
Copyright 2012 by Nathan Green, Septina Dian Larasati, and Zdenek Zabokrtsky
26th Pacific Asia Conference on Language,Information and Computation pages 137–145

Indonesian Dependency Treebank: Annotation and Parsing

Nathan Green1, Septina Dian Larasati1,2 and Zdeněk Žabokrtský1

1Charles University in Prague 2SIA Tilde
Institute of Formal and Applied Linguistics Vienibas gatve 75a

Faculty of Mathematics and Physics LV-1004
Prague, Czech Republic Riga, Latvia

{green,larasati,zabokrtsky}@ufal.mff.cuni.cz

Abstract

We introduce and describe ongoing work in
our Indonesian dependency treebank. We de-
scribed characteristics of the source data as
well as describe our annotation guidelines for
creating the dependency structures. Reported
within are the results from the start of the In-
donesian dependency treebank.

We also show ensemble dependency pars-
ing and self training approaches applicable
to under-resourced languages using our man-
ually annotated dependency structures. We
show that for an under-resourced language,
the use of tuning data for a meta classi-
fier is more effective than using it as ad-
ditional training data for individual parsers.
This meta-classifier creates an ensemble de-
pendency parser and increases the dependency
accuracy by 4.92% on average and 1.99% over
the best individual models on average. As the
data sizes grow for the the under-resourced
language a meta classifier can easily adapt. To
the best of our knowledge this is the first full
implementation of a dependency parser for In-
donesian. Using self-training in combination
with our Ensemble SVM Parser we show adi-
tional improvement. Using this parsing model
we plan on expanding the size of the corpus by
using a semi-supervised approach by applying
the parser and correcting the errors, reducing
the amount of annotation time needed.

1 Introduction

Treebanks have been a major source for the advance-
ment of many tools in the NLP pipeline from sen-
tence alignment to dependency parsers to an end

product, which is often machine translation. While
useful for machine learning as well and linguistic
analysis, these treebanks typically only exist for a
handful of resource-rich languages. Treebanks tend
to come in two linguistic forms, dependency based
and constituency based each with their own pros and
cons. Dependency treebanks have been made pop-
ular by treebanks such as the Prague dependency
treebank (Hajic, 1998) and constituency treebanks
by the Penn treebank (Marcus et al., 1993). While
some linguistic phenomena are better represented in
one form instead of another, the two forms are gen-
erally able to be transformed into one another.

While many of the world’s 6,000+ languages
could be considered under-resourced due to a lim-
ited number of native speakers and low overall popu-
lation in their countries, Indonesia is the fourth most
populous country in the world with over 23 million
native and 215 million non-native Bahasa Indonesia
speakers. The development of language resources,
treebanks in particular, for Bahasa Indonesia will
have an immediate effect for Indonesian NLP.

Further development of our Indonesian depen-
dency treebank can affect part of speech taggers,
named entity recognizers, and machine translation
systems. All of these systems have technical bene-
fits to the 238 million native and non-native Indone-
sian speakers ranging for spell checkers, improved
information retrieval, to improved access to more of
the Web due to better page translation.

Some other NLP resources exist for Bahasa In-
donesia as described in Section 2. While these are
a nice start to language resources for Indonesian,
dependency relations can have a positive effect on

137



word reordering, long range dependencies, as well
as anaphora resolution. Dependency relations have
also been shown to be integral to deep syntactic
transfer machine translation systems (Žabokrtský et
al., 2008).

2 Related Work

There was research done on developing a rule-base
Indonesian constituency parser applying syntactic
structure to Indonesian sentences. It uses a rule-
based approach by defining the grammar using PC-
PATR (Joice, 2002). There was also research that
applied the above constituency parser to create a
probabilistic parser (Gusmita and Manurung, 2008).
To the best of our knowledge no dependency parser
has been created and publicly released for Indone-
sian.

Semi-supervised annotation has been shown to be
a useful means to to increase the amount of anno-
tated data in dependency parsing (Koo et al., 2008),
however typically for languages which already have
plentiful annotated data such as Czech and English.
Self-training was also shown to be useful in con-
stituent parsing as means of seeing known tokens in
new context (McClosky et al., 2008). Our work dif-
fers in the fact that we examine the use of ensemble
collaborative models’ effect on the self-training loop
as well as starting with a very reduced training set of
100 sentences. The use of model agreement features
for our SVM classifier is useful in its approach since
under-resourced languages will not need any addi-
tional analysis tools to create the classifier.

Ensemble learning (Dietterich, 2000) has been
used for a variety of machine learning tasks and
recently has been applied to dependency parsing
in various ways and with different levels of suc-
cess. (Surdeanu and Manning, 2010; Haffari et
al., 2011) showed a successful combination of parse
trees through a linear combination of trees with var-
ious weighting formulations. Parser combination
with dependency trees have been examined in terms
of accuracy (Sagae and Lavie, 2006; Sagae and
Tsujii, 2007; Zeman and Žabokrtský, 2005). POS
tags were used in parser combination in (Hall et
al., 2007) for combining a set of Malt Parser mod-
els with an SVM classifier with success, however we
believe our work is novel in its use an SVM classifier

solely on model agreements.

3 Data Description

The treebank that we use in this work is a collec-
tion of manually annotated Indonesian dependency
trees. It consists of 100 Indonesian sentences with
2705 tokens and a vocabulary size of 1015 unique
tokens. The sentences are taken from the IDENTIC
corpus (Larasati, 2012). The raw version of the sen-
tences originally were taken from the BPPT articles
in economy from the PAN localization (PAN, 2010)
project output. The treebank used Parts-Of-Speech
tags (POS tags) provided by MorphInd (Larasati et
al., 2011). Since the MorphInd output is ambigu-
ous, the tags are also disambiguated and corrected
manually, including the unknown POS tag. The dis-
tribution of the POS tags can be seen in Table 1.

The annotation is done using the visual tree edi-
tor, TreD (Pajas, 2000) and stored in CoNLL format
(Buchholz and Marsi, 2006) for compatibility with
several dependency parsers and other NLP tools.

4 Annotation Description

Currently the annotation provided in this treebank is
the unlabeled relationship between the head and its
dependents. We follow a general annotation guide-
lines as follows:

• The main head node of the sentence is attached
to the ROOT node.

• Similarly as the main head node, the sentence
separator punctuation is also attached to the
ROOT node.

• The Subordinate Conjunction (with POS tag
‘S–’) nodes are attached to its subordinating
clause head nodes. The subordinating clause
head nodes are attached to its main clause head
nodes.

• The Coordination Conjunctions (with POS tag
‘H–’) nodes, that connect between two phrases
(using the conjunction or commas), are at-
tached to the first phrase head node. The sec-
ond phrase head nodes are attached to the con-
junction node. It follows this manner when
there are more than two phrases.

138



• The Coordination Conjunctions (with POS tag
‘H–’) nodes, that connect between two clauses
(using the conjunction or commas), are at-
tached to the first clause head node. The second
clause head nodes are attached to the conjunc-
tion node. It follows this manner when there
are more than two clauses.

• The prepositions nodes with the POS tag ‘R–’
are the head of Prepositional Phrases (PP).

• In Quantitative Numeral Phrases such as “3
thousand”, ‘thousand’ node will be the head
and ‘3’ node attached to ‘thousand’ node.

In general, the trees have the verb of the main
clause as the head of the sentence where the Sub-
ject and the Object are attached to it. In most cases,
the most left noun tokens are the noun phrase head,
since most of Indonesian noun phrases are con-
structed in Head-Modifier construction.

Figure 1: Dependency tree example for the sentence “He
said that the rupiah stability protection is used so that
there is no bad effect in economy.”

POS tag Description Freq
NSD Noun Singular 1037
Z– Punctuation 278
VSA Verb Singular Active 248
CC- Cardinal Number 226
R– Preposition 205
D– Adverb 147
ASP Adjective Singular Positive 127
S– Subordinating Conjunction 104
VSP Verb Singular Passiver 91
H– Coordinating Conjunction 62
F– Foreign Word 60
B– Determiner 43
CO- Ordinal Number 19
G– Negation 17
PS3 Pronoun Singular 3rdPerson 12
W– Question 7
O– Copula 6
PP1 Pronoun Plural 1stPerson 6
ASS Adjective Singular Superlative 4
PS1 Pronoun Singular 1stPerson 2
APP Adjective Plural Positive 1
CD- Colective Number 1
VPA Verb Plural Active 1
VPP Verb Plural Passive 1

Table 1: The distribution of the Part-Of-Speech tag oc-
currence.

5 Ensemble SVM Dependency Parsing

5.1 Methodology

5.1.1 Process Flow

When dealing with small data sizes it is often
not enough to show a simple accuracy increase.
This increase can be very reliant on the train-
ing/tuning/testing data splits as well as the sampling
of those sets. For this reason our experiments are
conducted over 18 training/tuning/testing data split
configurations which enumerates possible configu-
rations for testing sizes of 5%,10%,20% and 30%.
For each configuration we randomly sample with-
out replacement the training/tuning/testing data and
rerun the experiment 100 times, each time sampling
new sets for training,tuning, and testing. These 1800
runs, each on different samples, allow us to better
show the overall effect on the accuracy metric as

139



Figure 2: Process Flow for one run of our SVM Ensemble
system. This Process in its entirety was run 100 times for
each of the 18 data set splits.

well as the statistically significant changes as de-
scribed in Section 5.1.5. Figure 2 shows this pro-
cess flow for one run of this experiment.

5.1.2 Parsers

Dependency parsing systems are often optimized
for English or other major languages. This opti-
mization, along with morphological complexities,
leads other languages toward lower accuracy scores
in many cases. The goal here is to show that while
the corpus is not the same in size as most CoNLL
data, a successful dependency parser can still be
trained from the annotated data and provide semi-
supervised annotation to help increase the corpus
size.

Transition-based parsing creates a dependency
structure that is parameterized over the transitions
used to create a dependency tree. This is closely
related to shift-reduce constituency parsing algo-
rithms. The benefit of transition-based parsing is the
use of greedy algorithms which have a linear time
complexity. However, due to the greedy algorithms,
longer arc parses can cause error propagation across
each transition (Kübler et al., 2009). We make use of
Malt Parser (Nivre et al., 2007), which in the CoNLL
shared tasks was often tied with the best performing

systems.
For the experiments in this paper we only use Malt

Parser, but we use different training parameters to
create various parsing models. For Malt Parser we
use a total of 7 model variations as shown in Table
2.

Training Parameter Model Description
nivreeager Nivre arc-eager

nivrestandard Nivre arc-standard
stackproj Stack projective

stackeager Stack eager
stacklazy Stack lazy

planar Planar eager
2planar 2-Planar eager

Table 2: Table of the Malt Parser Parameters used during
training. Each entry represents one of the parsing algo-
rithms used in our experiments. For more information see
http://www.maltparser.org/options.html

5.1.3 Ensemble SVM System
We train our SVM classifier using only model

agreement features. Using our tuning set, for
each correctly predicted dependency edge, we cre-

ate
(
N

2

)
features where N is the number of parsing

models. We do this for each model which predicted
the correct edge in the tuning data. So for N = 3
the first feature would be a 1 if model 1 and model 2
agreed, feature 2 would be a 1 if model 1 and model
3 agreed, and so on. This feature set is widely ap-
plicable to many languages since it does not use any
additional linguistic tools.

For each edge in the ensemble graph, we use our
classifier to predict which model should be correct,
by first creating the model agreement feature set
for the current edge of the unknown test data. The
SVM predicts which model should be correct and
this model then decides to which head the current
node is attached. At the end of all the tokens in a
sentence, the graph may not be connected and will
likely have cycles. Using a Perl implementation of
minimum spanning tree, in which each edge has a
uniform weight, we obtain a minimum spanning for-
est, where each component is then connected and cy-
cles are eliminated in order to achieve a well formed
dependency structure. Figure 3 gives a graphical

140



Figure 3: General flow to create an Ensemble parse tree

representation of how the SVM decision and MST
algorithm create a final Ensemble parse tree which
is similar to the construction used in (Hall et al.,
2007; Green and Žabokrtský, 2012). Future itera-
tions of this process could use a multi-label SVM
or weighted edges based on the parser’s accuracy on
tuning data.

5.1.4 Data Set Split Configurations
Since this is a relatively small treebank and in or-

der to confirm that our experiments are not heavily
reliant on one particular sample of data we try a va-
riety of data splits. To test the effects of the training,
tuning, and testing data we try 18 different data split
configurations, each one being sampled 100 times.
The data splits in Section 5.2 use the format training-
tuning-testing. So 70-20-10 means we used 70% of
the Indonesian Treebank for training, 20% for tun-
ing the SVM classifier, and 10% for evaluation.

5.1.5 Evaluation
Made a standard in the CoNLL shared tasks com-

petition, two standard metrics for comparing depen-
dency parsing systems are typically used. Labeled
attachment score (LAS) and unlabeled attachment
score (UAS). UAS studies the structure of a depen-
dency tree and assesses how often the output has the
correct head and dependency arcs. In addition to the
structure score in UAS, LAS also measures the accu-
racy of the dependency labels on each arc (Buchholz
and Marsi, 2006). Since we are mainly concerned
with the structure of the ensemble parse, we report

only UAS scores in this paper.

To test statistical significance we use Wilcoxon
paired signed-rank test. For each data split config-
uration we have 100 iterations of the experiment.
Each model is compared against the same samples
so a paired test is appropriate in this case. We report
statistical significance values for p < 0.01.

5.2 Results and Discussion

Figure 4: Surface plot of the UAS score for the tuning
and training data split.

For each of the data splits, Table 3 shows the per-
cent increase in our SVM system over both the av-
erage of the 7 individual models and over the best
individual model. As the Table 3 shows, we obtain
above average UAS scores in every data split. The
increase is statistical significant in all data splits ex-
cept one, the 90-5-5 split. This seems to be logical
since this data split has the least difference in train-
ing data between systems, with only 5% tuning data.
Our highest average UAS score was with the 70-20-
10 split with a UAS of 62.48%. The use of 20% tun-
ing data is of interest since it was significantly bet-
ter than models with 10%-25% more training data
as seen in Figure 4. This additional data spent for
tuning appears to be worth the cost.

The selection of the test data seems to have caused
a difference in our results. While all our ensemble
SVM parsings system have better UAS scores, it is
a lower increase when we only use 5% for testing.
Which in our treebank means we are only using 5
sentences randomly selected per experiment. This
does not seem to be enough to judge the improve-
ment.

141



Data Average % Increase % Increase Statistical
Split SVM UAS over Average over Best Significant

50-40-10 60.01% 10.65% 4.34% Y
60-30-10 60.28% 10.35% 4.41% Y
70-20-10 62.25% 10.10 % 3.70% Y
80-10-10 60.88% 8.42% 1.94% Y
50-30-20 61.37% 9.73% 4.58% Y
60-20-20 62.39% 9.62% 3.55% Y
70-10-20 62.48% 7.50% 1.90% Y
50-20-30 61.71% 9.48% 4.22% Y
60-10-30 62.57% 7.89% 2.47% Y
90-5-5 60.85% 0.56% 0.56% N
85-10-5 61.15% 0.56% 0.56% Y
80-15-5 59.23% 0.54% 0.54% Y
75-20-5 60.32% 0.54% 0.54% Y
70-25-5 59.54% 0.54% 0.54% Y
65-30-5 59.76% 0.54% 0.54% Y
60-35-5 59.31% 0.53% 0.53% Y
55-40-5 57.27% 0.50% 0.50% Y
50-45-5 57.72% 0.51% 0.51% Y

Table 3: Average increases and decreases in UAS score for different Training-Tuning-Test samples. The average was
calculated over all 7 models while the best was selected for each data split. Each experiment was sampled 100 times
and Wilcoxon Statistical Significance was calculated for our SVM model’s increase/decrease over each individual
model. Y = p < 0.01 and N = p ≥ 0.01 for all models in the data split

142



Figure 5: Process Flow for one run of our self-training
system. There is one alternative scenario in which the
system either does self-training with each N parser or
with the ensemble SVM parser. These constitute two dif-
ferent experiments. For all experiments i=10 and N=7

6 Self-training

6.1 Methodology

The following methodology was run 12 independent
times. Each time new testing/tuning/and training
datasets were randomly selected without replace-
ment. In each iteration the SVM classifier and de-
pendency models were retrained using self-training.
Also for each of the 12 experiments, new random
self-training datasets were selected from the larger
corpus. The results in the next section are averaged
amongst these 12 independent runs. Figure 5 shows
this process flow for one run of this experiment.

The data for self-training is also taken from
IDENTIC and it consists of 45,000 sentences. The
data does not have any dependency relation informa-
tion but it is enriched with POS tags. It is processed
with the same morphology tools as the training data
described in section 3 but without the manual dis-
ambiguation and correction. This data and its an-
notation information are available on the IDENTIC
homepage1.

For self-training we present two scenarios. First,
all parsing models are retrained with their own pre-

1http://ufal.mff.cuni.cz/ larasati/identic/

dicted output. Second, all parsing models are re-
trained with the output of our SVM ensemble parser.
Self-training in both cases is done of 10 iterations of
20 sentences. Sentences are chosen at random from
unannotated data. This allows us to examine self-
training to a training data size of twice the original
set.

The next section examines the differences be-
tween these two approaches and the effect on the
overall parse.

6.2 Results of Self-training

Figure 6: We can see that the self-trained Malt Parser
2Planar model that is trained with the ensemble output
consistently outperforms the self-trained model that uses
its own output. Results are graphed over the 10 self-
training iterations

As can be seen in Figure 6, the base models did
better when trained with additional data that was
parsed by our SVM ensemble system. The higher
UAS accuracy seems to of had a better effect then
receiving dependency structures of a similar nature
to the current model. We show the 2Planar model
in Figure 6 but this was the case for each of the
7 individual models. On an interesting note, the
SVM system had least improvement, 0.60%, when
the component base models were trained on its own
output. This seems warranted as other parser com-
bination papers have shown that ensemble systems
prefer models which differ more so that a clearer
decision can be made (Hall et al., 2007; Green
and Žabokrtský, 2012). The improvements when
self-training on our SVM output over the individ-
ual parsers’ output can be seen in Table 3. Again
these are averages over 12 runs of the system, each
run containing 10 self-training loops of 20 additional

143



sentences.

Model % Improvement %
2planar 1.10%

nivreeager 0.40%
nivrestandard 1.62%

planar 0.87%
stackeager 2.28%
stacklazy 2.20%
stackproj 1.95%

svm 0.60%

Table 4: The % Improvement of all our parsing models
including our ensemble svm algorithm over 12 complete
iterations of the experiment.

7 Conclusion

We have shown a successful implementation of
self-training for dependency parsing on an under-
resourced language. Self-training in order to im-
prove our parsing accuracy can be used to help semi-
supervised annotation of additional data. We show
this for an initial data set of 100 sentences and an
additional self-trained data set of 200 sentences.

We introduce and show a collaborative SVM clas-
sifier that creates an ensemble parse tree from the
predicted annotations and improves individual ac-
curacy on average of 4.92%. This additional accu-
racy can release some of the burden on annotators
for under-resourced language annotation who would
use a dependency parser as a pre-annotation tool.
Using these semi-supervised annotation techniques
should be applicable to many languages since the
SVM classifier is essentially blind to the language
and only considers the models’ agreement.

The treebank is the first of its kind for the Indone-
sian language. Additionally all sentences and anno-
tations are being made available publicly online. We
have described the beginnings of the Indonesian de-
pendency treebank. Characteristics of the sentences
and dependency structure have been described.

8 Acknowledgments

The research leading to these results has re-
ceived funding from the European Commission’s
7th Framework Program under grant agreement n◦

238405 (CLARA), by the grant LC536 Centrum

Komputačnı́ Lingvistiky of the Czech Ministry of
Education, and this work uses language resources
developed and/or stored and/or distributed by the
LINDAT-Clarin project of the Ministry of Education
of the Czech Republic (project LM2010013).

References

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-
X shared task on multilingual dependency parsing.
In Proceedings of the Tenth Conference on Compu-
tational Natural Language Learning, CoNLL-X ’06,
pages 149–164, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Thomas G. Dietterich. 2000. Ensemble methods in ma-
chine learning. In Proceedings of the First Interna-
tional Workshop on Multiple Classifier Systems, MCS
’00, pages 1–15, London, UK. Springer-Verlag.

Nathan Green and Zdeněk Žabokrtský. 2012. Hybrid
Combination of Constituency and Dependency Trees
into an Ensemble Dependency Parser. In Proceedings
of the Workshop on Innovative Hybrid Approaches to
the Processing of Textual Data, pages 19–26, Avignon,
France, April. Association for Computational Linguis-
tics.

R.H. Gusmita and R. Manurung. 2008. Some ini-
tial experiments with indonesian probabilistic parsing.
In Proceedings of the 2nd International MALINDO
Workshop.

Gholamreza Haffari, Marzieh Razavi, and Anoop Sarkar.
2011. An ensemble model that combines syntactic
and semantic clustering for discriminative dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics:
Human Language Technologies, pages 710–714, Port-
land, Oregon, USA, June. Association for Computa-
tional Linguistics.

Jan Hajic. 1998. Building a syntactically annotated cor-
pus: The prague dependency treebank. Issues of va-
lency and meaning, pages 106–132.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen Eryigit,
Beáta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single Malt or Blended? A Study in Mul-
tilingual Parser Optimization. In Proceedings of the
CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 933–939.

Joice. 2002. Pengembangan lanjut pengurai struk-
tur kalimat bahasa indonesia yang menggunakan
constraint-based formalism. undergraduate thesis.
Master’s thesis, Faculty of Computer Science, Univer-
sity of Indonesia.

144



Terry Koo, Xavier Carreras, and Michael Collins. 2008.
Simple semi-supervised dependency parsing. In Pro-
ceedings of ACL-08: HLT, pages 595–603, Columbus,
Ohio, June. Association for Computational Linguis-
tics.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis lectures on hu-
man language technologies. Morgan & Claypool, US.

Septina Dian Larasati, Vladislav Kuboň, and Dan Zeman.
2011. Indonesian morphology tool (morphind): To-
wards an indonesian corpus. Systems and Frameworks
for Computational Morphology, pages 119–129.

Septina Dian Larasati. 2012. Identic cor-
pus:morphologically enriched indonesian-english
parallel corpus.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of english: the Penn Treebank. Comput. Linguist.,
19:313–330, June.

David McClosky, Eugene Charniak, and Mark Johnson.
2008. When is self-training effective for parsing? In
Proceedings of the 22nd International Conference on
Computational Linguistics (Coling 2008), pages 561–
568, Manchester, UK, August. Coling 2008 Organiz-
ing Committee.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev,
Gulsen Eryigit, Sandra Kübler, Svetoslav Marinov,
and Erwin Marsi. 2007. MaltParser: A language-
independent system for data-driven dependency pars-
ing. Natural Language Engineering, 13(2):95–135.

Petr Pajas. 2000. Tree editor tred, prague depen-
dency treebank, charles university, prague. See URL
http://ufal. mff. cuni. cz/˜ pajas/tred.

Localization Project PAN. 2010. Pan localization
project.

Kenji Sagae and Alon Lavie. 2006. Parser combina-
tion by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 129–132, New
York City, USA, June. Association for Computational
Linguistics.

Kenji Sagae and Jun’ichi Tsujii. 2007. Dependency pars-
ing and domain adaptation with LR models and parser
ensembles. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 1044–1050,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Mihai Surdeanu and Christopher D. Manning. 2010. En-
semble models for dependency parsing: cheap and
good? In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, HLT
’10, pages 649–652, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly Modular MT System with Tec-
togrammatics Used as Transfer Layer. In Proceedings
of the 3rd Workshop on Statistical Machine Transla-
tion, ACL, pages 167–170.

Daniel Zeman and Zdeněk Žabokrtský. 2005. Improving
parsing accuracy by combining diverse dependency
parsers. In In: Proceedings of the 9th International
Workshop on Parsing Technologies.

145


