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Abstract

This paper presents methods for answering,
what we call, Cross-passage Evidence Ques-
tions. These questions require multiply scat-
tered passages all bearing different and par-
tial evidence for the answers. This poses
special challenges to the textual QA systems
that employ information retrieval in the “con-
ventional” way because the ensuing Answer
Extraction operation assumes that one of the
passages retrieved would, by itself, contain
sufficient evidence to recognize and extract
the answer. One method that may overcome
this problem is factoring a Cross-passage Evi-
dence Question into constituent sub-questions
and joining the respective answers. The first
goal of this paper is to develop and put this
method into test to see how indeed effective
this method could be. Then, we introduce an-
other method, Direct Answer Retrieval, which
rely on extensive pre-processing to collect dif-
ferent evidence for a possible answer off-line.
We conclude that the latter method is supe-
rior both in the correctness of the answers and
the overall efficiency in dealing with Cross-
passage Evidence Questions.

1 Distinguishing Questions Based on
Evidence Locality

Textual factoid Question Answering depends on the
existence of at least one passage or text span in the
corpus that can serve as sufficient evidence for the
question. A single piece of evidence may suffice to
answer a question, or more than a single piece may
be needed. By “a piece of evidence”, we mean a

snippet of continuous text, or passage, that supports
or justifies an answer to the question posed. More
practically, in factoid QA, a piece of evidence is a
text span with two properties: (1) An Information
Retrieval (IR) procedure can recognise it as relevant
to the question and (2) an automated Answer Extrac-
tion (AE) procedure can extract from it an answer-
bearing expression (aka an answer candidate).

With respect to a given corpus, we call questions
with the following property Single Passage Evidence
Questions or SEQs:

A question Q is a SEQ if evidence E suf-
ficient to select A as an answer to Q can
be found in the same text snippet as A.

In contrast, we call a question that requires multiple
different pieces of evidence (in multiple text spans
with respect to a corpus) a Cross-passage Evidence
Question or CEQ:

A question Q is a CEQ if the set of evi-
dence E1, ..., En needed to justify A as
an answer to Q cannot be found in a sin-
gle text snippet containing A, but only in
a set of such snippets.

For example, consider the following question:

Which Sub-Saharan country had hosted
the World Cup?

If the evidence for the country being located south
of Sahara dessert and the evidence for this same
country having hosted the World Cup is not con-
tained in the same passage/sentence, but are found
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in two distinct passages, the question would be a
Cross-passage Evidence Question. This distinction
between SEQs and CEQs lies only in the locality of
evidence within a corpus. It does not imply that the
corpus contains only one piece of text sufficient for
a SEQ: Often there are multiple text snippets, each
with sufficient evidence for the answer. Such redun-
dancy is exploited by many question answering sys-
tems to rank the confidence of an answer candidate
(e.g. including (Brill et al., 2002)) but the evidence
is redundant rather than qualitatively different.

Now, as opposed to Single-passage Evidence
Questions, which had been the usual TREC type
questions (White and Sutcliffe, 2004), Cross-
passage Evidence Question poses special challenges
to the textual QA systems that employ informa-
tion retrieval in the “conventional” way. Most tex-
tual QA system uses Information Retrieval as doc-
ument/passage pre-fetch. The ensuing Answer Ex-
traction operation assumes that one of the passages
retrieved would, by itself, contain sufficient evi-
dence to recognize and extract the answer. Thus the
reliance on a particular passage to answer a ques-
tion renders the task of question answering essen-
tially a local operation with respect to the corpus as
a whole. Whatever else is expressed in the corpus
about an entity being questioned is ignored, or used
(in the case of repeated evidence instances of the
same answer candidate) only to increase confidence
in particular answer candidates. This means that fac-
toid questions whose correct answer depends jointly
on textual evidence located in different places in the
corpus cannot be answered. We call this the locality
constraint of factoid QA. Thus special methods are
needed to overcome this locality constraint in order
to successfully handle CEQs. In the following sec-
tions, we explore two methods for answering CEQs,
first, based on Question Factoring for conventional
IR based QA systems, and second, based on what
we call Direct Answer Retrieval method in place of
conventional IR.

2 Solving CEQs by Question Factoring

While whether a question is a CEQ or not depends
entirely on the corpus, it can be guessed that the
more syntactically complex a question, the more
likely that it is a CEQ, given that a complex ques-

tion will have more terms and relations that need
to be satisfied. For example, the above question
is of the form “What/Which <NBAR> <VP>?”
such as Which [NBAR Sub-Saharan country] [VP had
hosted the World Cup?], and has at least two pred-
icates/constraints that must be established, the one
or more conveyed by the NBAR, and the one or
more conveyed by the VP. These multiple restric-
tions might call for different pieces of evidence de-
pending on the particular corpus from which the an-
swer is to be found.

In database QA, CEQs correspond to queries that
involve joins (usually along with selection and pro-
jection operations). The database equivalent of the
afore-mentioned question about the certain World
Cup hosting country might involve joining one re-
lation linking country names with the requisite lo-
cation, and another linking the names of countries
with World Cup hosting history. Note that this in-
volves breaking up the original query into a set of
sub-queries, each answerable through a single rela-
tion. Answering a CEQ through sub-queries there-
fore involve the fusion of answers to different ques-
tions.

Analogously, we apply this method of joining
sub-queries for database to the task of textual QA to
deal with the CEQs. The solution we explore here
can be adopted by any existing system with the con-
ventional Information (Passage) Retrieval and An-
swer Extraction (IR+AE) pipeline architecture. It
involves:

1. Dividing a CEQ into sub-questions SQ1, ...,
SQn, each of which is a simple question about
the same question variable.1

2. Finding the answer candidate(s) for each sub-
question,

3. Selecting the best overall answer from the an-
swer candidates for the sub-questions.

2.1 Dividing a CEQ into sub-questions
Decomposing a CEQ into simpler sub-questions
about the question variable involves:

1We have only considered sub-questions that are naturally
joined on the question variable. Extending to the equivalent of
joins on several variables would require an even more complex
strategy for handling the answer candidate sets than the one we
describe in Section 2.2.
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• Resolving all co-referring expressions within
the question;

• If the WH-phrase of the question is a complex
phrase, making a sub-question asking the iden-
tity of its head noun phrase (e.g. “Which north-
ern country is ...” → “What is a northern coun-
try?”);

• Breaking up the question at clause boundaries
(including relative clauses);

• Within a single clause, if there is a conjoined
set of restrictors (e.g. “ ... German physician,
theologian, missionary, musician and philoso-
pher ..”), copying the clause as many times as
the number of restrictors, so that each clause
now contains only one restrictor;

• Finally, reformulating all the individual clauses
into questions.

Some examples of CEQs which have been factored
into sub-questions are as follows2.:

• Which French-American prolific writer was
a prisoner and survivor of the infamous
Auschwitz German concentration camp, Chair-
man of the U.S. President’s Commission on
the Holocaust, a powerful advocate for human
rights and a recipient of the Nobel Peace Prize?

1. Who was a French-American prolific
writer?

2. Who was a prisoner and survivor of the in-
famous Auschwitz German concentration
camp?

3. Who was a Chairman of the U.S. Presi-
dent’s Commission on the Holocaust?

4. Who was a powerful advocate for human
rights?

5. Who was a recipient of the Nobel Peace
Prize?

It should be clear that factoring a CEQ into a set
of sub-questions is often tricky but doable. The
intra-sentential anaphora resolution can be less than
straight-forward. So often, it is a matter of choice

2All the evaluation questions are from a pub-quiz site
http://www.funtrivia.com

as to how to break a question into how many sub-
questions and at what boundaries. In the evalua-
tion reported in Section 2.3, the CEQs were man-
ually broken into sub-questions, based on the proce-
dure outlined above, since our focus was on evalu-
ating the viability of the overall method rather than
individual components. Our results may thus serve
as an upper-bound to what a fully automated proce-
dure would produce. (For work related to the auto-
matic decomposition of a complex question in order
to deal with temporal questions, see (Saquete et al.,
2004).)

2.2 Selecting an Answer to the CEQ from
Sub-question Answer Candidates

From the answer candidates to the sub-questions, an
answer must be derived for the CEQ as a whole. The
most obvious way would be to pick the answer can-
didate that is the answer to the largest number of
sub-questions. So if a CEQ had three sub-questions,
in the ideal case there would be one answer candi-
date that would be the answer to all of these sub-
questions at the same time and thus be the most
likely answer to the CEQ. This is like a simple vot-
ing scheme, where each sub-question votes for an
answer candidate, and the candidate with the most
votes win.

Complications from this ideal situation arise in
two ways: First, a sub-question can be very gen-
eral because it results from separating away other
restrictions from the question. Hence, the answer to
a sub-question must be regarded instead as a set of
answers as in list questions, several of which may be
correct rather than being one correct answer to that
subquestion. In other words, a sub-question can vote
for multiple candidates rather than just one.

Second, simply maximising overlap (i.e. the num-
ber of sub-questions to which an answer candidate
is the answer, which we call simply votes from now
on) ignores the possibility that multiple answers can
tie for the same maximum votes, especially if this
number is small compared to the number of sub-
questions. Thus, there is the need for a method to
rank the answers with the same number of votes.

In summary, a sub-question can vote for multi-
ple candidates and more than one candidates can re-
ceive the same largest number of votes from the sub-
questions. This means we need an additional way to
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break the ties among the candidates by ranking the
candidates according to some other criteria. The an-
swer selection method we have chosen is described
below.

Let’s assume that a question has been factored
into N sub-questions, and each sub-question is an-
swered with a (possibly empty) set of answer candi-
dates. So for the set of N sub-questions for the origi-
nal question, there are N answer candidate sets. The
most likely answer would be the answer candidate
shared by all the N sub-questions (i.e. the answer
candidate present in all the N sets of answer candi-
dates.). To see if there is such a common answer
candidate, these N sets of answer candidates are first
intersected (via generalized intersection).

If the intersection of these N sets is empty
(i.e., there is no one answer candidate that all the
sub-questions share.), then it must be investigated
whether there is a common answer candidate for N-
1 sets of answer candidates (i.e. an answer shared by
N-1 sub-questions.). There will be N cases to con-
sider since there will be N cases of N-1 sub-question
sets to intersect. If all these are empty, then all sub-
sets of size N-2 are considered, and so on, until a
non-empty intersection is obtained. This means con-
sidering the power set of the original set of answer
candidate sets.

This process may result in one answer candidate
or several with the same maximum number of votes.
If there is only one, this is chosen as the answer.
Otherwise, there is a need for a further way to rank
these answer candidates to produce the most likely
as the answer. Specifically, if there is more than
one non-empty intersection with the same maximum
votes, we do the expected thing of taking into ac-
count the original ranking of answer to the sub-
questions (in most QA systems, the answer candi-
dates are ranked according to their plausibility). If
an answer is found to be the second ranked answer to
one sub-question and the sixth ranked answer to an-
other, its overall rank is taken to be the simple mean
of the ranks. So in this case, the answer would have
the rank four overall. This algorithm can be more
formally stated as follows3.

• Step 1: Let S be the set of the sets of answers,
3This will be easier to understand if considered together with

the example that follows.

A1, .. , An, to the sub-questions, Q1 .. Qn
respectively.

• Step 2: Produce the power-set of S, i.e. P =
POW (S).

• Step 3: Produce a set of ordered pairs, V , such
that V = {〈o,R〉 | R ⊂ P ∧ ∀x ∈ R. |x| = o
for every distinct o = |y| of every y ∈ P}
• Step 4: Pick the ordered pair, L such that L =
〈o,R〉 ∈ V with the largest o among the mem-
bers of V , and do:

1. Produce T from R such that T =
⋃{x |

x =
⋂
t for every t ∈ R}. (Note that t is

a set.)
2. If R‘ is an empty set, repeat this step 4 for

the ordered pair with the next largest o.
3. Else if T has a unique member, then pick

that unique member as the answer and ter-
minate.

4. Otherwise, go to the next step.

• Step 5: For each member, x ∈ T , get the ranks,
r1, .. , rn in the sub-questions, Q1 .. Qn and
compute the mean M of the ranks.

• Step 6: Pick the member of T with the lowest
M score as the answer.

To illustrate the steps described above, consider a
CEQ M that can be split into three sub-questions Q1,
Q2 and Q3. Then:

• Step 1: Assume that the sets A1, A2, A3 are the
answer candidate sets for sub-questions Q1, Q2
and Q3 respectively:

A1 = {CLINTON, BUSH, REAGAN}
A2 = {MAJOR, REAGAN,
THATCHER}
A3 = {FORD, THATCHER, NIXON}

Let S = {A1,A2,A3}
• Step 2: P = POW(S) =
{{A1,A2,A3},{A1,A2},{A2,A3},{A1,A3},{A1},
{A2},{A3},{}}

• Step 3:

V = {〈3, {{A1, A2, A3}}〉 ,
〈2, {{A1, A2}, {A2, A3}, {A1, A3}}〉 ,
〈1, {{A1}, {A2}, {A3}}〉 , 〈0, {{}}〉}

374



• Step 4:

First pick L = 〈o,R〉 = 〈3, {{A1, A2, A3}}〉
based on the largest o in consideration (i.e. 3).

Then, get T such that T =
⋃{x | x =

⋂
t for

every t ∈ R} = ⋃{A1 ∩A2 ∩A3 = {}}
Since T is an empty set, no answer can be
picked. So repeat this step for the ordered pair
with the next largest votes.

• So again Step 4:

The second pick L = 〈o,R〉 =
〈2, {{A1, A2}, {A2, A3}, {A1, A3}}〉
Now get T by T = (A1 ∩ A2) ∪ (A2 ∩ A3) ∪
(A1 ∩A3) = {REAGAN, THATCHER}
Since R’ is non-empty, which at the same time
does not have a unique member, go to the next
step.

• Step 5:

REAGAN: 4th candidate for Q1 and 10th in Q2
– average rank 7

THATCHER: 1st candidate for Q2 and 5th in Q3
– average rank 3

• Step 6:

Take the candidate with the highest average
rank as the answer – here, THATCHER.

2.3 Evaluation of the Sub-question Method
The evaluation has two purposes. The first is to see
how well the sub-question method works with re-
spect to CEQs. The second is to provide a baseline
results for the performance of the Direct Answer Re-
trieval method introduced in the next section.

For the evaluation of this strategy, we chose 41
“quiz” questions (i.e. ones designed to challenge
and amuse people rather than to meet some real in-
formation need, like the IBM Watson system doing
Jeopardy questions (David Ferrucci, 2012)) as likely
Cross-passage Evidence Questions (CEQs) with re-
spect to the knowledge base corpus, AQUAINT cor-
pus in this evaluation. They were filtered based on
the following criteria:

• Did the question contain multiple restrictions
of the entity in question?

• Did the answer appear in the AQUAINT cor-
pus?

• Was the answer a proper name?

• Was it a difficult question? (Questions from
the original site have been manually marked for
difficulty.)

The questions, varying in length from 20 to 80
words4, include:

What was the name of the German physi-
cian, theologian, missionary, musician
and philosopher who was awarded the
Nobel Peace Prize in 1952?

Which French-American prolific writer
was a prisoner and survivor of the in-
famous Auschwitz German concentration
camp, Chairman of the U.S. President’s
Commission on the Holocaust, a powerful
advocate for human rights and a recipient
of the Nobel Peace Prize?

He was born in 1950 in California. He
dropped out of the University of Cali-
fornia at Berkeley and quit his job with
Hewlett-Packard to co-found a company.
He once built a “Blue Box” phone at-
tachment that allowed him to make long-
distance phone calls for free. Who is he?

The QA system we have used to test this method
was developed previously and had shown good per-
formance for TREQ QA questions (Ahn et al.,
2005). In order to accomodate this method, a ques-
tion factoring module must be added. But as we
have previously mentioned, question factoring has
been done manually offline as we have not imple-
mented a fully automatic module for that as of yet.
The joining of answers to sub-questions are done au-
tomatically, however, using a specially added post-
processing module. Thus, this QA system is a sim-
ulation of a fully-automatic CEQ handling QA sys-
tem.

The evaluation procedure ran as follows. First, a
CEQ was factored into a set of sub-questions man-
ually. Then each sub-question was fed into the QA

4This is long compared to TREC questions, whose mean
length is less than 10 words.
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QID SQ MaxV ACI Rank
1 2 1 0 0
3 4 1 0 0
6 3 1 0 0
7 4 1 0 0
8 3 1 0 0
9 5 2 6 3

10 4 1 0 0
12 3 1 0 0
13 2 2 2 1
16 3 1 0 0
17 2 2 1 1
18 4 1 0 0
20 2 2 4 1
21 3 2 7 1
22 2 1 0 0
23 3 3 1 1
24 2 1 0 0
25 3 3 1 1
26 5 3 1 1
27 2 2 23 1
28 2 1 0 0
29 2 2 86 1
30 3 3 3 1
31 2 2 9 5
32 2 2 1 1
36 9 1 0 0
37 2 1 0 0
38 8 1 0 0
40 9 3 1 1

Table 1: Questions with answer candidates identified for
≥1 sub-questions.

engine to produce a set of 100 answer candidates.
The resulting sets of answers were assessed by an
Answer Selection/Ranking module that uses the al-
gorithm described in Section 2.2 to produce a final
set of ranked answer candidates.

2.4 Results and Observations

Among the 41 questions, 12 questions are found to
have no correct answer candidates by the QA en-
gine, and so these questions are ignored in the rest
of the analysis. For the remaining 29 questions, Ta-
ble 1 shows the value of ranking (i.e., Step 5 above)
when more than one answer candidate shares the

A@N SQ-Combined
1 0.317:13
2 0.317:13
3 0.341:14
4 0.366:15
5 0.366:15
6 0.366:15
7 0.366:15
8 0.366:15
9 0.366:15
10 0.366:15
15 0.366:15
20 0.366:15

ACC 0.317
MRR 0.341
ARC 1.333

Table 2: Results for Sub-question Method

same number of largest votes. Such answer candi-
dates need to be ranked in order to pick the best an-
swer. Here, QID indicates the question ID which did
have at least one sub-question with answers, where
SQ more specifically tells how many sub-questions
each question was factored into.

In Table 1, column MaxV indicates the largest
number of votes received by an answer candidate
across the set of sub-questions. Column ACI in-
dicates the number of answer candidates with this
number of Votes. For example, CEQ 9 has 5 sub-
questions. Its MaxV of 2 indicates that only the
intersection of the answer candidate sets for two
sub-questions (out of maximum 5) produced a non-
empty set (of 6 members according to ACI). These
6 members are the final answer candidates that will
be ranked.

The column labelled Rank indicates the ranking
of final answer candidates by mean ranking with re-
spect to the sub-questions they answer and identifies
where the correct answer lies within that ranking.
So for Question 9, the correct answer was third in
the final ranking. Fifteen questions had no answer
candidates common to any set of sub-questions (i.e.,
ACI=0). Of the 14 remaining questions, six had
only a single answer candidate, so ranking was not
relevant. (That answer was correct in all 6 cases.) Of
the final eight questions with≥1 final answer candi-
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dates, Table 1 shows that ranking them according to
the mean of their original rankings led to the cor-
rect answer being ranked first in six of them. In the
most extreme case, starting with 86 ties between an-
swers for two sub-questions (all of which have a set
of 100 answers), ranking reduces this to the correct
answer being ranked first. Table 1 also shows the
importance of the proportion of sub-questions that
contain the correct overall answer. For CEQs with
2 sub-questions, in every case, both sub-questions
needed to have contained the correct overall answer
in order for that CEQ to have been answered cor-
rectly. (If only one sub-question contains the cor-
rect overall answer, our algorithm has not selected
the correct overall answer.) For CEQs with 3 sub-
questions, at least two of the 3 sub-questions need to
have contained the correct overall answers in order
for the CEQ to be answered correctly by this strat-
egy. This seems to be less the case as the number of
sub-questions increases. However, the strategy does
seem to require at least two sub-questions to agree
on a correct overall answer in order for a CEQ to be
correctly answered. It is possible that another sub-
question ranking strategy could do better.

In sum, starting with 41 questions, the “sub-
question method found 14 with at least one “inter-
sective” answer candidate. Of those 14, the top-
ranked candidate (or, in 6 cases, the only “intersec-
tive” candidate) was the correct answer in 12 cases.
Hence the “sub-question” method has succeeded in
12 of 41 cases that would be totally lost without this
method. Table 2 shows the final scores with respect
to A@N, accuracy, MRR and ARC.

2.5 Discussion

The evaluation shows that the method based on sub-
question decomposition and ranking can be used for
answering Cross-passage Evidence Questions, but
we also need to consider the cost of adopting this
method as a practical method for doing real time
Question Answering; clearly multiplying the num-
ber of questions to be answered by decomposing
a question into sub-questions can make the overall
task even more resource-intensive than it is already.
Pre-caching answers to simple, frequent questions,
as in (Chu-Carroll et al., 2002), which reduces them
to database look-up, may help in some cases. An-
other compatible strategy would be to weigh the sub-

questions, so as to place more emphasis on more
important ones or to first consider ones that can be
answered more quickly (as in database query opti-
misation). This would avoid, or at least postpone,
very general sub-questions such as “Who was born
in 1950?”, which are like list questions, with a large
number of candidate answers and thus expensive to
process. The QA system would well process more
specific sub-questions first by learning the appropri-
ate weight as in (Chali and Joty, 2008) The second
issue is for the need of a method that can reliably
factor a CEQ into simple sub-questions automati-
cally, which would not be trivial to develop. Direct
Answer Retrieval for QA offers another alternative
that does not require the factoring of a question in
the first place, which is the subject of the next sec-
tion.

3 Direct Answer Retrieval for QA

The answers to many factoid questions are named
entities. For example, “Who is the president of
France?” has as its answer a name referring to a
certain individual. The basic idea of Direct Answer
Retrieval for Question Answering is to extract these
kinds of expressions off-line from a textual corpus
as potential answers and process them in such a
way that they can be directly retrieved as answers
to questions. Thus, the primary goal of Direct An-
swer Retrieval is to turn factoid Question Answering
into fine-grained Information Retrieval, where an-
swer candidates are directly retrieved instead of doc-
uments/passages. For simple named entity answers,
we have previously shown that this can make for fast
and accurate retrieval (Ahn and Webber, 2007).

In addition, as the process gathers and collates all
the relevant textual evidence for a possible answer
from all over the corpus, it becomes possible to an-
swer a question based on all the evidence available
in the corpus regardless of its locality. Whether this
is indeed so is what we are going to put to test here.

3.1 The Off-line Processing

The supporting information for a potential answer
(named-entity), for the present research, is the set of
all text snippets (sentences) that mentions it. With
the set of all sentences that mention a particular po-
tential answer put into one file, this can literally be

377



regarded as a document on its own with the answer
name as its title. The collection of such documents
could be regarded as the index of answers and the re-
trieval of documents as answer retrieval (Hence the
name Direct Answer Retrieval).

The processes of generating the collection of an-
swer documents for all the potential answers run as
follows. First, the whole base corpus is run through
POS tagging, chunking and named-entity recogni-
tion. Then, each sentence in each document is ex-
amined as to whether it contains at least one named-
entity. If so, then whether this named-entity rep-
resents an already identified answer candidate and
stored in the repository is examined. If so, then this
sentence is appended to the corresponding answer
document in the collection. If not, then a new an-
swer entity is instantiated and added to the reposi-
tory and a new corresponding answer document is
created with this sentence. If more than answer can-
didate is identified in a sentence, then the same pro-
cess is applied to every one of them.

In order to facilitate the retrieval of answer docu-
ments, this answer document collection is itself in-
dexed using standard document indexing technique.
At the same time, for each answer entity, its corre-
sponding named entity type is stored in a separate
answer repository database(using external resources
such as YAGO (Suchanek et al., 2007), it is possible
to look up very fine-grained entity type information,
which we did in our evaluation system). Answer In-
dex together with this repository database make up
the knowledge base for Direct Answer Retrieval QA
system.

3.2 The On-line Processing

With the knowledge base built off-line, the actual
on-line QA processes run through several steps. The
first operation is the answer type identification. For
this, in our evaluation system, the question is parsed
and a simple rule based algorithm is used that looks
at the WH-word (e.g. “Where” means location), the
head noun of a WH-phrase with “Which” or “What”
(e.g. “Which president” means the answer type is
of president), and if the main verb is a copula, the
head of the post-copula noun phrase (e.g. for “Who
is the president ..”, here again “president” is the an-
swer type. The identified answer type is resolved to
one the base named entity type (PERSON, LOCA-

TION, ORGANIZATION and OTHER) using on-
tology database such as the WordNet if the named
entity type is derived from the head noun of WH-
word or the noun after the copula, which do not have
the corresponding entity type in the answer reposi-
tory. The next operation is the retrieval of answers
as answer candidates for a given question. This in-
volves formulating a query, retrieving answer docu-
ments as answer candidates. If the index has been
partitioned into sub-indices based on the NER type,
as we have done, an appropriate index can be cho-
sen based on the answer type identified, and thereby
make the search more effiecient.

In the actual retrieval operation, there can be dif-
ferent ways to score an answer candidate with re-
spect to a query depending on the model of retrieval
used. The model of retrieval implemented for the
evaluation system is an adaptation of the document
inference network model for information retrieval
(Turtle, 1991). For a more thorough description of
the answer retrieval model, please refer to our previ-
ous work (Ahn and Webber, 2008).

When the search is performed and a ranked list
of answers is retrieved, this ranked list is then run
through the following procedures:

1. Filter the retrieved list of answers to remove
any named-entity that was mentioned in the
question itself if any.

2. Re-rank with respect to answer type, prefer-
ring the answer that match the answer type pre-
cisely.

3. Pick the highest ranking answer as the answer
to the question.

The first procedure is heuristically necessary be-
cause, for example, “Germany” in “Which country
has a common border with Germany”, can pop up
as an answer candidate from the retrieval. From the
remaining items in the list, each item is looked up
with respect to its answer type using the answer-type
table in the answer repository. The re-ranking is per-
formed according to the following rules:

• Answers whose type precisely matches the an-
swer type are ranked higher than any other an-
swers whose types do not precisely match the
answer type.

378



• Answers whose type do not precisely match
the answer type but still matches the base type
traced from the answer type are ranked higher
than any other answers whose types do not
match the answer type at all.

Now using these rules, the answer which is ranked
the highest is picked as the number one answer can-
didate.

This method, by itself, looks more like an answer
candidate retrieval system rather than a full-fledged
QA system with sophisticated answer extraction al-
gorithm as found in most QA systems. However, the
structured retrieval algorithm that we employ makes
up for this answer extraction operation. Again for a
full exposition of this structural retrieval operation,
refer to our previous work.

3.3 Answering CEQs by Direct Answer
Retrieval Method

Direct Answer Retrieval enables a direct approach
to Cross-passage Evidence Questions: There is no
need for any special method for question factoring.
With respect to an answer document, a possible an-
swer is already associated with all the distributed
pieces of evidence about it in the corpus: In other
words, CEQs are exactly the same as SEQs.

Here, for example, to the question, “Which US
senator is a former astronaut?” the conventional
approach requires different set of textual evidence
(passages) to be assembled based on the decompo-
sition of the question as we have presented in the
previous section, whereas in the Direct Answer Re-
trieval approach, only one answer document needs
to be located.

Thus there are three advantages for using Direct
Answer Retrieval method over the conventional IR
with the special sub-question method:

• No multiplication of questions.

• No need for question factoring.

• No need to combine the answers of the sub-
questions.

Whether, despite these advantages, the perfor-
mance would hold good, is evaluated next.

3.4 Evaluation and Comparison to IR+AE
The purpose of the evaluation is to see how well
this method can deal with CEQs, particularly as
compared to simulated IR+AE system with a sub-
question method as presented in the previous sec-
tion.

The implemented QA system had been previously
evaluated with respect to the more simple TREC
QA questions and found to have good performance.
The particular configuration that we used for our test
here utilizes naturally the same questions and the
same textual corpus as the source data as in the sub-
question method.

For each question, the system simply retrieves an-
swer candidates and the top 20 answers are taken for
the score assessment.

A@N Sub-QA Answering
1 0.317:13 0.317:13
2 0.317:13 0.512:21
3 0.341:14 0.585:24
4 0.366:15 0.634:26
5 0.366:15 0.659:27
6 0.366:15 0.659:27
7 0.366:15 0.659:27
8 0.366:15 0.659:27
9 0.366:15 0.659:27

10 0.366:15 0.659:27
15 0.366:15 0.659:27
20 0.366:15 0.659:27

ACC 0.317 0.317
MRR 0.341 0.456
ARC 1.333 1.889

Table 3: Comparison of the Scores

Table 3 summarises the results of the evaluation
for the Direct Answer Retrieval system (Ans-Ret)
compared to the Sub-question method based system
(Sub-QA).

The Ans-Ret system has returned more correct an-
swers than the Sub-QA system (in all cut-off points
except having tied in number 1 rank). Also all the
correct answers that were found by the Sub-QA sys-
tem were also found by the Ans-Ret system irre-
spective of the ranks. Twelve correct answers that
were found by Ans-Ret (at A@5) were missed by
the Sub-QA system. Among those answers that
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were found by both systems, Sub-QA produced bet-
ter rank in 5 cases whereas in only one case the Ans-
Ret produced a better rank. However, Table 3 shows
that Ans-Ret in general found more correct answers
(27 vs 15) in total, and more answers in higher rank
(e.g. top 2) than Sub-QA system.

In order to verify the performance difference, we
used a statistical test, Wilcoxon Matched Signed
Rank Test (Wilcoxon, 1945), which is used for small
samples and assumes no underlying distribution.
According to this test, the difference is statistically
significant (W+ = 17.50, w- = 172.50, N = 19, p =
0.0007896). Hence, it is possible to conclude that
Direct Answer Retrieval method is superior to the
simulated IR+AE method with special sub-question
method for this type of questions. The fact that Di-
rect Answer Retrieval Method has superior perfor-
mance is no surprise considering that the more the
evidence from the question for an answer, more in-
formation is available for the method in matching
the relevant answer document of a candidate answer
to the question. This is in contrast to the IR+AE
based systems, which, without a special strategy
such as the sub-question method discussed here, re-
quire that whatever evidence exist in a question must
be found within one sentence in the corpus due to the
locality constraint.

4 Conclusion

Cross-passage Evidence Questions are the kind of
questions for which the locality constraint bear out
its constraining effect. A special method is devised
in order to overcome this constraint with the con-
ventional QA with IR+AE architecture. This in-
volves partitioning a question into a set of simpler
questions. The results show that the strategy is suc-
cessful to a degree in that some questions are indeed
correctly answered but it also comes with a cost of
multiplying the number of questions. On the other
hand, Direct Answer Retrieval method is process-
wise more efficient, has a better performance in
terms of accuracy, and does not require tricky ques-
tion factoring regarding this type of questions. Di-
rect Answer Retrieval method, thus, clearly shows a
clear advantage for CEQs.
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