
Copyright 2012 by Mo Shen, Daisuke Kawahara, and Sadao Kurohashi
26th Pacific Asia Conference on Language,Information and Computation pages 308–317

A Reranking Approach for Dependency Parsing with Variable-sized

Subtree Features

Mo Shen, Daisuke Kawahara, and Sadao Kurohashi

Graduate School of Informatics

Kyoto University

Yoshida-honmachi, Sakyo-ku,

Kyoto, 606-8501, Japan

shen@nlp.ist.i.kyoto-u.ac.jp {dk,kuro}@i.kyoto-u.ac.jp

Abstract

Employing higher-order subtree structures

in graph-based dependency parsing has

shown substantial improvement over the

accuracy, however suffers from the

inefficiency increasing with the order of

subtrees. We present a new reranking

approach for dependency parsing that can

utilize complex subtree representation by

applying efficient subtree selection

heuristics. We demonstrate the effective-

ness of the approach in experiments

conducted on the Penn Treebank and the

Chinese Treebank. Our system improves

the baseline accuracy from 91.88% to

93.37% for English, and in the case of

Chinese from 87.39% to 89.16%.

1. Introduction

In dependency parsing, graph-based models are

prevalent for their state-of-the-art accuracy and

efficiency, which are gained from their ability to

combine exact inference and discriminative

learning methods. The ability to perform efficient

exact inference lies on the so-called factorization

technique which breaks down a parse tree into

smaller substructures to perform an efficient

dynamic programming search. This treatment

however restricts the representation of features to

in a local context which can be, for example, single

edges or adjacent edges. Such restriction prohibits

the model from exploring large or complex

structures for linguistic evidence, which can be

considered as the major drawback of the graph-

based approach.

Attempts have been made in developing more

complex factorization techniques and

corresponding decoding methods. Higher-order

models that use grand-child, grand-sibling or tri-

sibling factorization were proposed in (Koo and

Collins, 2010) to explore more expressive features

and have proven significant improvement on

parsing accuracy. However, the power of higher-

order models comes with the cost of expensive

computation and sometimes it requires aggressive

pruning in the pre-processing.

Another line of research that explores complex

feature representations is parse reranking. In its

general framework, a K-best list of parse tree

candidates is first produced from the base parser; a

reranker is then applied to pick up the best parse

among these candidates. For constituent parsing,

successful results has been reported in (Collins,

2000; Charniak and Johnson, 2005; Huang, 2008).

For dependency parsing, the efficient algorithms

for produce K-best list for graph-based parsers

have been proposed in (Huang and Chiang, 2005)

for projective parsing and in (Hall, 2007) for non-

projective parsing; Improvements on dependency

accuracy has been achieved in (Hall, 2007;

Hayashi et al., 2011). However, the feature sets in

these studies explored a relatively small context,

either by emulating the feature set in the

constituent parse reranking, or by factorizing the

search space. A desirable approach for the K-best

list reranking is to encode features on subtrees

extracted from the candidate parse with arbitrary

308
Copyright 2012 by Mo Shen, Daisuke Kawahara, and Sadao Kurohashi

26 th Pacific Asia Conference on Language, Information and Computation pages 308-317

orders and structures, as long as the extraction

process is tractable. It is an open question how to

design this subtree extraction process that is able to

selects a set of subtrees which provides reliable

and concrete linguistic evidence. Another related

challenge is to design a proper back-off strategy

for any structures extracted, since large subtree

instances are always sparse in the training data.

In this paper, we explore a feature set that makes

fully use of dependency grammar, can capture

global information with less restriction in the

structure and the size of the subtrees, and can be

encoded efficiently. It exhaustively explores a

candidate parse tree for features from the most

simple to the most expressive while maintaining

the efficiency in the sense that it does not add

additional complexities over the K-best parsing.

We choose the K-best list reranking framework

rather than the forest reranking in (Huang, 2008)

because an explicit representation of parse trees is

needed in order to compute the features for

reranking. We implemented an edge-factored

parser and a second-order sibling-factored parser

which emulate models in the MSTParser described

in (McDonald et al., 2005; McDonald and Pereira,

2006) as our base parsers.

In the rest part of this paper, we first give a brief

description of the dependency parsing, then we

describe the feature set for reranking, which is the

major contribution of this paper. Finally, we

present a set of experiment for the evaluation of

our method.

2. Dependency Parsing

The task of dependency parsing is to find a tree

structure for a sentence in which edges represent

the head-modifier relationship between words:

each word is linked to a unique “head” such that

the link forms a semantic dependency while the

main predicate of the sentence is linked to a

dummy “root”. An example of dependency parsing

is illustrated in Figure 1. A dependency tree is

called projective if the links can be drawn on the

linearly ordered words without any crossover. We

will focus on projective trees throughout this paper.

We formally define the dependency parsing task.

Give a sentence , the best parse tree is obtained

by searching for the tree with highest score:

 ̃ () () , (1)

Figure 1. A dependency parse tree of the sentence

“the man there in coat saw John.”

where () is the search space of possible parse

trees for , and is a parse tree in () . A

problem in solving equation (1) is that the number

of candidates in the search space grows

exponentially with the length of the sentence

which makes the searching infeasible. A common

remedy for this problem is to factorize a parse tree

into small subtrees, called factors, which are

scored independently. The score of parse tree

under a factorization is the summation of scores of

factors:

 () ∑ () , (2)

where is a factor of . The search space can be

therefore encoded in a compact form which allows

dynamic programming algorithms to perform

efficient exact inference. The score function for

each factor is assigned as an inner product of a

feature vector and a weight vector :

 () () . (3)

The feature vector is defined on the factor which

means it is only able to capture tree-structure

information from a small context. This can be seen

as the off-set for performing exact inference. The

goal of training a parser is to learn a weight vector

that assigns scores to effectively discriminate good

parses from bad parses.

We use the edge factorization and the sibling

factorization models described in (McDonald et al.,

2005; McDonald and Pereira, 2006) to construct

our base parsers. We learn the weight vector by

ROOT

John

saw

.

the

man

inthere

coat

309

applying the averaged perceptron algorithm

(Collins, 2002) for its efficiency and stable

performance. An illustration for generic perceptron

algorithm is shown in Pseudocode 1.

Pseudocode 1: Generic perceptron learning

1 for training data ()

2 for iteration

3 ̃ () ()

4 if ̃

5 () (̃)

6 end

7 End

3. Parse Reranking

In this section, we describe our reranking approach

and introduce the feature set consists of three

different types.

3.1 Overview of Parse Reranking

The task of reranking is similar with that of parsing

instead of that the searching of parse tree is

performed on a K-best list with selected parse

candidates rather than the entire search space:

 ̃ () () (4)

The scoring function is defined as:

 () () () (5)

Where () is the score of output by the base

parser. We define the oracle parse to be the

parse in the K-best list with highest accuracy

compared with the gold-standard parse. The goal

of reranking is to learn the weight vector so that

the reranker can pick up the oracle parse as many

times as possible. Note that in the reranking

framework, the feature is defined on the entire

parse tree which enables the encoding of global

information. We learn the weight vector of the

reranker also by the averaged perceptron algorithm

shown in Pseudocode 1 with slight modification

that only substitute the search space () with the

K-best output Kbest(), and gold parse with

oracle parse
 .

3.2 Feature Sets for Reranking

Benefit from the K-best list obtained in the parsing

stage, we are able to perform discriminative

learning in order to select a good parse among

candidates in a shrunk search space, which allows

utilization of global features. We define three types

of features below.

Trimmed subtree: For each node in a given

parse tree, we check its dominated subtrees to see

whether they are likely to appear in a good parse

tree or not. To efficiently obtain these subtrees, we

set a local window that bound a node from its left

side, right side and bottom. We then extract the

maximum subtree inside this window, means that

we cut off those nodes that are too distant in

sequential order or too deep in a tree.

The above subtree extraction often results in

very large instances which are extremely sparse in

the training data, therefore it is necessary to keep

smaller subtrees as back-offs. In most cases,

however, it is prohibitively expensive to enumerate

all the smaller subtrees. Instead of enumeration, we

design a back-off strategy that select subtrees by

attempting to leave out nodes that are far away

from the subtree's root and keeps those that are

nearby. Precisely, after extracted the first subtree

of a node, we vary the three boundaries (the left,

the right and the bottom boundary respectively)

from their original positions to positions that are

closer to the root of the subtree, such that it

tightens up the local window. For each possible

combination of the variable boundaries, we extract

the largest subtree from the new local window and

add it to the set of the so called “trimmed subtrees”

set of the node. This back-off strategy comes from

our observation that nodes that are close to the root

may provide more reliable information than those

that are distant. As it is infeasible to enumerate all

small subtrees as back-offs, throwing away the

redundant nodes from the outer part of a large

subtree is a reasonable choice.

Figure 2 illustrates the construction of the

“trimmed subtrees” set of the node “saw”, for the

sentence in Figure 1. The initial boundary

parameters are set large enough so the local

window contains the entire parse tree
1
. #LEFT,

#RIGHT and #BOTTOM represents the three

boundary variables, which range from -6 to -1,

from 3 to 1 and from 3 to 0 respectively. Context

1 In practice we use smaller local window with fixed size.

310

𝑇 𝑖𝑚("s w") {𝑠 𝑠 𝑠 … }

Figure 2. Extraction of trimmed subtrees from the node “saw”. “#LEFT”, “#RIGHT” and

“#BOTTOM” represents the three boundaries that can vary along possible positions on the

corresponding axis. Contexts , and represnt three instances of possible combinations of

boundary positions. 𝑠 , 𝑠 and 𝑠 are resulted subtrees that are elements in the trimmed subtrees set of

the node “saw”.

 , and represent three different combinations

of boundary positions. Subtree 𝑠 , 𝑠 and 𝑠 are the

extracted subtrees in the correspond context. They

and other similarly extracted subtrees together

consist in the set 𝑇 𝑖𝑚("s w") , the trimmed

subtrees set of the node “saw”. We use this set in

two ways. First, for each element in this set, we

encode a series of features. Second, this set is kept

for reuse in another type of feature, which we

describe latter. We repeat this extraction process

for all nodes in a parse tree and keep their trimmed

subtrees set.

In Figure 3 we show some of the extracted

subtrees in the set 𝑇 𝑖𝑚("s w"), among which the

subtree (c) can be regard as a grand sibling factor

and the subtree (d) is similar with a tri-sibling

factor in (Koo and Collins, 2010), but the siblings

are located in both sides of the head node. The

subtree (a) and subtree (b) are subtrees we

extracted that cannot be represented in common

factorization methods, which confirmed the ability

of this feature set to capture a large variety of

structures.

It should be noted that, while in a direct

calculation there are 72 (6-by-3-by-4) possible

combinations for boundary positions in the

example in Figure 2, this number can almost

always be reduced in practice. In this example,

when #LEFT reached the position at index -4, the

entire left branch of the root node is in fact cut so

no further movement for #LEFT is allowed.

Moreover, after #BOTTOM moved to the position

John

saw

.

the

man

inthere

coat

Subtree

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

Context

Subtree

saw

man

inthere

John

saw

.

the

man

inthere

coat

#LEFT

#BOTTOM

#RIGHT

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

Context

Subtree

John

saw

.

the

man

inthere

coat

-6 -5 -4 -3 -2 -1 1 2 3

0

1

2

3

#LEFT #RIGHT

#BOTTOM

John

saw

man

Context

John

saw

.

the

man

inthere

coat

Subtree rooted at node “saw”

…

…

311

(a) (b)

(c) (d)

Figure 3. Some of the extracted trimmed subtrees

by the process described in Figure 2. (c) is

identical with a grand-sibling factor in a third-

order parsing model and (d) is similar to a tri-

sibling factor but siblings are on both sides of the

head.

at index 1, the sequential order distance between

“man” and “saw” is updated and reduced to 1,

which restricts #LEFT to only two possible

positions, either to the left or to the right of the

word “man”. Therefore one can verify that the true

number of combinations of boundary positions is

actually 25. Briefly, for a node we are focusing on,

we decompose the extracted subtree from the

initial local window into three parts: the node itself,

the sequence of its left descendants and the

sequence of its right descendants. The two

sequences of descendants are in a preordering of

depth-first search, during which we mark “anchor”

nodes as the next-possible cut-in positions for the

left/right boundary variables. Furthermore, the list

of anchor nodes will keep updating whenever the

bottom boundary variable moved to a new position.

As a result, we are able to minimize the number of

boundary combinations to speed up the subtrees

extraction.

For each extracted subtree, we encode features

as follow. A trimmed subtree feature is represented

as an n-tuple: 〈 … 〉 where is the root of

the subtree, and are nodes in the subtree in

preordering through a depth-first search from .

For we encode its word form, Part-of-Speech

tag, and the combination of them. For any non-root

node, we encode its Part-of-Speech tag, a binary

value indicating the branch direction from its head,

and its depth from . We also encode features that

omit the Part-of-Speech tags of the sequence

 … , so that only the structural preference of

the subtree’s root is retained. An example is shown

below which illustrates a feature for the subtree in

Figure 3(a):

〈(s w) ()
() ()
()〉 ,

where V, N and P are Part-of-Speech tags of

corresponding nodes; we use simplified tags for

illustration purpose. The preordering of nodes

together with their branch direction and depth

information guarantees that the mapping from a

given subtree structure to its corresponding feature

string is injective. Another example below shows a

feature that omits all the Part-of-Speech tags

except on the root of the subtree:

〈(s w) ()
() ()
()〉

Finally, we associate the list of features encoded

for a subtree rooted on a node a with the

corresponding element in the set 𝑇 𝑖𝑚() . We

make use of this set in the next type of features to

avoid repeated computation.

Sibling subtree: The trimmed subtree features

consider the preference of a node toward its

dominated subtree—whether the subtree is likely

to appear in a good parse. In the reranking

framework, however, as we do not factorize a

parse tree, we may suffer from a problem that the

information we got among candidates are

unbalanced. Typically, when computing the

trimmed subtree features, a candidate parse with

most nodes being leaves will provide little

information except on the root node, while on

another parse that has fewer leaves and more depth

we can have a bunch of features that give more

information. This defect makes the comparison

between candidates be “unfair” and thus less

reliable. Therefore, it is natural to raise the

question the other way round—whether a node is a

good head for a subtree. To answer this question,

we consider a dynamic programming structure

called complete span introduced in (Eisner, 1996).

A complete span consists of a head node and all

its descendants on one side, which can also be

John

saw

man

inthere

saw

the

man

inthere

saw

man

inthere
John

saw

.man

312

Figure 4. A complete span for the clause “transfer

money from the new funds to other investment

funds” where we omitted some of the details. This

structure functions as a relatively independent and

complete component in the entire parse tree.

Features are encoded over the tuples: <transfer, -

,s2>, <transfer, s2,s1>, <transfer, s1,s0>, <transfer,

s0,->.

considered as a head node and sibling subtrees

shown in Figure 4. In our observation, a complete

span functions as a relatively independent and

complete semantic structure in the parse tree, we

thus believe that it can provide sufficient

information to decide the head of a subtree without

looking at any larger context.

Specifically, for each node 𝑚 in a candidate

parse, its sibling subtree features is the collection

of all 3-tuples:

〈 (𝑠 𝑖) (𝑚 𝑖)〉

where h represents the word form, the Part-of-

Speech tag, or the combination of the word form

and the Part-of-Speech tag of the head node of m; s

is the nearest sibling node of m in-between h and m;

and the expression (𝑖) represents the 𝑖

feature encoded on a trimmed subtree in the set

𝑇 𝑖𝑚(), such that the trimmed subtree is the one

extracted within the local window . Here an

important point is that we make use of trimmed

subtrees extracted in the previous phase. As

mentioned before, since we keep the history of

trimmed subtree extraction, it eliminates the need

to re-compute any subtree structures on the sibling

nodes and hence is efficient to encode.

The way we define our sibling subtree features

for reranking can also be seen as the natural

extension of the sibling factorization in (McDonald

and Pereira, 2006) from the word-based case to the

subtree-based case, while the original sibling factor

can be represented as a 3-tuple
〈 𝑠 𝑚〉 using the same notation.

Chain: A chain type feature encodes

information for a subtree that each node has

exactly one incoming edge and one outgoing edge,

except on the two ends (hence a “chain”). We

extract all these kind of subtrees from a parse tree

in the candidates list with a parameter set to limit

the number of edges in the subtree. This type of

features emulates the common grandparent-

grandchildren structure in dependency parsing,

while we loosen the restriction on the order of the

subtree. It functions as a complementary for other

types of features.

From the parse tree of the sentence in Figure 1,

we extract all chains whose order is larger than 2,

since otherwise features defined on edges have

already been utilized in our base parsers which are

edge-factored and sibling factored. We show these

chain type subtrees in Figure 5. For a consideration

of efficiency, a proper value of the order limit

should be set no larger than 5 according to our

experience.

(a) (b) (c)

(d) (e)

Figure 5. All chain type subtrees extracted from

the gold-standard parse tree of the sentence “the

man there in coat saw John.”

The information encoded from extracted

subtrees includes word form, Part-of-Speech tag

and relative position in the subtree for each node.

When dealing with long subtrees, however,

encoding lexical information suffers from data

sparsity. We therefore encode lexical information

only on one of the two ends of the subtree in each

time, while for all nodes we encode their

money

transfer

tofrom

funds

…

funds

… … …

S0S1

S2

saw

the

man

saw

man

there

saw

man

in

man

in

coat

saw

man

in

coat

313

grammatical and positional information. Thus for

the subtree (e) in Figure 5, a feature can appear as:

〈(s w) () () ()〉

A binary value, here we denote as “left” and

“right”, is used to indicate the direction of branch

of a node from its head.

4. Evaluation

We present our experimental results on two

languages, English and Chinese. For English

experiment, we use the Penn Treebank WSJ part.

We convert the constituent structure in the

Treebank into dependency structure with the tool

Penn2Malt and the head-extraction rule identical

with that in (Yamada and Matsumoto, 2003). To

align with previous work, we use the standard data

division: section 02-21 for training, section 24 for

development, and section 23 for testing. As our

system assumes Part-of-Speech tags as input, we

use MXPOST, a MaxEnt tagger (Ratnaparkhi,

1996) to automatically tag the test data. The tagger

is trained on the same training data.

For Chinese, we use the Chinese Treebank 5.0

with the following data division: files 1-270 and

files 400-931 for training, files 271-300 for testing,

and files 301-325 for development. We use

Penn2Malt to convert the Treebank into

dependency structure and the set of head-extraction

rules for Chinese is identical with the one in

(Zhang and Clark, 2008). Moreover, for Chinese

we use the gold standard Part-of-Speech tags in

evaluation.

We apply unlabeled attachment score (UAS) to

measure the effectiveness of our method, which is

the percentage of words that correctly identified

their heads. For all experiments conducted, we use

the parameters tuned in the development set.

We train two base parsers which are the re-

implementation of the first-order and second-order

parsers in the MSTParser (McDonald et al., 2005;

McDonald and Pereira, 2006) with 10 iterations on

English and Chinese training dataset. We use 30-

way cross-validation on the identical training

dataset to provide training data for the rerankers.

We use the following parameter setting for the

feature sets throughout the experiments: for chain-

type features, the maximum order of chains is set

to 5; the left, right and bottom boundary for the

System English UAS

McDonald05 90.9

McDonald06 91.5

Zhang11 92.9

Koo10 93.04

Martins10 93.26

Order 1 90.91

Order 2 91.88

Order 1 reranked 92.50

Order 2 reranked 93.37

Koo08
+
 93.16

Chen09
+
 93.16

Suzuki09
+
 93.79

Table 1. English UAS of previous work, our base

parsers, and reranked results.

“

+
”: semi-

supervised parsers.

trimmed subtree features are 10, 10 and 5

respectively. For the main experiments we use

K=50, the capacity of the list of parse tree

candidates, in the training of the rerankers.

Moreover, as it is not necessary to use identical

value of K in the training and the test, we also

conduct an experiment using miss-matching K

values on Chinese dataset.

4.1 Experimental Results

We show the experimental results for English in

Table 1. Each row in this table shows the UAS of

the corresponding system. “McDonald05” and

“McDonald06” stand for the first-order and

second-order models in the MSTParser (McDonald

et al., 2005; McDonald and Pereira, 2006).

“Zhang11” stands for the transition-based parser

proposed in (Zhang and Nivre, 2011). “Koo10”

stands for the Model 1 in (Koo and Collins, 2010)

which is a third-order model. “Martins10” stands

for the turbo parser proposed in (Martins et al.,

2010). “Order 1” and “Order 2” are our re-

implementation of MSTParser and are used as the

base parsers for our reranking experiments. “Order

1 reranked” and “Order 2 reranked” are rerankers

pipelined on the two base parsers. “Koo08”,

“Chen09” and “Suzuki09” are parsers using semi-

supervised methods (Koo et al., 2008; Chen et al.,

2009; Suzuki et al., 2009). In Table 2 we show the

results for Chinese. “Duan07” and “Yu08” stands

for the two probabilistic parsers in (Duan et al.,

2007; Yu et al., 2008). “Chen09” stands for the

same system in Table 1.

314

System Chinese UAS

Duan07 84.36

Yu08 87.26

Order 1 85.44

Order 2 87.39

Order 1 reranked 87.63

Order 2 reranked 89.16

Chen09
+
 89.91

Table 2. Chinese UAS of previous work, our

baseline parsers, and reranked results.

“

+
”:

semi-supervised parsers.

As we can see from the results, for English, the

accuracy increased from 90.91% (“Order 1”) to

92.50% (“Order 1 reranked”) for the first-order

parse reranker and from 91.88%(“Order 2”) to

93.37%(“Order 2 reranked”) for the second-order

parse reranker. For Chinese, the accuracy increased

from 85.44% to 87.63% for the first-order parse

reranker, and for the second order case it increased

from 87.39% to 89.16%. It shows that our

reranking systems obtain the highest accuracy

among supervised systems. For English, the

reranker “Order 2 reranked” even slightly

outperforms “Martins10”, the turbo parser which

to the best of our knowledge achieved the highest

accuracy in Penn Treebank. Although our

rerankers are beaten by the semi-supervised

systems “Suzuki09” and “Chen09”, but as our

method is orthogonal with semi-supervising

methods, it is possible to further improve the

accuracy by combing these techniques.

We investigate the effects of the three feature

types we proposed in this paper. We in turn

activate each feature type and their combinations

in the evaluation, while during the training we

keep all types of feature due to the limitation of

 System UAS

Reranker Ch+Trim+Sib 93.37

RerankerCh 92.41

RerankerTrim 92.77

RerankerCh+Trim 93.03

RerankerTrim+Sib 93.10

Table 3. Influence of activated feature types

on English test data. “Ch”: chain-type features

activated; “Trim”: trimmed subtree features

activated; “Sib”: sibling subtree features

activated.

time. We conduct this experiment based on the

system “Order 2 reranked” for English. The result

is shown in Table 3. The first row represents the

system with all feature types activated; others are

systems with corresponding feature sets activated

in the evaluation phase. Here “Ch” stands for the

chain-type feature set, “Trim” stands for the

trimmed subtree feature set, and “Sib” stands for

the sibling subtree feature set.

In Table 4 we investigate the influence of miss-

matched K values for the training and the

evaluation. We traine a separate system for the

Chinese dataset using “Order 1” with K=10 in the

reranker’s training and variant K values in the

evaluation. The row “Rerank” shows that even for

a small K used in the training, a better accuracy

can be achieved with relatively larger K: the

highest accuracy for this system is achieved when

K=20 in the evaluation. We also show the oracle

accuracies among the top-K candidates in the last

row.

K 1 10 20 30 50

Rerank 85.44 86.81 87.49 87.45 87.33

Oracle 85.44 89.66 90.70 91.17 91.65

Table 4. Reranking experiment for Chinese with

miss-matched K values.

In Table 5 we show the oracle accuracies among

top-K candidates using the “Order 2” parser. The

oracle accuracies can increase as much as

absolutely 5.14% for English and absolutely 5.15%

for Chinese compared with the 1-best accuracies.

K 1 10 20 30 50

English 91.88 95.61 96.30 96.65 97.02

Chinese 87.39 90.43 91.28 92.02 92.54

Table 5. Oracle accuracies of top-K candidates.

4.2 Efficiency

We show the training time and the parsing time of

the base parser “Order 2” and the pipelined

reranking system “Order 2 reranked” in Table 6.

 Training Parsing

Order 2 1642 min 0.24 sec/sent

Order 2 reranked 3552 min 11.54 sec/sent

Table 6. Training time and parsing speed

comparison for English.

315

Both systems run on a Xeon 2.4GHz CPU. We

calculated the parsing time by running the systems

on the first 100 sentences on the development data

of the two languages. The reranking system takes

twice the time than the base parser in the training.

It is much slower than the base parser in parsing

new sentences, which is mainly due to the time

required for outputting the 50-best candidates list;

this can be seen as an unavoidable trade-off to

obtain high accuracy in the reranking framework.

5. Related Work

McDonald (2005, 2006) proposed an edge-factored

parser and a second-order parser that both trained

by discriminative online learning methods. Huang

(2005) proposed the efficient algorithm for

produce K-best list for graph-based parsers, which

add a factor of to the parsing complexity

of the base parser. Sangati (2009) has shown that a

discriminative parser is very effective at filtering

out bad parses from a factorized search space

which agreed with the conclusion in (Hall, 2007)

that an edge-factored model can reach good oracle

performance when generating relatively small K-

best list. Successful results have been reported for

constituent parse reranking in (Collins, 2000;

Charniak and Johnson, 2005; Huang, 2008), in

which feature sets defined on constituent parses

have been proposed that are able to capture rich

non-local information. These feature sets, however,

cannot be directly applied to parse tree under

dependency grammar. Attempts have been made to

use similar feature sets in dependency parse

reranking, which include the work in (Hall, 2007)

that defined a feature set similar with the one in

(Charniak and Johnson, 2005). Hayashi in

(Hayashi et al., 2011) presented a forest reranking

model which applied third-order factorizations

emulating Model 1 and Model 2 in (Koo and

Collins, 2010) on the search space of the reranker.

6. Conclusion

We have proposed a novel feature set for

dependency parse reranking that successfully

extracts complex structures for collecting linguistic

evidence, and efficient feature back-off strategy is

proposed to relieve data sparsity. Through

experiment we confirmed the effectiveness and

efficiency of our method, and observed significant

improvement over the base system as well as other

known systems.

To further improve the proposed method, we

mention several possibilities for our future work.

An advantage of the reranking framework we used

is that it has no overlap with many of the semi-

supervised parsing methods, such as word

clustering (Koo et al., 2008) and subtree features

integration using auto-parsed data (Chen et al.,

2009). We are interested in the performance of our

system when combining with these methods.

Another interesting approach is to incorporate

information from large-scale structured data, such

as case frame (Kawahara and Kurohashi, 2006),

which provides lexical predicate-argument

selection preference and is an effective way to help

to overcome data sparse problem in discriminative

learning. While the relatively complex data

structure in the case frame prohibits its

incorporation in any existing factorization methods,

it can be well utilized in the reranking framework

with the proposed feature set.

References

E. Charniak and M. Johnson. 2005. Coarse-to-fine N-

best Parsing and MaxEnt Discriminative Reranking.

In Proceedings of the 43rd ACL.

M. Collins. 2000. Discriminative Reranking for Natural

Language Parsing. In Proceedings of the ICML.

M. Collins. 2002. Discriminative Training Methods for

Hidden Markov Models: Theory and Experiments

with Perceptron Algorithms. In Proceedings of the

7th EMNLP, pages 1–8.

W. Chen, J. Kazama, K. Uchimoto and K. Torisawa.

2009. Improving Dependency Parsing with Subtrees

from Auto-Parsed Data, In Proceedings of

EMNLP2009, pages 570-579.

X. Duan, J. Zhao, and B. Xu. 2007. Probabilistic

Models for Action-based Chinese Dependency

Parsing. In Proceedings of ECML/ECPPKDD.

J. Eisner. 1996. Three New Probabilistic Models for

Dependency Parsing: An Exploration. In Proceedings

of the 16th COLING, pages 340–345.

K. Hall. 2007. K-best Spanning Tree Parsing. In

Proceedings of ACL 2007.

K. Hayashi, T. Watanabe, M. Asahara and Y.

Matsumoto. 2011. Third-order Variational Reranking

316

on Packed-Shared Dependency Forests. In

Proceedings of EMNLP 2011, pages 1479-1488.

L. Huang and D. Chiang. 2005. Better K-best Parsing.

In Proceedings of the IWPT, pages 53–64.

L. Huang. 2008. Forest reranking: Discriminative

Parsing with Non-local Features. In Proceedings of

the 46th ACL, pages 586–594.

D. Kawahara and S. Kurohashi. 2006. Case Frame

Compilation from the Web Using High performance

Computing. In Proceedings of the 5th International

Conference on Language Resources and Evaluation.

T. Koo, X. Carreras, and M. Collins. 2008. Simple

Semi-supervised Dependency Parsing. In

Proceedings of the 46th ACL, pages 595–603.

T. Koo and M. Collins. 2010. Efficient Third-order

Dependency Parsers. In Proceedings of the 48th ACL,

pages 1–11.

A. F. T. Martins, N. A. Smith, and E. P. Xing. 2010.

Turbo Parsers: Dependency Parsing by Approximate

Variational Inference. In Proceedings of EMNLP

2010, pages 34–44.

R. McDonald, K. Crammer, and F. Pereira. 2005.

Online Large-Margin Training of Dependency

Parsers. In Proceedings of the 43rd ACL, pages 91–

98.

R. McDonald and F. Pereira. 2006. Online Learning of

Approximate Dependency Parsing Algorithms. In

Proceedings of the 11th EACL, pages 81–88.

A. Ratnaparkhi. 1996. A Maximum Entropy Model for

Part-Of-Speech Tagging. In Proceedings of the 1st

EMNLP, pages 133–142.

F. Sangati, W. Zuidema, and R. Bod. 2009. A

Generative Re-ranking Model for Dependency

Parsing. In Proceedings of the 11th IWPT, pages

238–241.

J. Suzuki, H. Isozaki, X. Carreras, and M. Collins. 2009.

An Empirical Study of Semi-supervised Structured

Conditional Models for Dependency Parsing. In

Proceedings of EMNLP 2009, pages 551–560.

H. Yamada and Y. Matsumoto. 2003. Statistical

Dependency Analysis with Support Vector Machines.

In Proceedings of the IWPT 2003, pages 195–206.

K. Yu, D. Kawahara, and S. Kurohashi. 2008. Chinese

Dependency Parsing with Large Scale Automatically

Constructed Case Structures. In Proceedings of

Coling 2008, pages 1049–1056.

Y. Zhang and S. Clark. 2008. A Tale of Two Parsers:

Investigating and Combining Graph-based and

Transition-based Dependency Parsing. In

Proceedings of EMNLP 2008, pages 562–571.

Y. Zhang and J. Nivre. 2011. Transition-based

Dependency Parsing with Rich Non-local Features.

In Proceedings of ACL 2011, page 188-193.

317

