case where a Vb-H candidate has
been wrongly parsed as the root of the sentence.
However, it only affects the reordering with two
constrains, namely that RM-D of the Vb-H candi-
date does not exist and Vb-H is not involved in a
bei-construction. For instance, the Vb-H “should”
in the example of Figure 6 was recognized as root
in auto-parse tree in Figure 6b. However, the ac-
tual root is the Vb-H “is” in gold tree of Figure 6a.
Therefore, since “should” does not have any de-
pendent as either BEI or RM-D in both GT and
CT, it will be reordered incorrectly to the end of
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MZ B OEM OmA BE XM N R B &’
should say warship(s) join navy combat power is improve(d)
W W NN VV_ NN P NN  VC_WV NN

NN N )

R (205 (X)) EfR (0)IEFE (19mb->THN (13) mEd2 TLS) -

PU

(a) Gold tree
T
Mz v EW OmA #E N 8 R A OBHA .
should say warship(s) join navy combat power is improve(d)

(b) A possible wrong parse tree.

Figure 6: An example for parsing error patterns
of Root-C and RM_D-D. English translation: One
should say that, the additions of warships will help
to improve the navy’s combat power.

the sentence according to the CT whereas it will
not be reordered according to GT, which is already
in the same position as its Japanese counterpart.

Root-G is the opposite case of Root-C where a
Vb-H candidate is the root of the sentence but was
not parsed as the root in CT. This affects the re-
ordering under the two same constraints as Root-
C. Figure 7b shows an example of Root-G. In Fig-
ure 7a, the word alignment shows that the Vb-H
“agree” should be reordered to the end of the sen-
tence. However, it will not be reordered for the
wrong parse tree shown in Figure 7b.

RM _D-C is the case where the RM-D of a Vb-
H candidate exists in a CT but not in GT. In other
words, a RM-D candidate was parsed wrongly on
its head. There are four varieties of combination
with the status of ROOT, BEI of the Vb-H candi-
date that lead to incorrect reorderings. The Vb-H
“agree” in Figure 7c matches the last combination
of RM_D-C, which will be reordered right after
“journalist” instead of at the end of the sentence.

RM_D-G is the opposite case of RM_D-C
where the RM-D of a Vb-H candidate was missed
in a CT. There are also four cases of reordering
errors according to the status of BEI, ROOT and
RM-D. Vb-H “went” in Figure 3 matches the sec-
ond combination of RM_D-G so that it will not be
able to reorder after “bookstore”.

RM_D-D is the case where a bei-construction-
free Vb-H candidate obtains two different RM-D
candidates in CT and GT, which causes the re-
ordering issue. In Figure 6, Vb-H “join” received
different RM-Ds in two trees. According to the
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Chinese: 1t Eir=A nE A 1t fi=k
English: He agree Jjournalist for him photo
POS tag: PN A% % A%
Japanese: 4§ (1) 2F (1) BE (%) |3 (2 &)~ #T L
(a) Gold-tree.
="
Chinese:  ft, ~ FE&E wE A mR .
English: He agree journalist for him photo
(b) A possible erroneous parse tree.
e
Chinese:  fli ~ EE E A B HEB.
English: He agree Jjournalist for him photo

(c) Another possible erroneous parse tree.

Figure 7: An example for parsing error patterns
of Root-G and RM_D-C. English translation: He
agreed to the journalist to take a picture of him.

word alignment, it should be reordered next to
“navy” instead of “combat power”.

BEI-C is the case where a Vb-H candidate re-
ceived a wrong BEI dependent in CT. This will
prevent reordering independently on whether the
Vb-H candidate has RM-D or is the root.

BEI-G is the opposite case of BEI-C, where
Vb-H in GT will not be reordered but in CT it will.

After defining seven patterns of parsing errors
and classifying them into three types, we calculate
the average frequency proportions of each type in
different 7 value groups of sentences.

Figure 8 shows the distribution of the three
types of parsing errors and their tendencies. In low
7 value sentences, there are higher proportions of
ROOT errors, and relatively lower proportions in
high 7 value sentences. RM-D errors follow the
opposite tendency. This implies that the effects of
ROOQT errors on reordering are stronger than the
effects from RM-D errors. The reason could be
that ROOT errors cause long distance reordering
failure while RM-D errors lead to more local re-
ordering errors. Since there are very few BEI er-
rors, it was difficult to capture their trends.

Figure 9 and Figure 10 provide the correlations
between parsing error patterns and reordering ac-
curacy. In ROOT errors types, Root-C had a larger
percentage than Root-G in low reordering accu-
racy sentences which shows that the Vb-H can-
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RM-D
—-—--2 per. Mov. Avg. (RM-D)
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Figure 8: Distribution of three types of parsing er-
rors in different 7 groups and their trend curves.
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Kendall's tau (1)

0.7

Figure 9: Distribution of patterns of ROOT error
in different 7 groups and their trend curves.

didate that does not have any object dependent
tends to be recognized as root by parser. This
is consistent with the distribution results that are
shown in Figure 10. The error pattern of RM_D-G
had larger percentage than the other two patterns,
which also implies that a Vb-H candidate in a CT
tends to have less or none object dependents.

5.3 Further Analysis Possibilities

Due to the time limitation, we only focused on an-
alyzing parsing errors that cause reordering issues
on Vb-H candidates while defining the error pat-
terns. However, it is not only that Vb-H candidates
are reordered in DPC, but also other words like
Vb-D candidates and particles will be reordered. It
is also meaningful to explore the parsing error pat-
terns which cause unexpected reordering on these
words and the correlation between them as well.

The current study on exploring influential pars-
ing errors is not exhaustive, and another analysis
possibility would be to explore what types of pars-
ing errors do not affect reordering so that parsers
can sacrifice their performance on those types of
issues in order to improve on influential types.
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Figure 10: The distribution of different patterns of
RM-D error in different 7 groups.

6 Discussion and Future Work

Two important research directions concentrate on
either improving parsers or developing linguisti-
cally motivated pre-reordering methods. We be-
lieve that analyzing the link between those direc-
tions can help us to refine future developments.

We observed relatively small effects on reorder-
ing quality in response of parsing errors. However,
reordering quality affect word alignments, which
in turn affect the quality of bilingual phrases that
are extracted. It would be interesting to extend this
work to quantify the propagation of parsing and
reordering errors in SMT pipelines, to observe the
factored effect on the overall MT quality.

We found that not all POS tagging and pars-
ing errors correlate equally with reordering qual-
ity. In the case of DPC reordering method, mis-
recognitions of VV words correlate with low re-
ordering performance, whereas mis-recognitions
of NN words had a smaller impact. Indeed, DPC
heavily relies on detecting verbal blocks that are
candidates for reordering, and systems that use the
same strategy should choose POS taggers that dis-
play high accuracy of VV recognition.

One of the key characteristics of DPC is its abil-
ity to correctly reorder sentences with reported
speech constructions. For that purpose, it is cru-
cial for parsers to recognize the sentence root, and
our analysis demonstrated that systems that follow
similar strategy should rely on parsers that have a
high accuracy to recognize the sentence root.

In general, we believe that future developments
of syntax-based pre-reordering methods would
benefit of preliminary analysis of POS tagging and
parsing accuracies. In case of linguistically mo-
tivated pre-reordering methods, reordering rules
could be designed to be more robust against unreli-
able POS tags or unreliable dependency relations.
For automatically learned reordering rules, those
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systems could be designed to make use of N-best
lists of certain POS tags or dependencies that are
critical but that parsers cannot reliably provide.

There are other popular syntax-based pre-
reordering methods that may use different types of
parsing grammars (i.e. Head-driven phrase struc-
ture grammar), and similar analysis would also
be interesting in those contexts, possibly with a
larger set of gold parsed and reordered sentences.
Additionally, researchers interested in developing
POS taggers and parsers with the objective to aid
pre-reordering could attempt to maximize the ac-
curacy of POS tags or dependencies that are rele-
vant to the reordering task, maybe at the expense
of lower accuracies on other elements.

7 Conclusion

In this work, we carried out linguistically moti-
vated analysis methods by combining empirical
and descriptive approaches in three analysis stages
to examine the effects of different parsing errors
on pre-reordering performance. We achieved four
objectives: (i) quantify effects of parsing errors on
reordering, (ii) estimate upper bounds in perfor-
mance of the reordering method, (iii) profile gen-
eral parsing errors, and (iv) examine effects of spe-
cific parsing errors on reordering.

In the first stage, we set up benchmarks in two
scenarios for reordered Chinese sentences. By
calculating the word order similarity between the
benchmarks and the dependency parse tree based
auto-reordered Chinese sentences, we quantified
the correlation between parsing errors and reorder-
ing accuracies as well as explored the upper bound
in reordering quality of the reordering model.

In the second stage, we examined the effects of
two types of parsing errors on reordering quality
by using POS tag information. The distributions of
parsing errors’ POS tags provide a general view of
the influential parsing error types and an approxi-
mation to the cause of the effects.

In the last stage, we defined several patterns
of parsing errors that assuredly cause reordering
errors by using the linguistic feature of depen-
dency types based on a deep linguistic study of
the syntactic structures and the reordering model.
The analysis results assist us to achieve a better
and more explicit understanding on the relation-
ship between parsing errors and reordering perfor-
mance. Furthermore, we captured the effects of
more concrete parsing errors on reordering.
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