Spring Cleaning and Grammar Compression: Two Techniques for
Detection of Redundancy in HPSG Grammars

Antske Fokkens"”, Yi Zhangb and Emily M. Bender”

“ Department of Computational Linguistics, Saarland University
Saarland University Campus, 66123 Saarbriicken, Germany
, afokkens @coli.uni-saarland.de
LT-Lab, German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3 / Building D3, 66123 Saarbriicken, Germany
yizhang @dfki.de
‘Department of Linguistics, University of Washington,
Box 354340, Seattle, WA 98195-4340, USA
ebender @uw.edu

Abstract. This paper presents two approaches that identify which parts of an implemented
grammar are used and which parts are computationally inactive. Our results lead to the
following insights: even small grammars contain noise due to revised analyses, removing
superfluous types from a grammar may help to detect errors in the original grammar and
at least half of the types defined in the grammars we investigated do not play a role in the
computational process of the grammar.

Keywords: Implemented grammars, HPSG, typed feature structures.

1 Introduction

Grammars of natural language are highly complex objects. This complexity is reflected in imple-
mentations of linguistically motivated precision grammars. Understanding the role of a specific
element in a broad coverage precision grammar is therefore not always straightforward, even for
the engineer who implemented the grammar. Implementations for different phenomena interact,
and revisions to the grammar may change the role of existing parts of the grammar. In this paper,
we present two techniques for investigating the role that specific types play in implemented HPSG
(Pollard and Sag, 1994) grammars. The first, dubbed ‘spring cleaning’, focuses on identifying
portions of the grammar that do not play any role in the set of sentences it recognizes or the struc-
tures it assigns to them. Such artifacts can accrue in a grammar because abandoned analyses are
not completely removed or because the grammar is built on a cross-linguistic resource but does
not use all of the infrastructure that resource provides. Spring cleaning is intended to be used in
the course of grammar development and as such must leave the grammar in a state that is still easy
to maintain. In contrast, the second technique, ‘grammar compression’, computes the smallest
subset of a type hierarchy that can assign the same structures to the same sentences as the original
grammar. In grammar compression, we remove not only the types taken out in spring cleaning,
but also those that exist only to express generalizations over their subtypes.

We use these techniques to explore the degree of redundancy in a range of DELPH-IN! gram-
mars, including the two grammars of Wambaya (Bender, 2010), the BURGER grammar of Bul-
garian (Osenova, 2010), the ManGO grammar2 of Mandarin Chinese, all built with the LinGO

Copyright 2011 by Antske Fokkens, Yi Zhang and Emily M. Bender
"http://www.delph—-in.net/
nttp://wiki.delph-in.net/moin/MandarinGrammarOnline

25th Pacific Asia Conference on Language, Information and Computation, pages 236—244
236

Grammar Matrix (Bender et al., 2002; Bender et al., 2010), and two much larger grammars, the
English Resource Grammar (Flickinger, 2000) and German Grammar (Miiller and Kasper, 2000;
Crysmann, 2005).

This paper is structured as follows: First, we describe the overall structure of the grammars
under consideration. This section is followed by an overview of the first approach under exam-
ination: removing superfluous types from the grammar. Section 4 provides the details of our
second investigation of relevant types: maximally reduced computationally equivalent grammars.
The next section presents our quantitative results and their implications. Finally, we conclude by
suggesting avenues for future research.

2 General structure of DELPH-IN grammars

The grammars under consideration are HPSG-based grammars that can be used for parsing and
generation with the LKB (Copestake, 2002) and for parsing with the PET parser (Callmeier, 2002).

The grammars we work with are all written in the DELPH-IN joint reference formalism (Copes-
take, 2000), known as TDL. TDL grammars consist of one or more files defining a type hierarchy
as well as a collection of files defining instances: phrase structure rules, lexical rules, lexical en-
tries, node labels and initial symbols. The instances are manipulated by the parsing and generation
algorithms during processing, while the types are used to define the instances. The type hierarchy
consists of typed feature structures, i.e., types which are arranged into a subsumption relation and
associated with (complex) feature structures.

The definition of a type consists of an identifier for the type, one or more supertypes, and
optionally one or more type constraints. Type constraints are feature-path value pairs, where the
values are drawn from the type hierarchy. The value of a feature can be atomic (i.e., a type with no
further features of its own) or complex (i.e., a type with future features that are appropriate to it).
The value of two features may be identified, creating reentrancies. Thus the feature structures are
DAGs (cycles are disallowed). Any given feature is associated with exactly one type for which it
is appropriate. All other types that bear constraints on the value of that feature must inherit from
the type for which the feature is declared appropriate.

An example TDL type definition, drawn from the Wambaya grammar, is shown in Figure 1.
The string before the symbol : = is the type identifier (noun—-1ex). After :=, four supertypes are
specified. The remainder of the type definition (enclosed in square brackets) provides the type
constraints. #spr labels a reentrancy between the values of two features.’

noun-lex := basic-noun-lex & basic-one-arg &
no-hcons-lex-item & non-wh-lex &
[SYNSEM.LOCAL.CAT [MC na, HEAD.MOD <>,
VAL [SPR < #spr & [LOCAL.CAT.HEAD det, OPT +] >,
COMPS < >, SUBJ < >, SPEC < > 11,
ARG-ST < #spr >]

Figure 1: Sample type definition from Wambaya grammar

The parsing and generation algorithms require that the type hierarchy be a bounded complete
partial order (BCPO), i.e., for any two types that share subtypes, there must be one unique most
general such type, called the ‘greatest lower bound (glb)’. However, grammar engineers are not
required to make sure that the type hierarchy has this property. Rather, the glb types are created
programmatically at compile time: if any two types have more than one mutual subtype, the
grammar compiler creates an additional type, as shown in Figure 2.

3 Note that the < > notation is syntactic sugar that simplifies the expression of lists. Lists are underlying treated as
feature structures with FIRST and REST as appropriate features.

237

top *top*

ANEA VAVAN
c d e f c gbl f

/\

d e

Figure 2: Sample hierarchy as written by grammar engineer (left) and augmented with glb type by compiler
(right)

When working with the LKB, the grammar is compiled when it is loaded into the system.
The grammar engineer can then interact with the grammar, using it to parse and generate but also
exploring the type hierarchy through a GUI. With PET, grammar compilation is handled via a
program called ‘flop’, resulting in a file storing the compiled version of the grammar. The parser,
called ‘cheap’, reads in the flopped grammar for runtime parsing.

3 Spring cleaning: Removing superfluous types

This section describes a process for removing types that do not have an impact on the competence
of the grammar. By competence, we mean the set of analyses that the grammar provides for any
possible input strings; for strings the grammar does not recognize, this will be the empty set. In
practice, we can only test this competence with some finite set of strings. In the experiments
reported below, we use the testsuites associated with each grammar.

As explained in the previous section, the LKB and PET parsers and LKB generator take in-
stances as starting points for parsing and generation. Instances thus have a direct influence on the
competence of the grammar. There are several ways in which types may be relevant, i.e., play a
role for instances. The first and most direct way is if a type is an instantiated type, meaning that it
either has an instance or has a subtype that has an instance. Instantiated types thus directly define
the instances of the grammar. The second way a type has an impact on instances is by defining
features or values that are part of the definition of one or more instantiated types. Finally, a type
may be relevant to instances, because it defines a lower bound between two relevant types. In this
case, the type influences the possibility of unification, i.e. if a type ¢ forms the only lower bound
between types #1 and f2, t permits unification between #; and ¢, which can no longer take place
when 7 is removed from the grammar.

Types that do not influence instances in any of the three possible ways defined above do not
have an impact on the competence of the grammar. Our ‘spring cleaning’ algorithm goes through
the type definition files and identifies such irrelevant types. This process takes place in two stages.
In the first stage, we identify types that are necessary for the definition of the instantiated types.
This means types that either (i) are instantiated types, (ii) define values of features of instantiated
types, or (iii) introduce features used to define an instantiated type. Errors occurring in this stage
can be tested at compile time of the grammar: if a type is removed that is required for the definition
of an instantiated rule or lexical entry, the grammar will not load in LKB. Similarly, the PET ‘flop’
command will fail (and report an error) on a grammar missing such a type.

Types that permit unification between other types, but play no direct role to other type’s defini-
tions, are only relevant at runtime. These types are identified in the second stage of the process.
After separating types needed to define instantiated types from those that are not, our algorithm
checks for relevance at runtime of the latter types. We create a hierarchy £ of types that lead to
instances and their values. For each type from the original grammar that is not defined in &, our
algorithm checks whether it permits the unification of types from £ that would otherwise fail. In

238

order to test this stage for correctness, we use the grammar to parse some set of strings. In addi-
tion, we use grammar compression, explained in the next section, to verify if all relevant types are
kept in the grammar.*

The final output of our algorithm is three sets of files: (i) modified versions of the files of
the original grammar, in which the definition files include only those types that are either in 4 or
identified as relevant at runtime, (ii) copies of the original definition files and (iii) files that list
removed types for each definition file. The structure of the original grammar is preserved by this
process. This includes types that are used to capture generalizations so that a given constraint need
be stated in only on place. Thus the result is a grammar that is ‘cleaned up’ with respect to the
input without being made more compact in ways that might make it more opaque to the grammar
engineer or introduce redundancy at the level of the statement of constraints. As we will see below,
exploring which types are eliminated can be illuminating for the grammar engineer as well.

4 Grammar compression: Maximally reduced computationally equivalent
grammars

While the ‘spring cleaning’ algorithm safely removes types that do not have an impact on the
competence of the grammar, it does not guarantee the maximal reduction of the grammar. More
specifically, the supertypes in an inheritance hierarchy represent generalizations on various lev-
els, but many of them serve no computational purpose, and will never show up in the analysis.
This section describes our algorithm that identifies computationally relevant types of the gram-
mar. The compression algorithm removes a superset of types to those reduced by the ‘spring
cleaning’ method, hence can be used to verify the equivalence of the grammars achieved by the
less-invasive reduction method from the previous section. The main practical difference between
the algorithm applied in this section and the one in the previous section is that this algorithm op-
erates on a compiled grammars, i.e. grammars that have been compiled to be used by the PET
parser. The consequence of this difference is that this algorithm can also identify supertypes of
instantiated types and relevant values that are not strictly necessary for the grammar from a com-
putational point of view. Note, however, that types that are not computationally relevant can play
an important role in the maintainability of the grammar or, from a linguistic point of view, in
capturing cross-grammar similarity. We will explain these two differences in the coming subsec-
tions. The explanation of the grammar compression algorithm is followed by a formal proof of the
equivalence between the original and the maximally reduced grammar.

4.1 Reducing compiled grammars

Before a grammar written in TDL can be interpreted by the PET parser, the grammar has to be com-
piled. There are several significant differences between a compiled grammar and its original that
have an impact on identifying types that are relevant for the grammar. First, as mentioned above,
a compiled grammar defines a type hierarchy that is a bounded complete partial order (BCPO),
which means that all possible greatest lower bounds of existing compatible types are already in-
cluded in the inheritance hierarchy. Second, all constraints on each defined type are expanded,
including those inherited from supertypes. Moreover, the potential subsumption relations between
pairs of types are encoded in a bit-matrix, so the immediate supertype-subtype relations become
insignificant so long as the subsumption relations do not change. Because each type definition
contains all constraints inherited from supertypes as well as direct information about all types that
it subsumes, compatibility between types can be checked by applying bit-vector AND. This proce-
dure allows us to identify types that are not strictly necessary for computational purposes (though
they may be useful for reasons of grammar maintainability). For instance, a type that serves to de-
fine a set of constraints for all its subtypes is no longer required in a grammar where each subtype
already contains these constraints.

* Note, however, that neither test (compiling or parsing) ensures that all redundant types have been removed.

239

This is illustrated in Figure 3, which displays the subsumption table for the BCPO in Figure 2.
Each row in this table denotes the types subsumed by the current type. Therefore, even without
the direct inheritance information from Figure 2, we can tell from Figure 3 that type b is equal to
or more general than type b, d, e, f, and glb1.

*

¥ 3

R B T T T S~
top | 1 1 1 1 1 1 1 1
alO0O I 0 1 1 1 0 1
b0 0 1 0 1 1 1 1
c/0 0 0 1 0 O 0 O
d{o o0 0 0 1 0 0 o0

e/ 0 0 0 0O O 1 0 O
f10 0 0 O O O 1 O
glbi| 0 0 0 O 1 1 O 1

Figure 3: Example of subsumption table in a compiled grammar

Our grammar compression algorithm goes through the instantiated types of the grammar and
marks the instantiated type itself plus the type value of each expanded constraint. Our grammar
compression algorithm goes through the instantiated types of the grammar and marks the type
value of each expanded constraint. Once this is done, it further marks the glbs of the marked types
to complete the sub-BCPO. The unmarked types which are identified as having no computational
impact on the grammar are a superset of those identified by our spring cleaning algorithm, includ-
ing both types that are not related to instantiated types in any manner, as well as types that may
play a role in representing linguistic generalizations and in maintainability of the grammar, but
could be removed from the grammar in a compression process where constraints are pushed down
on subtypes. The maximally reduced grammar then will only contain the marked types, with the
constraints on the removed types specified on the subtypes directly. We provide a proof in the next
subsection that such grammar reduction does not change the grammar behavior.

4.2 Proof of equivalence

Definition 1. For a TFS grammar G, an analysis is a TFS created by unifying the TFSes of
instances defined in G.

Definition 2. TFS grammars G and G’ are A-equivalent iff they always produce the same type
feature structure analyses for any inputs.

Note that the notion of A-equivalence is similar to the tree-language equivalence for CFG or
TAG where two grammars not only yield the same sequences, but also the complex structures that
produce those sequences.

Assuming a type inheritance hierarchy 7' is a bounded complete partial order (BCPO), we
define a reduced type inheritance hierarchy R(T") as an order-preserving hierarchy containing
all the types that (i) are directly mentioned in one or more instances in G; or (ii) serve as the
greatest lower-bound (glb) in 7 for the types included in R(T"). A reduced TFS grammar G(R(T"))
contains the same instances in G(7"), and a reduced hierarchy R(T") from T'.

Theorem 1. Given a BCPO type hierarchy T = (T,Ar) and its reduction R(T) =
(T',Ap:) (T" C T), if two types from R(T) are compatible, their greatest lower bound is the
same, i.e., Vt1,ta € T', t1 A to = t1 A ta,

The proof is obvious from the definition, due to the glb-preserving nature of the mapping of
types from R(T') to T

240

Theorem 2. G(T) and G(T") are A-Equivalent if T" = R(T).

Proof. An analysis with grammar G(T') is produced by unifications with instances. The analysis
with G(T”) involves the unification of the same set of instances. Since the unification of types
mentioned in the instances yields the same glb (Theorem 1), the unifications of the same instances
on T and R(T) produce the same TFSes. O

S Results
5.1 Spring cleaning Matrix based grammars

We tested our algorithm by removing superfluous types from the BURGER grammar of Bulgarian
[bul] (Osenova, 2010), the ManGO grammar5 of Mandarin [cmn] and two grammars of Wambaya
[wmb] (Bender, 2010). The Wambaya grammars represent two branches of development on the
same grammar, built around two separate analyses of the auxiliaries in the language: an (older)
grammar with an argument composition analysis (‘arg-comp’) and a new grammar which uses a
verbal cluster approach (‘aux+vc’).

We checked whether the reduced grammar was equivalent to the original grammar by compar-
ing the results of the spring cleaning algorithm to those of the grammar compression algorithm,
which we have proven to lead to an equivalent grammar. If the reduced grammar contains all
types of the compressed grammar, it is guaranteed that all types that have instances as well as
types that influence their ability to unify are present in the grammar. This only leaves the question
of whether all required supertypes were correctly identified by the algorithm. This can be verified
by compiling the grammar, since missing supertypes lead to compilitation errors. We verified the
two biggest spring cleaned grammars, the Wambaya grammars, this way, which both passed the
test.

In addition, we verified equivalence by parsing associated testsuites with the original and newly
created grammar. The set of syntactic trees and semantic interpretations produced for each gram-
mar were compared using [incr tsdb()] (Oepen, 2001). Equivalence was confirmed for all gram-
mars, though not immediately with the Wambaya grammars. As discussed below (§5.2), we dis-
covered that the value hierarchy associated a semantic feature was not a BCPO in the grammars as
written. Once this was fixed, we were able to confirm equivalence. As mentioned in Section 1, all
four grammars are further developments of grammars originally created by the LinGO Grammar
Matrix customization system. This means that types identified as being superfluous can be divided
in two main categories: language specific types and types from the cross-linguistic component.

Table 1 presents the results for all grammars. The types removed from Wambaya (arg-comp)
form a subset of those removed from Wambaya (aux+vc).

Source Wambaya (arg-comp) | Wambaya (aux+vc) | BURGER | ManGO
Multilingual Component 178 178 138 131
Language Specific 17 26 226 62
Total 195 204 364 213

Table 1: Number of redundant types identified for each grammar

In general, most of the removed types come from the multilingual core. BURGER forms the
only exception, but this result is misleading. The bulk of the language specific types removed
from BURGER are lexical types (183 of 226). The lexicon of the publicly available version
of BURGER?® is relatively small (BURGER only has 183 lexical items), and a grammar with a

5 http://wiki.delph-in.net/moin/MandarinGrammarOnline
8 http://www.bultreebank.org/BURGER/index.html

241

bigger lexicon currently exists (Osenova, p.c.). Taking this in consideration, it is likely that the
real number of superfluous language specific types in BURGER lies around 40.

It is expected that most removed types would be multilingual types for several reasons. First,
the multilingual core may contain types that are not relevant for the particular language. Second,
the grammars we investigated are relatively small. This has two consequences that may lead to a
relatively high number of superfluous multilingual types as compared to language specific types.
The multilingual core may, to begin with, contain types that support phenomena that the grammar
does not yet cover. In addition, a small to medium sized grammar will not have too many revised
analyses that would lead to noise in the grammar.

5.2 Further observations from Spring cleaning

In order to get a clearer idea of the way the Grammar Matrix multilingual component is used, we
compared the set of types removed from each grammar. We looked at which types where removed
from all grammars, from two grammars or just one grammar. All types were classified according
to whether they correspond to a phenomenon not covered by the grammar (Not Covered), whether
they represent a phenomenon that does not occur cross-linguistically generally (Not Applicable),
or represent an abandoned analysis (Abandoned). Note that the types from the first category may
potentially be used in the grammar in the future. The Grammar Matrix contains one type that
serves as an example and is not meant to be used (Example). Table 2 presents this classification.’

Grammars where removed Not Covered | Not applicable | Example | Abandoned | Total
Wambaya, BURGER, ManGO 63 29 1 6 99
Wambaya, BURGER 2 2
BURGER, ManGO 18 6 24
Wambaya 10 36 15 61
BURGER 12 1 2 15
ManGO 4 4 8
Total 109 76 1 23 209

Table 2: Classification of redundant types from LinGO Grammar Matrix

As mentioned above, we parsed associated testsuites of each grammar with the original version
of the grammar, as well as the reduced grammar in order to verify the equivalence between the
two grammars. This additional test lead to another, unforeseen, benefit of our investigation for
the Wambaya grammars. Namely, we identified missing types in the hierarchy of the semantic
values for person and number. The reduced grammars produced the same number of readings and
the same trees as the original grammars, but revealed differences in semantic representations for
a small set of analyses. Upon closer inspection, it turned out that some semantic feature values
of the feature PERNUM (person and number) had glb-types (greatest lower bound types) as their
value. These types are automatically introduced by the LKB when compiling the grammar to make
sure the type hierarchy is bounded complete partially ordered (BCPO). They may play a role as a
syntactic component of a derivation, but they should not appear in semantic representations. The
LKB uses numbers to assign each added glb-type a unique name. These numbers, and thus the
name given to a specific type, may differ if the size of the grammar changes. Because of different
number of the glb-types representing person and number values in Wambaya, we were able to
identify the missing types and improve the Wambaya grammars.

7 The grammars were not based on the same version of the Grammar Matrix, leading to some divergence. Specifically,

five of the types removed from BURGER and ManGO because they are not cross-linguistically valid were not present
in the Grammar Matrix that Wambaya is based on.

242

5.3 Grammar Compression

We ran our grammar compression algorithm on the ERG, GG, JaCY, Wambaya (arg-comp) and

BURGER grammars. The results are presented in Table 3.

Grammar required types | defined types | reduction rate
ERG 4030 7772 48.1%
GG 5211 10778 51.7%
JaCY 1232 2497 50.7%
Wambaya (arg-comp) 751 3400 77.9%
BURGER 3325 5280 37.0%

Table 3: Superfluous Types according to Grammar Compression

Our results show that all tested grammars contain a great number of types that do not have an
impact on the behavior of the grammar. Furthermore, a significant difference is observed between
the grammars, with the large grammars like ERG, GG and JaCY having about half of their types
playing a computational role in the grammar’s competence, and the Wambaya grammar using
only slightly above 20%. The high amount of unused types in Wambaya can be explained by
the fact that it contains the multilingual component from the Grammar Matrix. The Matrix-based
BURGER grammar, on the other hand, implements a sophisticated morphological system with
over 2700 inflectional rules, outweighing the unused types provided by the Matrix core grammar.

The results presented in Section 5.1 showed that most superfluous types in the Wambaya gram-
mar are found in the multilingual component. Moreover, the multilingual core of the Grammar
Matrix makes heavily use of generic types used to define more specific types further down the
hierarchy. The purpose of this structure is to make the core more modular and hence provide
more flexibility to ensure cross-linguistic applicability. In a monolingual grammar, the grammar
engineer can restrict this usage to generic types known to be useful for the particular language.

6 Conclusion and Future Work

We have presented two approaches that investigate which types in an HPSG grammar are used.
The first approach examines the type hierarchy as it is defined in TDL. It identifies types that do not
define properties of any instantiated types, nor influence their ability to unify and removes such
types from the grammar. As such, this approach respects the original structure in the grammar.
The second approach looks at the minimum number of types that is required to create a grammar
that is equivalent to the grammar that is defined in TDL.

One can learn a variety of things by examining the types that are removed, both for monolingual
projects and for cross-linguistic projects. For monolingual projects, cleaning out the unused types
improves grammar maintainability. In a multilingual context, systematically exploring what gets
used and what doesn’t is useful feedback for developers of the multilingual core. These insights
shed light both on which analyses aren’t working crosslinguistically and on where Matrix users
are apparently failing to discover relevant infrastructure provided by the Matrix.

In future work, we plan to extend our spring cleaning algorithm to identify constraints that do
not affect the grammar’s competence. Furthermore, we aim to continue our investigation of the
Grammar Matrix by comparing the formal properties of type hierarchies. For this investigation,
we plan to compare hierarchies that represent a grammar at different stages of its development,
which should lead to more exact insights on how multilingual components are used in individual
grammars.

243

References

Bender, Emily M. 2010. Reweaving a grammar for Wambaya: A case study in grammar engineer-
ing for linguistic hypothesis testing. Linguistic Issues in Language Technology, 3(3), 1-34.

Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson, and Safiyyah Saleem. 2010.
Grammar customization. Research on Language & Computation, 8(1), 23-72.

Bender, Emily M., Dan Flickinger, and Stephan Oepen. 2002. The grammar matrix: An open-
source starter-kit for the rapid development of cross-linguistically consistent broad-coverage
precision grammars. In John Carroll, Nelleke Oostdijk, and Richard Sutcliffe, eds., Proceed-
ings of the Workshop on Grammar Engineering and Evaluation at the 19th International Con-
ference on Computational Linguistics, pp. 8—14, Taipei, Taiwan.

Callmeier, Ulrich. 2002. Preprocessing and encoding techniques in PET. In Stephan Oepen,
Daniel Flickinger, J. Tsujii, and Hans Uszkoreit, eds., Collaborative Language Engineering. A
Case Study in Efficient Grammar-based Processing. CSLI Publications, Stanford, CA.

Copestake, Ann. 2000. Appendix: Definitions of typed feature structures. Natural Language
Engineering, 6, 109-112.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. CSLI Publications,
Stanford, CA.

Crysmann, Berthold. 2005. Relative clause extraposition in German: An efficient and portable
implementation. Research on Language and Computation, 3(1), 61-82.

Flickinger, Dan. 2000. On building a more efficient grammar by exploiting types. Natural
Language Engineering, 6 (1) (Special Issue on Efficient Processing with HPSG), 15 —28.

Miiller, Stefan and Walter Kasper. 2000. HPSG analysis for German. In Wolfgang Wahlster,
ed., Verbmobil: Foundations of Speech-to-Speech translation, pp. 238 — 253, Berlin, Germany.
Springer.

Oepen, Stephan. 2001. [incr tsdb()] — competence and performance laboratory. Technical report,
DFKI, Saarbriicken, Germany.

Osenova, Petya. 2010. BUIgarian Resource Grammar — Efficient and Realistic (BURGER). ms,
Stanford University.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. Studies in Con-

temporary Linguistics. The University of Chicago Press and CSLI Publications, Chicago, IL
and Stanford, CA.

244

