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Abstract 

Employing higher-order subtree structures 

in graph-based dependency parsing has 

shown substantial improvement over the 

accuracy, however suffers from the 

inefficiency increasing with the order of 

subtrees. We present a new reranking 

approach for dependency parsing that can 

utilize complex subtree representation by 

applying efficient subtree selection 

heuristics. We demonstrate the effective-

ness of the approach in experiments 

conducted on the Penn Treebank and the 

Chinese Treebank. Our system improves 

the baseline accuracy from 91.88% to 

93.37% for English, and in the case of 

Chinese from 87.39% to 89.16%. 

1. Introduction 

In dependency parsing, graph-based models are 

prevalent for their state-of-the-art accuracy and 

efficiency, which are gained from their ability to 

combine exact inference and discriminative 

learning methods. The ability to perform efficient 

exact inference lies on the so-called factorization 

technique which breaks down a parse tree into 

smaller substructures to perform an efficient 

dynamic programming search. This treatment 

however restricts the representation of features to 

in a local context which can be, for example, single 

edges or adjacent edges. Such restriction prohibits 

the model from exploring large or complex 

structures for linguistic evidence, which can be 

considered as the major drawback of the graph-

based approach.  

Attempts have been made in developing more 

complex factorization techniques and 

corresponding decoding methods. Higher-order 

models that use grand-child, grand-sibling or tri-

sibling factorization were proposed in (Koo and 

Collins, 2010) to explore more expressive features 

and have proven significant improvement on 

parsing accuracy. However, the power of higher-

order models comes with the cost of expensive 

computation and sometimes it requires aggressive 

pruning in the pre-processing. 

Another line of research that explores complex 

feature representations is parse reranking. In its 

general framework, a K-best list of parse tree 

candidates is first produced from the base parser; a 

reranker is then applied to pick up the best parse 

among these candidates. For constituent parsing, 

successful results has been reported in (Collins, 

2000; Charniak and Johnson, 2005; Huang, 2008). 

For dependency parsing, the efficient algorithms 

for produce K-best list for graph-based parsers 

have been proposed in (Huang and Chiang, 2005) 

for projective parsing and in (Hall, 2007) for non-

projective parsing; Improvements on dependency 

accuracy has been achieved in (Hall, 2007; 

Hayashi et al., 2011). However, the feature sets in 

these studies explored a relatively small context, 

either by emulating the feature set in the 

constituent parse reranking, or by factorizing the 

search space. A desirable approach for the K-best 

list reranking is to encode features on subtrees 

extracted from the candidate parse with arbitrary 
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orders and structures, as long as the extraction 

process is tractable. It is an open question how to 

design this subtree extraction process that is able to 

selects a set of subtrees which provides reliable 

and concrete linguistic evidence. Another related 

challenge is to design a proper back-off strategy 

for any structures extracted, since large subtree 

instances are always sparse in the training data.  

In this paper, we explore a feature set that makes 

fully use of dependency grammar, can capture 

global information with less restriction in the 

structure and the size of the subtrees, and can be 

encoded efficiently. It exhaustively explores a 

candidate parse tree for features from the most 

simple to the most expressive while maintaining 

the efficiency in the sense that it does not add 

additional complexities over the K-best parsing. 

We choose the K-best list reranking framework 

rather than the forest reranking in (Huang, 2008) 

because an explicit representation of parse trees is 

needed in order to compute the features for 

reranking. We implemented an edge-factored 

parser and a second-order sibling-factored parser 

which emulate models in the MSTParser described 

in (McDonald et al., 2005; McDonald and Pereira, 

2006) as our base parsers.  

In the rest part of this paper, we first give a brief 

description of the dependency parsing, then we 

describe the feature set for reranking, which is the 

major contribution of this paper. Finally, we 

present a set of experiment for the evaluation of 

our method. 

2. Dependency Parsing 

The task of dependency parsing is to find a tree 

structure for a sentence in which edges represent 

the head-modifier relationship between words: 

each word is linked to a unique “head” such that 

the link forms a semantic dependency while the 

main predicate of the sentence is linked to a 

dummy “root”. An example of dependency parsing 

is illustrated in Figure 1. A dependency tree is 

called projective if the links can be drawn on the 

linearly ordered words without any crossover. We 

will focus on projective trees throughout this paper. 

We formally define the dependency parsing task. 

Give a sentence  , the best parse tree is obtained 

by searching for the tree with highest score: 

 

 ̃           ( )     (   ) , (1) 

 

 

 
Figure 1. A dependency parse tree of the sentence 

“the man there in coat saw John.” 

 

where  ( )  is the search space of possible parse 

trees for  , and   is a parse tree in  ( ) . A 

problem in solving equation (1) is that the number 

of candidates in the search space grows 

exponentially with the length of the sentence 

which makes the searching infeasible. A common 

remedy for this problem is to factorize a parse tree 

into small subtrees, called factors, which are 

scored independently. The score of parse tree 

under a factorization is the summation of scores of 

factors: 

 

     (   )  ∑      (   )    , (2) 

 

where   is a factor of  . The search space can be 

therefore encoded in a compact form which allows 

dynamic programming algorithms to perform 

efficient exact inference. The score function for 

each factor is assigned as an inner product of a 

feature vector and a weight vector  : 

 

     (   )     (   ) .   (3) 
 

The feature vector is defined on the factor   which 

means it is only able to capture tree-structure 

information from a small context. This can be seen 

as the off-set for performing exact inference. The 

goal of training a parser is to learn a weight vector 

that assigns scores to effectively discriminate good 

parses from bad parses.  

We use the edge factorization and the sibling 

factorization models described in (McDonald et al., 

2005; McDonald and Pereira, 2006) to construct 

our base parsers. We learn the weight vector by 
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applying the averaged perceptron algorithm 

(Collins, 2002) for its efficiency and stable 

performance. An illustration for generic perceptron 

algorithm is shown in Pseudocode 1. 

 
Pseudocode 1: Generic perceptron learning  

1 for  training data (     )         

2 for  iteration        

3   ̃           ( )   (    )  

4 if   ̃     

5                     (     )   ( ̃   ) 

6 end 

7 End 

 

3. Parse Reranking  

In this section, we describe our reranking approach 

and introduce the feature set consists of three 

different types.  

3.1  Overview of Parse Reranking 

The task of reranking is similar with that of parsing 

instead of that the searching of parse tree is 

performed on a K-best list with selected parse 

candidates rather than the entire search space: 

 

 ̃               ( )      (   ) (4) 

 

The scoring function is defined as: 

 

      (   )   (   )     (   ) (5) 

 

Where  (   ) is the score of   output by the base 

parser. We define the oracle parse    to be the 

parse in the K-best list with highest accuracy 

compared with the gold-standard parse. The goal 

of reranking is to learn the weight vector so that 

the reranker can pick up the oracle parse as many 

times as possible. Note that in the reranking 

framework, the feature is defined on the entire 

parse tree which enables the encoding of global 

information. We learn the weight vector of the 

reranker also by the averaged perceptron algorithm 

shown in Pseudocode 1 with slight modification 

that only substitute the search space  ( ) with the 

K-best output Kbest( ), and gold parse    with 

oracle parse   
 . 

3.2  Feature Sets for Reranking 

Benefit from the K-best list obtained in the parsing 

stage, we are able to perform discriminative 

learning in order to select a good parse among 

candidates in a shrunk search space, which allows 

utilization of global features. We define three types 

of features below. 

Trimmed subtree: For each node in a given 

parse tree, we check its dominated subtrees to see 

whether they are likely to appear in a good parse 

tree or not. To efficiently obtain these subtrees, we 

set a local window that bound a node from its left 

side, right side and bottom. We then extract the 

maximum subtree inside this window, means that 

we cut off those nodes that are too distant in 

sequential order or too deep in a tree.  

The above subtree extraction often results in 

very large instances which are extremely sparse in 

the training data, therefore it is necessary to keep 

smaller subtrees as back-offs. In most cases, 

however, it is prohibitively expensive to enumerate 

all the smaller subtrees. Instead of enumeration, we 

design a back-off strategy that select subtrees by 

attempting to leave out nodes that are far away 

from the subtree's root and keeps those that are 

nearby. Precisely, after extracted the first subtree 

of a node, we vary the three boundaries (the left, 

the right and the bottom boundary respectively) 

from their original positions to positions that are 

closer to the root of the subtree, such that it 

tightens up the local window. For each possible 

combination of the variable boundaries, we extract 

the largest subtree from the new local window and 

add it to the set of the so called “trimmed subtrees” 

set of the node. This back-off strategy comes from 

our observation that nodes that are close to the root 

may provide more reliable information than those 

that are distant. As it is infeasible to enumerate all 

small subtrees as back-offs, throwing away the 

redundant nodes from the outer part of a large 

subtree is a reasonable choice. 

Figure 2 illustrates the construction of the 

“trimmed subtrees” set of the node “saw”, for the 

sentence in Figure 1. The initial boundary 

parameters are set large enough so the local 

window contains the entire parse tree
1
. #LEFT, 

#RIGHT and #BOTTOM represents the three 

boundary variables, which range from -6 to -1, 

from 3 to 1 and from 3 to 0 respectively. Context 
                                                           
1 In practice we use smaller local window with fixed size. 
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𝑇 𝑖𝑚("s w")  {𝑠  𝑠  𝑠  … } 
 

Figure 2. Extraction of  trimmed subtrees from the node “saw”.  “#LEFT”, “#RIGHT” and 

“#BOTTOM” represents the three boundaries that can vary along possible positions on the 

corresponding axis. Contexts   ,    and    represnt three instances of  possible combinations of 

boundary positions. 𝑠 , 𝑠  and 𝑠  are resulted  subtrees that are elements in the trimmed subtrees set of 

the node “saw”. 

 

  ,    and    represent three different combinations 

of boundary positions. Subtree 𝑠 , 𝑠  and 𝑠  are the 

extracted subtrees in the correspond context. They 

and other similarly extracted subtrees together 

consist in the set 𝑇 𝑖𝑚("s w") , the trimmed 

subtrees set of the node “saw”. We use this set in 

two ways. First, for each element in this set, we 

encode a series of features. Second, this set is kept 

for reuse in another type of feature, which we 

describe latter. We repeat this extraction process 

for all nodes in a parse tree and keep their trimmed 

subtrees set. 

In Figure 3 we show some of the extracted 

subtrees in the set 𝑇 𝑖𝑚("s w"), among which the 

subtree (c) can be regard as a grand sibling factor 

and the subtree (d) is similar with a tri-sibling 

factor in (Koo and Collins, 2010), but the siblings 

are located in both sides of the head node. The 

subtree (a) and subtree (b) are subtrees we 

extracted that cannot be represented in common 

factorization methods, which confirmed the ability 

of this feature set to capture a large variety of 

structures.  

It should be noted that, while in a direct 

calculation there are 72 (6-by-3-by-4) possible 

combinations for boundary positions in the 

example in Figure 2, this number can almost 

always be reduced in practice. In this example, 

when #LEFT reached the position at index -4, the 

entire left branch of the root node is in fact cut so 

no further movement for #LEFT is allowed. 

Moreover, after #BOTTOM moved to the position  
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(a) (b) 

 
 

(c) (d) 
 

Figure 3. Some of the extracted trimmed subtrees 

by the process described in Figure 2. (c) is 

identical with a grand-sibling factor in a third-

order parsing model and (d) is similar to a tri-

sibling factor but siblings are on both sides of the 

head. 

 

at index 1, the sequential order distance between 

“man” and “saw” is updated and reduced to 1, 

which restricts #LEFT to only two possible 

positions, either to the left or to the right of the 

word “man”. Therefore one can verify that the true 

number of combinations of boundary positions is 

actually 25. Briefly, for a node we are focusing on, 

we decompose the extracted subtree from the 

initial local window into three parts: the node itself, 

the sequence of its left descendants and the 

sequence of its right descendants. The two 

sequences of descendants are in a preordering of 

depth-first search, during which we mark “anchor” 

nodes as the next-possible cut-in positions for the 

left/right boundary variables. Furthermore, the list 

of anchor nodes will keep updating whenever the 

bottom boundary variable moved to a new position. 

As a result, we are able to minimize the number of 

boundary combinations to speed up the subtrees 

extraction. 

For each extracted subtree, we encode features 

as follow. A trimmed subtree feature is represented 

as an n-tuple: 〈   …    〉 where    is the root of 

the subtree, and        are nodes in the subtree in 

preordering through a depth-first search from   . 

For    we encode its word form, Part-of-Speech 

tag, and the combination of them. For any non-root 

node, we encode its Part-of-Speech tag, a binary 

value indicating the branch direction from its head, 

and its depth from   . We also encode features that 

omit the Part-of-Speech tags of the sequence 

   …    , so that only the structural preference of 

the subtree’s root is retained. An example is shown 

below which illustrates a feature for the subtree in 

Figure 3(a): 

 

〈(s w  ) (              )  
(               ) (               )  
(               )〉 , 
 

where V, N and P are Part-of-Speech tags of 

corresponding nodes; we use simplified tags for 

illustration purpose. The preordering of nodes 

together with their branch direction and depth 

information guarantees that the mapping from a 

given subtree structure to its corresponding feature 

string is injective. Another example below shows a 

feature that omits all the Part-of-Speech tags 

except on the root of the subtree: 

 

〈(s w  ) (              )  
(               ) (               )  
(               )〉 
 

Finally, we associate the list of features encoded 

for a subtree rooted on a node a with the 

corresponding element in the set 𝑇 𝑖𝑚( ) . We 

make use of this set in the next type of features to 

avoid repeated computation. 

Sibling subtree: The trimmed subtree features 

consider the preference of a node toward its 

dominated subtree—whether the subtree is likely 

to appear in a good parse. In the reranking 

framework, however, as we do not factorize a 

parse tree, we may suffer from a problem that the 

information we got among candidates are 

unbalanced. Typically, when computing the 

trimmed subtree features, a candidate parse with 

most nodes being leaves will provide little 

information except on the root node, while on 

another parse that has fewer leaves and more depth  

we can have a bunch of features that give more 

information. This defect makes the comparison 

between candidates be “unfair” and thus less 

reliable. Therefore, it is natural to raise the 

question the other way round—whether a node is a 

good head for a subtree. To answer this question, 

we consider a dynamic programming structure 

called complete span introduced in (Eisner, 1996).  

A complete span consists of a head node and all 

its descendants on one side, which can also be 
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Figure 4. A complete span for the clause “transfer 

money from the new funds to other investment 

funds” where we omitted some of the details. This 

structure functions as a relatively independent and 

complete component in the entire parse tree. 

Features are encoded over the tuples: <transfer, -

,s2>, <transfer, s2,s1>, <transfer, s1,s0>, <transfer, 

s0,->. 

 

considered as a head node and sibling subtrees 

shown in Figure 4. In our observation, a complete 

span functions as a relatively independent and 

complete semantic structure in the parse tree, we 

thus believe that it can provide sufficient 

information to decide the head of a subtree without 

looking at any larger context.  

Specifically, for each node 𝑚  in a candidate 

parse, its sibling subtree features is the collection 

of all 3-tuples:  

 

〈   (𝑠    𝑖 )  (𝑚    𝑖 )〉 
 

where h represents the word form, the Part-of-

Speech tag, or the combination of the word form 

and the Part-of-Speech tag of the head node of m; s 

is the nearest sibling node of m in-between h and m; 

and the expression  (    𝑖)  represents the 𝑖   

feature encoded on a trimmed subtree in the set 

𝑇 𝑖𝑚( ), such that the trimmed subtree is the one 

extracted within the local window  . Here an 

important point is that we make use of trimmed 

subtrees extracted in the previous phase. As 

mentioned before, since we keep the history of 

trimmed subtree extraction, it eliminates the need 

to re-compute any subtree structures on the sibling 

nodes and hence is efficient to encode. 

The way we define our sibling subtree features 

for reranking can also be seen as the natural 

extension of the sibling factorization in (McDonald 

and Pereira, 2006) from the word-based case to the 

subtree-based case, while the original sibling factor 

can be represented as a 3-tuple  
〈  𝑠 𝑚〉 using the same notation.  

Chain: A chain type feature encodes 

information for a subtree that each node has 

exactly one incoming edge and one outgoing edge, 

except on the two ends (hence a “chain”). We 

extract all these kind of subtrees from a parse tree 

in the candidates list with a parameter set to limit 

the number of edges in the subtree. This type of 

features emulates the common grandparent-

grandchildren structure in dependency parsing, 

while we loosen the restriction on the order of the 

subtree. It functions as a complementary for other 

types of features.   

From the parse tree of the sentence in Figure 1, 

we extract all chains whose order is larger than 2, 

since otherwise features defined on edges have 

already been utilized in our base parsers which are 

edge-factored and sibling factored. We show these 

chain type subtrees in Figure 5. For a consideration 

of efficiency, a proper value of the order limit 

should be set no larger than 5 according to our 

experience.  

 

   
(a) (b) (c) 

  
(d) (e) 

 

Figure 5. All chain type subtrees extracted from 

the gold-standard parse tree of the sentence “the 

man there in coat saw John.”  

 

The information encoded from extracted 

subtrees includes word form, Part-of-Speech tag 

and relative position in the subtree for each node. 

When dealing with long subtrees, however, 

encoding lexical information suffers from data 

sparsity. We therefore encode lexical information 

only on one of the two ends of the subtree in each 

time, while for all nodes we encode their 
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grammatical and positional information. Thus for 

the subtree (e) in Figure 5, a feature can appear as: 

 

〈(  s w  ) (        ) (         ) (         )〉 
 

A binary value, here we denote as “left” and 

“right”, is used to indicate the direction of branch 

of a node from its head.  

4. Evaluation 

We present our experimental results on two 

languages, English and Chinese. For English 

experiment, we use the Penn Treebank WSJ part. 

We convert the constituent structure in the 

Treebank into dependency structure with the tool 

Penn2Malt and the head-extraction rule identical 

with that in (Yamada and Matsumoto, 2003). To 

align with previous work, we use the standard data 

division: section 02-21 for training, section 24 for 

development, and section 23 for testing. As our 

system assumes Part-of-Speech tags as input, we 

use MXPOST, a MaxEnt tagger (Ratnaparkhi, 

1996) to automatically tag the test data. The tagger 

is trained on the same training data.  

For Chinese, we use the Chinese Treebank 5.0 

with the following data division: files 1-270 and  

files 400-931 for training, files 271-300 for testing,  

and files 301-325 for development. We use 

Penn2Malt to convert the Treebank into 

dependency structure and the set of head-extraction 

rules for Chinese is identical with the one in 

(Zhang and Clark, 2008). Moreover, for Chinese 

we use the gold standard Part-of-Speech tags in 

evaluation. 

We apply unlabeled attachment score (UAS) to 

measure the effectiveness of our method, which is 

the percentage of words that correctly identified 

their heads. For all experiments conducted, we use 

the parameters tuned in the development set. 

We train two base parsers which are the re-

implementation of the first-order and second-order 

parsers in the MSTParser (McDonald et al., 2005; 

McDonald and Pereira, 2006) with 10 iterations on 

English and Chinese training dataset. We use 30-

way cross-validation on the identical training 

dataset to provide training data for the rerankers. 

We use the following parameter setting for the 

feature sets throughout the experiments: for chain-

type features, the maximum order of chains is set 

to 5; the left, right and bottom boundary for the  

System English UAS 

McDonald05 90.9 

McDonald06 91.5 

Zhang11 92.9 

Koo10 93.04 

Martins10 93.26 

Order 1 90.91 

Order 2 91.88 

Order 1 reranked 92.50 

Order 2 reranked 93.37 

Koo08
+
 93.16 

Chen09
+
 93.16 

Suzuki09
+
 93.79 

Table 1. English UAS of previous work, our base 

parsers, and reranked results.
 
“

+
”: semi-

supervised parsers. 

 

trimmed subtree features are 10, 10 and 5 

respectively. For the main experiments we use 

K=50, the capacity of the list of parse tree 

candidates, in the training of the rerankers. 

Moreover, as it is not necessary to use identical 

value of K in the training and the test, we also 

conduct an experiment using miss-matching K 

values on Chinese dataset.  

4.1  Experimental Results  

We show the experimental results for English in 

Table 1. Each row in this table shows the UAS of 

the corresponding system. “McDonald05” and 

“McDonald06” stand for the first-order and 

second-order models in the MSTParser (McDonald 

et al., 2005; McDonald and Pereira, 2006). 

“Zhang11” stands for the transition-based parser 

proposed in (Zhang and Nivre, 2011). “Koo10” 

stands for the Model 1 in (Koo and Collins, 2010) 

which is a third-order model. “Martins10” stands 

for the turbo parser proposed in (Martins et al., 

2010). “Order 1” and “Order 2” are our re-

implementation of MSTParser and are used as the 

base parsers for our reranking experiments. “Order 

1 reranked” and “Order 2 reranked” are rerankers 

pipelined on the two base parsers. “Koo08”, 

“Chen09” and “Suzuki09” are parsers using semi-

supervised methods (Koo et al., 2008; Chen et al., 

2009; Suzuki et al., 2009). In Table 2 we show the 

results for Chinese.  “Duan07” and “Yu08” stands 

for the two probabilistic parsers in (Duan et al., 

2007; Yu et al., 2008). “Chen09” stands for the 

same system in Table 1. 
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System Chinese UAS 

Duan07 84.36 

Yu08 87.26 

Order 1 85.44 

Order 2 87.39 

Order 1 reranked 87.63 

Order 2 reranked 89.16 

Chen09
+
 89.91 

Table 2. Chinese UAS of previous work, our 

baseline parsers, and reranked results.
 
“

+
”: 

semi-supervised parsers. 

 

As we can see from the results, for English, the 

accuracy increased from 90.91% (“Order 1”) to 

92.50% (“Order 1 reranked”) for the first-order 

parse reranker and from 91.88%(“Order 2”) to 

93.37%(“Order 2 reranked”) for the second-order 

parse reranker. For Chinese, the accuracy increased 

from 85.44% to 87.63% for the first-order parse 

reranker, and for the second order case it increased 

from 87.39% to 89.16%. It shows that our 

reranking systems obtain the highest accuracy 

among supervised systems. For English, the 

reranker “Order 2 reranked” even slightly 

outperforms “Martins10”, the turbo parser which 

to the best of our knowledge achieved the highest 

accuracy in Penn Treebank. Although our 

rerankers are beaten by the semi-supervised 

systems “Suzuki09” and “Chen09”, but as our 

method is orthogonal with semi-supervising 

methods, it is possible to further improve the 

accuracy by combing these techniques. 

We investigate the effects of the three feature 

types we proposed in this paper. We in turn 

activate each feature type and their combinations 

in the evaluation, while during the training we 

keep all types of feature due to the limitation of 

 
 System UAS 

Reranker Ch+Trim+Sib 93.37 

RerankerCh 92.41 

RerankerTrim 92.77 

RerankerCh+Trim 93.03 

RerankerTrim+Sib 93.10 
 

 

Table 3. Influence of activated feature types 

on English test data. “Ch”: chain-type features 

activated; “Trim”: trimmed subtree features 

activated; “Sib”: sibling subtree features 

activated. 

 

time. We conduct this experiment based on the 

system “Order 2 reranked” for English. The result 

is shown in Table 3. The first row represents the 

system with all feature types activated; others are 

systems with corresponding feature sets activated 

in the evaluation phase. Here “Ch” stands for the 

chain-type feature set, “Trim” stands for the 

trimmed subtree feature set, and “Sib” stands for 

the sibling subtree feature set. 

In Table 4 we investigate the influence of miss-

matched K values for the training and the 

evaluation. We traine a separate system for the 

Chinese dataset using “Order 1” with K=10 in the 

reranker’s training and variant K values in the 

evaluation. The row “Rerank” shows that even for 

a small K used in the training, a better accuracy 

can be achieved with relatively larger K: the 

highest accuracy for this system is achieved when 

K=20 in the evaluation. We also show the oracle 

accuracies among the top-K candidates in the last 

row. 

 
K 1 10 20 30 50 

Rerank 85.44 86.81 87.49 87.45 87.33 

Oracle 85.44 89.66 90.70 91.17 91.65 

Table 4. Reranking experiment for Chinese with 

miss-matched K values. 

 

In Table 5 we show the oracle accuracies among 

top-K candidates using the “Order 2” parser. The 

oracle accuracies can increase as much as 

absolutely 5.14% for English and absolutely 5.15% 

for Chinese compared with the 1-best accuracies.  

 
K 1 10 20 30 50 

English 91.88 95.61 96.30 96.65 97.02 

Chinese 87.39 90.43 91.28 92.02 92.54 

Table 5. Oracle accuracies of top-K candidates. 

 

4.2  Efficiency  

We show the training time and the parsing time of 

the base parser “Order 2” and the pipelined 

reranking system “Order 2 reranked” in Table 6. 

 
 Training Parsing  

Order 2 1642 min 0.24 sec/sent 

Order 2 reranked 3552 min 11.54 sec/sent 

Table 6. Training time and parsing speed 

comparison for English. 
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Both systems run on a Xeon 2.4GHz CPU. We 

calculated the parsing time by running the systems 

on the first 100 sentences on the development data 

of the two languages. The reranking system takes 

twice the time than the base parser in the training. 

It is much slower than the base parser in parsing 

new sentences, which is mainly due to the time 

required for outputting the 50-best candidates list; 

this can be seen as an unavoidable trade-off to 

obtain high accuracy in the reranking framework.  

5. Related Work 

McDonald (2005, 2006) proposed an edge-factored 

parser and a second-order parser that both trained 

by discriminative online learning methods.  Huang 

(2005) proposed the efficient algorithm for 

produce K-best list for graph-based parsers, which 

add a factor of       to the parsing complexity 

of the base parser. Sangati (2009) has shown that a 

discriminative parser is very effective at filtering 

out bad parses from a factorized search space 

which agreed with the conclusion in (Hall, 2007) 

that an edge-factored model can reach good oracle 

performance when generating relatively small K-

best list. Successful results have been reported for 

constituent parse reranking in (Collins, 2000; 

Charniak and Johnson, 2005; Huang, 2008), in 

which feature sets defined on constituent parses 

have been proposed that are able to capture rich 

non-local information. These feature sets, however, 

cannot be directly applied to parse tree under 

dependency grammar. Attempts have been made to 

use similar feature sets in dependency parse 

reranking, which include the work in (Hall, 2007) 

that defined a feature set similar with the one in 

(Charniak and Johnson, 2005). Hayashi in 

(Hayashi et al., 2011) presented a forest reranking 

model which applied third-order factorizations 

emulating Model 1 and Model 2 in (Koo and 

Collins, 2010) on the search space of the reranker.  

6. Conclusion 

We have proposed a novel feature set for 

dependency parse reranking that successfully 

extracts complex structures for collecting linguistic 

evidence, and efficient feature back-off strategy is 

proposed to relieve data sparsity. Through 

experiment we confirmed the effectiveness and 

efficiency of our method, and observed significant 

improvement over the base system as well as other 

known systems. 

To further improve the proposed method, we 

mention several possibilities for our future work. 

An advantage of the reranking framework we used 

is that it has no overlap with many of the semi-

supervised parsing methods, such as word 

clustering (Koo et al., 2008) and subtree features 

integration using auto-parsed data (Chen et al., 

2009). We are interested in the performance of our 

system when combining with these methods. 

Another interesting approach is to incorporate 

information from large-scale structured data, such 

as case frame (Kawahara and Kurohashi, 2006), 

which provides lexical predicate-argument 

selection preference and is an effective way to help 

to overcome data sparse problem in discriminative 

learning. While the relatively complex data 

structure in the case frame prohibits its 

incorporation in any existing factorization methods, 

it can be well utilized in the reranking framework 

with the proposed feature set. 
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