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Abstract

We present a case study on applying com-
mon methods for the prediction of lexical
properties to a low-resource language, namely
Wambaya. Leveraging a small corpus leads
to a typical high-precision, low-recall system;
using the Web as a corpus has no utility for this
language, but a machine learning approach
seems to utilise the available resources most
effectively. This motivates a semi-supervised
approach to lexicon extension.

1 Introduction

Deep lexical acquisition (DLA) is the pro-
cess of (semi-)automatically creating or extend-
ing linguistically-rich lexical resources (Baldwin,
2005a; Baldwin, 2005b; Baldwin, 2007). Conven-
tionally, DLA has been applied to high-resourced
languages such as English, German or Japanese
to broaden the coverage of a medium-coverage re-
source, or enrich existing linguistic annotation in
resources. However, it also has tremendous poten-
tial in accelerating the documentation of low-density
languages, a fact that is often discussed but very
rarely delivered on in the literature. This paper at-
tempts to deliver on this promise, and asks the ques-
tion: how well do standard approaches to DLA per-
form over low-density languages? For example, one
of the standard approaches to DLA is to extract
n-gram counts for patterns involving a target lex-
eme from the web, and use these as the basis for
predicting the lexical class membership of the lex-
eme. While there is little expectation that we will
find significant amounts of text for low-density lan-
guages on the web, we nevertheless run the experi-

ment to test the general applicability of this style of
approach.

In this work, we take Wambaya as a real-world
chronically low-density language, and examine the
task of predicting the grammatical gender of nomi-
nal lexical items. Wambaya is a nearly extinct lan-
guage (Gordon, 2005) from the Mirndi group of
Australian languages. Like many languages from
the Australian family, its complicated syntax and
rich morphology makes natural language process-
ing of Wambaya difficult. Unlike many of its neigh-
bours, however, it has been well documented in a
descriptive grammar (Nordlinger, 1998) and a Head-
driven Phrase Structure Grammar (Bender, 2008).
While resources for Wambaya are of little intrinsic
value as it is doubtful that new text will be gener-
ated in the language, developing these resources is
still instructive for parallel development in compara-
ble languages (Warlpiri, for example, has a notable
speech community (Gordon, 2005)). Additionally,
it provides an invaluable test bed for DLA research,
to test the potential of methods over similarly low-
density languages, and truly test the bounds of DLA
for the purposes of language preservation.

Lexicon extension for Wambaya is a task compa-
rable to the state of many resources: the available
lexicon is small, of only about 1500 entries. About
half of these are nominals, which is the focus of this
research. Furthermore, the sum total of available
data in the language on which to base our methods is
minimal: fewer than 5000 words across about 1100
sentences. We identify instances of the nominals
in the small corpus, and examine standard machine
learning approaches based on evidence in terms of
lexically-disambiguating surface cues, which are in-
tended as a proxy for features which could easily be
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designed with minimal assistance from a lexicogra-
pher familiar with the language.

While using surface cues to observe lexical prop-
erties has seen broad study in a number of languages,
Wambaya represents a relatively extreme case in
terms of difficulty: since NPs are often discontigu-
ous, a given modifier that carries the grammatical
marking of a token can be outside any reasonable
context window.

(1) Garngunya
many.II

gin-aji
3SG.M.A-HAB.PST

yabu
have

garirda-rdarra
wife.II-GROUP

garndawugini-ni.
one.I-ERG

“One [man] used to have many wives”

In (1), the modifier garngunya “many” of the class
II noun garirda “wife”, appears initial to the sen-
tence, and agrees in gender and grammatical number
with its displaced head. The behaviour is somewhat
similar to referential pronouns in English, but can
occur with any modifier. Having this discontiguity
makes identifying surface cues problematic; in addi-
tion, the rich morphology means that even identify-
ing token instances of a given type is non-trivial, as
a lemma typically has hundreds of inflected forms.

Our approach is to take a standard inventory
of DLA techniques and apply them naively to
Wambaya, to gauge their effectiveness over a truly
low-density language, with the added complexity of
non-configurationality and complex morphology.

We will demonstrate that a number of strategies
that have been shown to be competitive in some lan-
guages (primarily English) unsurprisingly perform
poorly for Wambaya. Machine learning, on the other
hand, is remarkably effective, with minimal feature
engineering.

2 Background

2.1 Wambaya
Wambaya is a critically endangered Australian lan-
guage (Nordlinger, 1998), spoken by only a hand-
ful of people in the Northern Territory, Australia.
The language is radically non-configurational, with
very free word order apart from a verb clitic cluster
in second position. It is a split ergative language,
with nominative–accusative pronouns and ergative–
absolutive nominals otherwise. There are about nine

nominal cases,1 as well as four adnominal cases that
further inflect for grammatical gender; there are fur-
thermore three grammatical numbers: a singular, a
dual, and a plural. In this work, we examine the
four grammatical genders: semantically, class I and
class II loosely correspond to masculine and femi-
nine animates, class III to non-flesh food items and
some round body parts, and class IV to the semantic
residue. Gender morphology in Wambaya is mostly
regular, but this is less true in other Australian lan-
guages, often because of vowel harmony, so we fo-
cus primarily on morphosyntax.

Nordlinger’s grammar has been implented in
a Head-driven Phrase Structure Grammar (HPSG;
Bender (2008)) as part of an analysis of the LinGO
Grammar Matrix (Bender et al., 2002; Bender and
Flickinger, 2005; Drellishak and Bender, 2005; Ben-
der et al., 2010). We use the lexical items from the
HPSG lexicon to construct a set of nominal types
marked for gender. There are 786 class assignments
for 724 distinct nominals; their distribution is shown
in Table 1.

I II III IV

233 199 51 303

Table 1: Distribution of classes for Wambaya nominals.

Most of the multi-class items are animates (hu-
mans and animals) that belong to both class I and
class II (masculine and feminine). These pairs have
the same stem, but different forms in the absolutive,
which is the unmarked case from which the lemma is
derived. For example, alag- “child” can be realised
as the class I absolutive nominal alaji “boy” or the
class II absolutive nominal alanga “girl.”

For each item in the lexicon, we use Bender’s im-
plementation of the grammar to generate the (abso-
lutive) lemma from the stem, as well as all of the
inflected forms that are licensed by the grammar.
Nominals were observed to have between about 400
and about 2200 distinct inflected forms. We con-
struct surface cues based on demonstratives in the
language: Nordlinger indentifies four singular abso-
lutive proximal demonstratives (one for each gender
class), and 62 demonstratives overall (24 for each of
class I and II, and 7 for III and IV), for proximal and

1There is some disagreement as to the exact number.
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distal demonstratives in nominal classes. 28 of these
do not occur in the corpus (described below). The
demonstratives we examined appeared to usually act
as deictic determiners qualifying a nominal, but they
also occured as pronouns; we chose not to examine
comitative and possessive demonstratives, or indef-
inites or interrogatives, which appeared to function
more often as pronouns.

Along with the grammar is a treebank of sen-
tences and phrases that occur in Nordlinger’s de-
scriptive grammar, combining the inline linguis-
tic examples and eight provided transcribed texts.
These amount to 1131 unique sentences (many of
the sentences from the text were also used as lin-
guistic examples): about a third of these were from
the texts. We used these sentences — without the
syntactico-semantic annotation from the treebank —
as a raw corpus of Wambaya.

2.2 Lexical properties
The analysis of lexical information is often done
on individual tokens, often under the banner of
“lexical disambiguation”. Some examples are
context-sensitive spelling correction (Banko and
Brill, 2001), selecting between target candidates for
machine translation (Grefenstette, 1998), and de-
termining the semantic gender of nouns in context
(Bergsma et al., 2009). All of these were based
on English data. Lapata and Keller (2005) exam-
ine a range of English tasks whereby frequencies of
events can be used as evidence for the disambigua-
tion. They assert that using Web page counts as a de
facto corpus is a model that is generally as good as,
or better than, established results in the field.

Lapata and Keller also examine a type-level task:
that of the countability of English nouns (Baldwin
and Bond, 2003). In this type of task, the token
context is not available, and context must instead be
generated to observe evidence. They construct a set
of surface cues — much and many to disambiguate
mass and count nouns respectively — and extract ev-
idence from these. The performance is good, but not
as high as that which Baldwin and Bond observe by
using more sophisticated tools such as chunkers. A
similar experiment was performed by Nicholson and
Baldwin (2009), for a set of about 50 count classi-
fiers in Malay; again, the Web was observed to be a
strong performer for observing useful evidence.

As for grammatical gender, research has tended
to focus on Indo-European languages. Hajič and
Hladká (1997) examine grammatical gender in
Czech as part of the part-of-speech tagging pro-
cess. In Czech, morphological surface cues on a
noun token give a strong indication of gender; more
so in a stream of tokens where modifier inflection
can also be taken into account. This method would
probably also be effective for Wambaya, due to its
mostly regular gender morphology. Morphologi-
cal surface cues were also motivated for lexical se-
mantics of derivational morphology by Light (1996).
Finally, Cucerzan and Yarowsky (2003) explore a
minimally-supervised approach for the prediction
of grammatical gender of a mixture of tokens and
types by extracting contextual cues from a seed set
of nouns and bootstrapping to morphological cues.
Token-level performance is high for the five lan-
guages they examine.

3 Methodology

Based on standard DLA methodology, we examine
three prediction methods for Wambaya nominals:

• co-occurrence frequencies with demonstratives
from a Wambaya corpus;

• co-occurrence frequencies with demonstratives
from Web page counts estimated using the Ya-
hoo! API2; and

• machine learning using context windows
around token instances identified from the cor-
pus.

As stated in Section 1, the selection of methods at
this level is not intended to reflect any keen insights
into Wambaya so much as a standard inventory of
DLA methods, which we apply to the task.

Note that these features attempt to leverage
token–level observations into type–level informa-
tion; if we were examining token predictions in a
tagging framework, then the feature engineering ap-
proaches for POS tagging as performed by Hajič
and Hladká (1997) or morphological analysis in
Chrupała et al. (2008) could provide further sophis-
tication.

2http://developer.yahoo.com/search/
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3.1 Corpus Frequency
Corpus frequency-based methods involve identify-
ing lexical cues in the given language, and using
observation of the relative frequency of each cue to
classify instances. The frequencies are based on a
monolingual corpus of the language, in our case, the
small set of 1131 unique sentences of Wambaya.

We use cues observed from the Wambaya corpus
as evidence for the gender of a lexical item. This is
based on the intuition that a given nominal will only
co-occur with demonstratives that agree in gender.

(2) Ngangaba
fire.IV.ABS

yana
this.IV.SG.ABS

gi-n
3SG.S.PR-PROG

najbi.
burn
“There’s a fire burning [here].”

We consider instances like (2) as evidence that the
nominal ngangaba is of class IV, because yana is a
class IV demonstrative.

Wambaya has a rich inflectional morphology, so
that a given token instance of a nominal within
a corpus can display one of hundreds of surface
forms. The surface cues also display rich inflectional
paradigms. When collating our corpus counts for a
given lexical item, we attempt three different strate-
gies of dealing with this phenomenon.

The first, ABS, assumes we have access to the ab-
solutive form of the lexeme. This is the least-marked
form, and also the lemma. For inflectional agree-
ment, the corresponding surface cue must also be in
the absolutive form; here we use the singular prox-
imal absolutive demonstrative for each of the four
gender classes. A sentence where both the abso-
lutive nominal and an absolutive demonstrative oc-
cur is considered to be a positive count for the cor-
responding gender class. Although an NP can be
discontiguous, sentences where the demonstrative
is in direct apposition to the nominal can provide
stronger evidence — as such, we also consider a
cue strategy for instances in direct apposition (either
pre-modifying, post-modifying, or either). A short
example is shown for the absolutive nominal alaji
across Examples (3)–(6) in Table 2.

Alternatively, with access to a morphological
analyser, we could generate all of the possible in-
flected surface forms for a given nominal (INFL).

On average, this is about 700 different forms. Here,
we do not attempt to enforce morphological agree-
ment: if any form of the nominal co-occurs with
any cue, we consider that to be positive evidence.
There are 62 fully-inflected demonstratives given by
Nordlinger, and the aggregated count for a class is
the sum of all of the sentences where one of the cor-
responding surface cues occurred. We again con-
trast direct apposition with sentence co-occurence.
Table 3 shows the counts for alaji in the given ex-
amples.

If no morphological analysis tools are available,
we could simply search for the stem (STEM); since
morphology in Wambaya is primarily suffixing, we
allow any number of other characters to optionally
follow the stem. In this case, we consider both of
the above cue strategies: the four absolutive nom-
inals, where the stem is a proxy for the absolutive
form, or all sixty-two, where the stem is a proxy for
the entire set of inflected forms. This method fails
for the given examples below, because none of the
inflected forms of alaji begin with the stem alag-.
About 30% of the stems in the lexicon are homolo-
gous with the corresponding absolutive form; many
are proper prefixes thereof.

Classification proceeds by choosing the most fre-
quent aggregated count; in most cases, this is the
only non-zero count. Because of the small corpus
and the sparsity of the cue set, we also explored a
classification routine where any non-zero count is
treated as a positive classification: predictably, a
small boost in recall is traded off with a small drop
in precision. Across the Wambaya corpus, these dif-
ferences are not statistically significant at the 0.05
level, and are not reported in detail.

3.2 Web-as-Corpus Frequency
The methodology for using the Web as a corpus
is very similar to the corpus frequency approach,
except that page count estimates returned by a
search engine are used in place of actual observed
instances. The assumption that these values are
strongly correlated was found to be accurate by
Keller and Lapata (2003) for a range of classifica-
tion tasks.

At first glance, using the Web to estimate corpus
counts for a language close to extinction is patently
absurd, as there is no speech community generat-
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(3) Gulug-ardi
sleep-CAUS(NF)

ng-u
1SG.A-FUT

ini
this.I.SG.ABS

alaji.
boy.I.ABS

“I’m going to put this boy to bed.”

(4) Garnguji
many.I.ABS

nyi-n
2SG.A.PR-PROG

yabu
have

alaji.
boy.I.ABS

“You have a lot of kids.”

(5) Alangi-nka
boy.I-DAT

yana
this.IV.SG.ABS

jalyu.
bed.IV.ABS

“This is the boy’s bed.”

(6) Jawaranya
billycan.II.ABS

ng-u
1SG.A-FUT

yidanyi
get

ngaba
then

ng-u
1SG.A-FUT

yardi
put

yaniya
that.IV.SG.ABS

cool
cool

drink
drink.IV

ninaka
this.I.SG.DAT

nanga
3SG.M.OBL

alangi-nka.
boy.I-DAT

“I’m going to get the billycan and put that cool drink [in it] for the boy.”

ABS I (ini) II (nana) III (mama) IV (yana)
Pre 1 0 0 0
Post 0 0 0 0
Pre/Post 1 0 0 0
No apposition 1 0 0 0

Table 2: Counts for examples (3)–(6) for the ABS paradigm of the class I nominal alaji

INFL I II III IV

Pre 1 0 0 0
Post 0 0 0 1
Pre/Post 1 0 0 1
No apposition 2 0 0 2

Table 3: Counts for examples (3)–(6) for the INFL paradigm of the class I nominal alaji

t− 4 t− 3 t− 2 t− 1 t+ 1 t+ 2 t+ 3 t+ 4

cool gulugardi ngu ini yana jalyu
garnguji nyin yabu

drink ninaka nanga

Table 4: Machine learning features based on the fully-inflected (INFL) forms of alaji, from examples (3)–(6)

p1 p2 p3 p4 s1 s2 s3 s4

a al ala alaj i ji aji laji

Table 5: Machine learning features based on the prefixes and suffixes of the absolutive form of alaji
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ing Web documents in that language. However, it
may be the case that we actually observe documents
which are linguistic descriptions of the target lan-
guage, and not simply noise3. The ODIN project
(Lewis and Xia, 2009) is an attempt to leverage
such linguistic data into resources automatically. An
additional reason for performing the experiment is
that it is a standard DLA method which is used for
higher-density languages, but there is no indication
in the literature of how well to expect it to perform
over low-density languages.

In our case, we experiment with the Yahoo! search
engine API. Since the API rate-limits queries, we
chose to only examine the ABS nominal set with
the four proximal absolutive demonstratives, and the
STEM set with the four demonstratives. We con-
tinued to contrast the surface cues in apposition,
which were constructed as phrasal queries, with
non-phrasal versions, i.e. that the demonstrative sim-
ply occurred in the same document as the nominal.

The frequencies that we observed from the Web
were again sparse, but much less so than the corpus
frequencies. Part of this was because of homology
with wordforms in other languages; for example, the
class I absolutive demonstrative is ini. Thresholding
classification at zero frequency — that is, having a
positive classification for any non-zero observation
— becomes somewhat absurd over Web-scale data,
particulary for the non-phrasal queries. Performance
in these cases approaches that of the baseline classi-
fier where every nominal is assigned to every class;
the utility of this baseline is low.

3.3 Machine Learning
The third standard approach to DLA is machine
learning, where a corpus provides not just frequency
estimates of lexical patterns as for the corpus fre-
quency approach, but the source of a potentially rich
variety of features.

In applying the machine learning method to
Wambaya, we relax the requirement for observing
demonstratives. This is useful if a representative cue
set is unknown or cannot be constructed. Instead,
for each nominal in the data set, we identify corpus
instances, and build feature vectors according to the

3For example, of the top ten documents returned by Google
for the query ngabulu “milk, breast”, three are about Wambaya
and another four are about Australian languages with a cognate.

tokens observed within a context window. We used
a window size of up to four tokens, labelled for their
distance from the target nominal; very little perfor-
mance difference was observed when using different
window sizes, possibly due to the fact that the aver-
age sentence length in the corpus was quite short.
The feature values for all of the inflections of alaji
for the given examples are shown in Table 4.

We then split the instances into training and test
sets using 10-fold cross-validation. Our preferred
machine learning model was the maximum entropy
classifier.4; we do not expect substantial differences
to result from using other types of machine learning
models over this feature set. We also thresholded
the classification so that if all classes were equally
likely, no decision was made; otherwise, the class
assigned with the greatest probability was chosen.

For contrast, we also built a model whose features
were substrings of the nominal itself, rather than us-
ing contextual features. We considered prefixes of
length 1 to 4 and suffixes of length 1 to 4, again
varying this parameter was not observed to greatly
affect performance. The feature vectors for the ab-
solutive nominal alaji are shown in Table 5. This
type of classification takes into account the regular
morphological processes of Wambaya, and is con-
sequently very effective, but would be less effective
for many other Australian languages.

4 Results

For each methodology, we present the precision and
recall, as well as the F-score. In fact, because of the
low recall of most systems, the F-score is strongly
correlated with recall, even though precision be-
comes the most interesting metric.

For the majority class baseline, that is, classifying
every lexical item as class IV, the precision is 0.419
and the recall 0.385, for an F-score of 0.401. Most
of the systems are well below this figure, due to low
recall.

4.1 Corpus Frequency
The results of the corpus frequency assignment
methods are shown in Tables 6 through 9, for
Pre-modification frequencies, Post-modification fre-

4We used the OpenNLP implementation available at http:
//www.sourceforge.net/projects/maxent/.
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quencies, the combination of those two, and fre-
quencies where the demonstrative and nominal sim-
ply co-occur in a sentence.

The first notable fact is that recall is uniformly
awful, where even the most generous system only
classifies 49 instances correctly. On the other hand,
precision is high, markedly higher than the baseline
in almost all cases. Because there are so few in-
stances being classified, it is difficult to draw sig-
nificant comparisons between different systems; it
seems though that there are fewer instances where
the demonstrative post-modifies the noun, and that
the methods that require apposition maintain higher
precision and lower recall than the one that relaxes
the requirement of contiguous NPs.

Context Precision Recall Fβ=1

Pre 0.944 0.022 0.043
Post 1.000 0.008 0.016
Pre/Post 0.950 0.024 0.047
No apposition 0.821 0.030 0.058

Table 6: Performance of corpus frequency assignment ac-
cording to the four absolutive demonstratives over the set
of absolutive nominals (ABS)

Context Precision Recall Fβ=1

Pre 0.824 0.018 0.035
Post 0.692 0.011 0.022
Pre/Post 0.783 0.023 0.045
No apposition 0.617 0.037 0.070

Table 7: Performance of corpus frequency assignment ac-
cording to the four absolutive demonstratives over the set
of nominal stems (STEM)

Context Precision Recall Fβ=1

Pre 0.794 0.034 0.065
Post 0.800 0.010 0.020
Pre/Post 0.784 0.037 0.071
No apposition 0.694 0.055 0.102

Table 8: Performance of corpus frequency assignment
according to the full demonstrative set over the fully in-
flected nominal set (INFL)

4.2 Web-as-corpus Frequency
The results of the Web frequency assignment meth-
ods are shown in Tables 10 and 11, for the same ob-

Context Precision Recall Fβ=1

Pre 0.718 0.036 0.069
Post 0.545 0.015 0.029
Pre/Post 0.673 0.042 0.079
No apposition 0.620 0.062 0.113

Table 9: Performance of corpus frequency assignment ac-
cording to the full demonstrative set over the set of nom-
inal stems (STEM)

servation methods as the corpus frequency approach,
except that non-phrasal queries are now at the docu-
ment level instead of the sentence level.

Recall is generally not substantially higher than
the corresponding approaches from the 1131 corpus
sentences in Tables 6 and 7. As the precision is so
much lower, significantly lower than the baseline in
most cases, it appears that any classifications that
this model makes correctly are completely acciden-
tal. If there is any useful evidence, it is swamped by
extra-lingual or extra-linguistic material across the
greater Web.

Context Precision Recall Fβ=1

Pre 0.304 0.031 0.056
Post 0.309 0.032 0.058
Pre/Post 0.315 0.037 0.066
Non-phrasal 0.238 0.086 0.121

Table 10: Performance of Web frequency assignment ac-
cording to the four absolutive demonstratives over the set
of absolutive nominals (ABS)

Context Precision Recall Fβ=1

Pre 0.216 0.031 0.054
Post 0.236 0.033 0.058
Pre/Post 0.244 0.041 0.070
Non-phrasal 0.177 0.074 0.104

Table 11: Performance of Web frequency assignment ac-
cording to the four absolutive demonstratives over the set
of nominal stems (STEM)

4.3 Machine Learning
The results of machine learning using the maximum
entropy classifier are shown for the three nominal
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sets in Table 12. The performance differences be-
tween the three sets were primarily caused by the
number of corpus instances (and consequently fea-
ture windows) that could be observed for nominals
in each set: for ABS, only 16.5% of the nominals
were observed at least once in the corpus, compared
to 26.7% and 31.7% for INFL and STEM respectively.

Feature set Precision Recall Fβ=1

ABS 0.511 0.087 0.149
INFL 0.634 0.214 0.320
STEM 0.713 0.281 0.403
MORPH 0.914 0.903 0.908

Table 12: Performance of the maximum entropy classifier
over the various nominal sets

The precision of the model for all three datasets
was markedly higher than that of the baseline. The
low performance over the ABS dataset was primar-
ily caused by sparsity of features: even though each
instance was accurate, there were at best one or two
windows with which to make a classification.

On the other hand, the fact that we saw higher
performance across the STEM data set than the INFL

dataset was surprising, particularly for precision
(χ2 = 3.87, p < 0.05), somewhat less so for recall
(χ2 = 7.46, p < 0.01). Examining the features, it
was clear that there were erroneous corpus instances
identified for the stem set, including verbs and other
nouns that happened to share the first few characters.
This makes its significantly higher performance all
the more puzzling.

One observation from the feature sets was that
some of the stems were wrong, or at least infelici-
tous in their interaction with the morphological gen-
eration component of the grammar to produce li-
censed wordforms in Wambaya. This would be ar-
tificially lowering the recall of the INFL set slightly,
and possibly reducing the amount of discriminatory
data for the model. This could also be affecting the
STEM set, but it seems that many of the stems were
proper prefixes of the lemma anyway.

The likely cause of the difference in precision be-
tween the STEM and INFL sets was that the machine
learning model was picking up on spurious regular-
ity in the corpus. Most of the sentences in the corpus
were derived from inline linguistic citations, where

it is often valuable to have a pair of sentences with
minimal changes to highlight a particular property
or construction. (For example, Ngajbi gina ganggu
yarruwarda “He saw grandfather walking” and Nga-
jbi gina gangguliji yarruwarda “He saw his grand-
father walking” to illustrate use of the reflexive-
possessive suffix -liji.) If there was a morpholog-
ical bias in the stems where corpus instances were
observed for STEM and the inflected forms were not
observed, that morphological bias could make clas-
sification easier because morphology is an accurate
predictor of gender in Wambaya. To examine this,
we attempted to construct the model using only the
transcribed free text and not the linguistic inline ci-
tations, but this removed two-thirds of the data —
consequently, the model struggled to classify any in-
stances. One other possibility would be to train the
model using features based on the linguistic citations
and test on the features from the free texts.

Finally, we show results of using the pseudo-
morphological features (prefixes and suffixes of the
nominal of length 1 to 4) under MORPH in Ta-
ble 12. When features were constructed from the
lemma, both precision and recall were close to gold-
standard, because gender is morphologically marked
on the absolutive suffix. In some respects, this is a
circular problem, because the gender must be known
to correctly generate the absolutive form from the
stem. If the morphological features are constructed
from the stem instead of the lemma, accuracy drops
to 68.6%. This approach is effective for Wambaya,
but would be less so for many neighbouring lan-
guages.

5 Discussion

We presented several modes of classification for
grammatical gender of nominals in Wambaya. Most
of these had prohibitively low recall, showing that
it is generally difficult to make such classifications,
partly due to the complexity of the language, and
partly due to the paucity of data available to provide
evidence for one gender over another.

In general, it appears that for the few instances
where evidence can be evinced from the small num-
ber of sentences in the corpus, that evidence leads to
a correct classification. Presumably, if one had ac-
cess to more Wambaya text, one could make more
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correct classifications. This follows our intuition,
and that of corpus-based computational linguistics
over the past few decades.

However, the Web will not be the provider of
that data. This may be because of the almost non-
existent nature of the Wambaya speech community,
but despite its gigantic size the value of the Web as
a source of raw text for minority languages still re-
mains to be demonstrated. Any Wambaya text that
was returned by the search engine was swamped
by other data, to the point where a Web frequency-
based system was utterly hopeless — in contrast to
other observations of such a system.

On the other hand, machine learning provided a
promising approach in terms of having a high pre-
cision system that can actually make a non-trivial
number of classifications, even from a small amount
of data. The learner appears to be making best use of
the data, without rigid constraints on co-occurrence
with surface cues; this is possibly grounded in the
distributional hypothesis. It is also possible that the
model is overfitting to the regular structure of the
linguistics-focussed corpus — this hypothesis is dif-
ficult to test, and, as little new text will be written
for Wambaya, may remain unverified.

For the rich morphology in Wambaya, we con-
trasted identifying instances or cues based upon a
simple set (the lemma, ABS, and the four proximal
demonstratives), with a richly inflected set (INFL,
and the full 62 demonstratives), and a resource-
poor approach to morphology (STEM, where only
the primarily-suffixing assumption is made). While
performance between the systems was similar, it
seems that having the full approach to morphology
does indeed provide improvement in precision, at
the cost of substantial development time. Simpler
approaches, where assumptions about properties of
the language can be quickly made and verified (us-
ing WALS Online5 (Haspelmath et al., 2008), for
example), seem like a reasonable trade-off.

All in all, the low-recall and moderate-to-high-
precision results motivate a semi-automatic ap-
proach to lexicon extension: the model posits classi-
fications, and the lexicographer examines these from
high-confidence downward. As new entries are con-
firmed or corrected, the model can be re-run to sug-

5http://wals.info

gest further classifications. This seems like a pro-
ductive interaction for rapid lexicon extension.

While Wambaya probably presents the most ex-
treme case of difficulty for the languages that have
so far been analysed in deep lexical acquisition
or lexical disambiguation, it also has its own id-
iosyncracies that make classification based on mor-
phosyntax and contextual cues somewhat uninterest-
ing. The very regular morphology may also be in-
troducing biases in spite of its richness. As such,
further analysis is required on other Australian lan-
guages — insofar as resources are available.

6 Conclusion

We have analysed a number of approaches to the
prediction of grammatical gender of nominals in
Wambaya, using Wambaya as a test case for a crit-
ically low-density language requiring documenta-
tion. While co-occurrence frequencies of gender-
marking demonstratives give high precision in cor-
pus frequency-based methods, recall is prohibitively
low. Using the Web as a corpus does not allay this
problem, as the Wambaya text available on the Web
did not lead to useful frequency observations of the
surface cues. Machine learning did appear to pro-
vide a more robust classification model, with some
caveats for the nature of the data set; learning of
morphological cues proved very effective, as these
are distinctive in Wambaya. We envision these re-
sults as evidence for a semi-supervised approach to
lexicon extension.
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