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Abstract. This paper presents a solution for  overcoming the lexical  resource gap when 
mounting rule-based Constraint Grammar systems for minor languages, or in the face of 
licensing  and  financing  limitations.  We  investigate  how  the  performance  of  a  CG 
disambiguation  grammar  responds  to  shifting  input  parameters,  among  them  lexicon 
limitations  of  various  degrees,  the lack  a  morphological  analyzer  or  both.  We propose 
solutions  for  a  bare-bones  system,  introducing  endings  heuristics  and  so-called 
morphological  APPEND  rules.  For  English,  even  with  an  unadapted  disambiguation 
grammar, our bare-bones tagger achieved F-scores of 90-96% for part of speech, and 94-
97% for lemmatization, depending on the modules and mini-lexica used.

Keywords:  Less-resourced languages,  PoS-tagging,  Constraint  Grammar,  morphological 
analyzer, lexicon generation

1 Introduction

Conventional  wisdom has it  that  in the realm of natural  language parsing (NLP), statistical 
methods are more cost-efficient and easier to build than rule-based systems. However, the latter 
are dependent on training data, and machine learning of morphosyntactic analysis relies on the 
existence of a fair-sized annotated corpus for the language in question. If no such corpus exists, 
manual annotation of a boot-strapping corpus will be necessary, eliminating part of the cost-
effectiveness advantage. Furthermore, in the face of Zipf's law, the limited availability of large 
linguist-revised  corpora  (especially  treebanks)  makes  it  difficult  to  achieve  good  lexical 
coverage. Rule-based NLP systems, on the other hand, while not dependent on training data, 
generally  require  extensive  lexica  and/or  morphological  analyzers  as  input  modules.  As  it 
would seem, both statistical and rule-based approaches are resource-sensitive and can run into 
difficulties with minor languages, or in the face of licensing and financing limitations. What we 
are addressing in this paper, is the assumption that these problems are especially difficult to 
solve  for  rule-based  systems,  among  them  our  own  methodology  of  choice,  Constraint 
Grammar (CG). At the disambiguational level, early work by Chanod & Tapanainen (1995) 
showed that even a small set of CG rules can compete with an off-the-shelve statistical tagger. 
However, in their experiment,  both systems had access to an extensive lexicon an a mature 
morphological analyzer (a finite-state transducer). All published CG parsers to date (Karlsson 
et al. 1995 and Bick 2000) have included extensive lexico-morphological resources as input to 
their grammatical rules (as have other rule-based approaches like HPSG and LFG). To the best 
of our knowledge, no previous research has been done on how to build a CG in the absence of 
such resources.   

2 Related work and methodological focus

A  great  deal  of  methodological  inspiration  on  the  corpus-based  creation  of  lexico-
morphological resources can be found in recent research literature, and the different approaches 
can be clustered into two distinct groups - on the one hand linguistically pre-structured corpus 
work with an emphasis on paradigm completeness and validation (e.g. Clément, Sagot & Lang 
2004 or  Forsberg  et  al.  2006),  on the  other  hand machine  learning  techniques  designed  to 
deduce lexical information from raw text data in an unsupervised fashion (e.g. Goldsmith 2001 
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or Creutz & Lagus 2005). Automatic extraction techniques have also been suggested for higher 
level lexical information (e.g. Nikuládóttir & Whelpton 2009 for semantic relations), but the 
focus  of  this  paper  will  be  on  the  lexico-morphological  level.  Though  our  goal  is  a  full 
inflexional analysis, we don't intend to build full morphological paradigms like Forsberg et al. 
or Clément et al. Rather, the idea is to find a balance between fullform mini-lexica from small 
annotated corpora on the one hand (chapter 5.3) and what Piasecki and Radzieszewski (2007) 
in their work on Polish call a statistical  a tergo index on the other hand -  a list of corpus- or 
lexicon-derived pseudo-suffixes or -endings, capturing inflexional and other patterns of word 
formation at the surface level (chapter 3). While Piasecki and Radzieszewski use a letter tree to 
spawn individual morphological tags, in our own work on English we investigated complete 
endings strings of various lengths, each associated not with individual tags, but complete tag 
chain readings, assuming that for a poorly inflecting language like English the line between 
analytical  morphology  and  derivation  is  blurred,  and  that  it  is  more  important  to  capture 
possible patterns in word class changes or ethymology at the same time. As a third module, 
supplementing and modifying suggested readings from both mini-lexica and endings heuristics, 
we  use  a  new  type  of  Constraint  Grammar  rules  (chapter  4),  which  are  morphologically 
productive  in  nature,  running  counter  to  the  traditional  use  of  CG  as  reductionist 
disambiguation technique.

3 Simulating a full form lexicon

Depending on typological characteristics of the language in question, the balance of importance 
between a morphological  analyzer and its lexicon may shift  considerably.  Thus, a language 
with a rich and completely regular inflexion and affixation system can be annotated for part of 
speech (PoS), number, tense etc.  with an analyzer alone, and would need a lexicon only to 
resolve  compounding  and  root-affix  ambiguities.  Highly  irregular,  non-compounding 
languages with an underspecified morphological system (such as English), on the other hand, 
can be handled with a so-called fullform list alone, where every word form is associated with 
one or more reading lines providing PoS and other linguistic categories.

Consider the following (ambiguous) input to a CG disambiguation grammar:

The 
  "the" <def> ART S/P (definite article singular/plural)
test 
  "test" N S NOM (noun, singular, nominative)
  "test" V PR -3S (verb present tense, non-third-person)
  "test" V INF (verb, infinitive)
  "test"  V IMP (verb, imperative)
showed 
  "show"  V IMPF (verb, past tense)
  "show"  V PCP2 (verb, past participle)
  "show"  V IMPF (verb, past tense)
interpretable 
  "interpretable"  ADJ POS (adjective)
 results 
  "result"  N P NOM (noun, plural, nominative)
  "result"  V PR 3S (verb, third person singular)
$. 

In this example, the word form 'results'  can either be looked up in a full form list providing 
both noun and verb readings, or it can be analyzed as result+s, with the s-morpheme triggering 
the plural and third person inflexional readings, and the root result being verified in a separate 
base form lexicon. Even without lexicon support, there is a fair chance that an English word 
ending in -s will be a plural noun or a third person verb, while such guesses are impossible for 
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uninflected and closed-class words.
 
In  the  full  form  list  approach,  inflected  forms  can  be  generated  from  lemma-lists  using 
paradigmatic  information about  the language,  or  by using an FST in generative  mode.  But 
while only generation will ensure the inclusion of all forms of a lemma, many of these forms 
may be very rare, and a reasonable fullform list may be built simply by extracting all unique 
word forms (and their different analyses) from an annotated corpus. In a unix environment this 
can be done with an extremely simply command pipe. Assuming a corpus in .txt format with 
line-separated tokenization:

cat corpus | sort | uniq -c | sort -r -n

In the analyzer approach, for languages with a rich inflexion, a full FST can be approximated 
by pairing a lexeme list  (for instance from a translation dictionary) and small analyzer program 
for all  possible inflexion endings, but without paradigmatical  information. Such an analyzer 
will come up with many overgenerated readings, but for each reading the hypothetical root can 
be  checked  against  the  lexeme  lexicon,  and  a  certain  amount  of  false  readings  due  to 
paradigmatical confusion can be weeded out by contextual disambiguation at the CG grammar 
stage.

In the absence of lexica and analyzers, and with only a small annotated corpus available, we 
still think a rule-based system can be bootstrapped just as well as a statistical one. What we 
propose  is  to  combine  a  mini-lexicon  with  an  word-endings  guesser.  Though  requiring  a 
minimum of manual linguistics, and a text book or other, the mini-lexicon is necessary to cover 
highly frequent closed-class words (conjunctions, pronouns, functional adverbs) and irregular 
verb or noun forms. And because, in general, this kind of words is overrepresented in the high-
frequency bracket, a large portion may actually be covered by even a small toy corpus. In order 
to bypass  the rest  of  the  lexicon  and the morphological  analyzer,  a  second mini-lexicon is 
compiled from all words in the corpus - or even selectively those words in the corpus that are 
not part of the irregular and closed-class first mini-lexicon. Depending on the size of this word 
inventory,  we will  regard the last  3-5 letters  of each word form as an “endings” string -  a 
heuristic  guess  at  real  world  inflexion  or  affixation  endings  or  ethymological  word  class 
regularities.  The adjective  interpretable,  for instance,  can be guessed at from the following 
4pattern, derived from more common words, like available, considerable, acceptable, capable,  
valuable, unable:

xxxable ADJ

Using  a  frequency  breakdown  of  these  “endings”,  we  can  then  assign  PoS  and  linguistic 
categories to unknown word forms, using a longest match strategy. For endings with multiple 
readings, only the most frequent ones will be included in the annotation and passed on to the 
CG disambiguation grammar. As a consequence of this strategy,  corpus errors,  misspellings 
and  hapaxes  will  automatically  be  weeded  out,  and  the  noisy  frequency  tail  of  the  word 
inventory  ignored.  For  our  English  miniature  test  corpus  with  only  4.000  words,  the  top 
frequency end of the resulting 3-letter endings lexicon looked like this (with prefixed frequency 
counts):

     50 xxxion,  N S NOM 
     44 xxxing,  V PCP1 
     30 xxxons,  N P NOM 
     21 xxxing,  N S NOM 
     18 xxxers,  N P NOM 
     17 xxxity,  N S NOM 
     15 xxxlly,  ADV 
     14 xxxnts,  N P NOM 
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     14 xxxies,  N P NOM 
     14 xxxent,  N S NOM 
     13 xxxnce,  N S NOM 
     12 xxxble,  ADJ POS 
     10 xxxing,  ADJ POS 
     10 xxxely,  ADV 
     10 xxxcal,  ADJ POS 
      9 xxxess,  N S NOM 
      8 xxxtes,  N P NOM 
      8 xxxted,  V PCP2 PAS 
      8 xxxent,  ADJ POS 
      8 xxxces,  N P NOM 

As can be seen, the list nicely manages both inflexion (-ion/-ions) and derivation (-ble,-lly). For 
-ing, verbonominal ambiguity is covered, as is the N/ADJ ambiguity of -ent.

In principle, there are two diffent sources for endings patterns and their statistics. On the one 
hand, corpora can be used, leading to an emphasis on tokens and true frequency. On the other 
hand a dictionary can be used, with a type focus, and “frequency” meaning that there are many 
words in a language with a given ending. While the former is a better model for a bare-bones 
system relying heavily on endings also for common words, the latter is better suited to predict 
the  analysis  of  a  small  remaining  percentage  of  rarer,  unknown  words.  Therefore,  in  out 
evaluation, we used one method for the lexicon-free system, and the other for experiments with 
lexicon sizes.

4 A Constraint Grammar analyzer

A  classical  CG  rule,  as  allowed  in  the  cg-1  (LingSoft  Oy)  and  cg-2  (Tapanainen  1996) 
formalisms,  is  a  disambiguation  rule  that  discards  or  selects  reading  lines  from a readings 
cohort, or individual tags from a single readings line:

REMOVE (VFIN) IF (-1C ART OR DET) ; # remove a finite verb reading if the word to the 
left is a safe (C) article or determiner

SELECT (VFIN) IF (NOT *-1 VFIN) (NOT *1 VFIN) ; # select a finite verb reading if there 
is no other finite verb neither left (*-1) or right (*1)

This reductionist  methodology was complemented by ADD and MAP rules used for adding 
syntactic  function  tag  canditates  (subject,  object  etc.)  for  higher  level  disambiguation. 
However, in the original formalism, these tag-adding rules could not make reference to word 
form string elements, and could not be used to add entire reading lines to unknown tokens. In 
our own, new CG rule formalism, cg-3, we therefore implemented a new rule type, APPEND, 
specifically  targeting  morphological  work  in  the  face  of  lacking  or  incomplete  lexical 
resources. We also added full support for regular expressions and string variables in both target 
and context matches. Apart from the obvious application, morphological analysis of the target 
word, regular expression matches can also be used for on-the-fly reference to grammatical sets 
of  words  in  context  conditions,  at  least  for  features  with  some  form  of  regular  surface 
representation,  such as using the  '-ize'  affix as a marker for  verb transitivity in English,  or 
aspect prefixes in slavic languages.

For closed-class words like prepositions and uninflecting words like adverbs, an APPEND rule 
is very simpel, and equivalent to a full form list:

APPEND ("$1"v <atemp> ADV) TARGET ("<(always|ever|never|now|soon|today|tomorrow|
yesterday)>"r) ;
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For  affixation1,  as  in  the  adjective  example  below,  we  use  <safe>  and  <heur>  (heuristic) 
markers,  the  idea  being  that  safe  mappings  will  prevent  later  rules  from  adding  further, 
heuristic readings for competing word classes:

APPEND ("$1"v <safe> ADJ) TARGET ("<(.*(ic|oid|ous))>"r) ; # spastic, android, gaseous
APPEND ("$1"v <heur> ADJ) TARGET ("<(.*(al))>"r) ; # accidental 

Here, the second rule will allow a later noun mapping for -al (e.g. withdrawal).

Obviously,  rule  order  is  important,  and  more  specific  rules,  with  more  morphological 
information to draw on, must precede default rules, the last of which will be a singular noun 
reading for most languages, given the dominance and productivity of nouns in the lexicon. The 
following noun rules show how a certain amount of root alterations can be handled, overriding 
more general rules:

APPEND ("$1y"v <heur> N P NOM) TARGET ("<(.*)ies>"r) (NOT 0 <lex>) ; # flies
APPEND ("$1"v <safe> N S GEN) TARGET ("<(.*)'s>"r) (NOT 0 <lex> OR (N)) ;  # fly's
APPEND ("$1"v <safe> N P GEN) TARGET ("<(.*s)'>"r) (NOT 0 <lex> OR (N)) ;  # flies'
APPEND ("$1"v <heur> N P NOM) TARGET ("<(.*)s>"r) (NOT 0 <lex> OR (N)) ;  # pies

Note  the  ie->y  change  in  the  analysis  of  “flies”,  and  the  fact  that  the  genitive-s  analysis, 
deemed <safe>, will overrule the general plural s-stripping in the fourth rule.

All in all, for English, some 20 APPEND rules can provide very good morphological coverage 
on top of a small lexicon of irregular base forms, and with no analyzer in the program chain. A 
certain  degree of unavoidable  over-generation of  ambiguity  can be handled  by an ordinary 
disambiguation CG - the same contextual rules working for true ambiguity (e.g. N/V for tests) 
will  also  tackle  heuristic  ambiguity  (e.g.  N/V  for  xxxs).  For  inflecting  or  agglutinating 
languages, more APPEND rules will be needed, but they will also be much more precise and be 
less prone to systematic heuristic ambiguity. We have evaluated the performance effect of our 
morphological CG heuristics for English, but expect it to be better rather than worse, for these 
other language types. 

5 Evaluation

 In order to evaluate the various suggested setups for a bare-bones CG system, we are using 
our English CG system as a chain of replaceable black box modules. Thus, we reduced the 
original morphological analyzer to a mere look-up program with access only to a mini-lexicon 
of irregular and closed-class words, inactivating the real, verbo-nominal lexicon. Likewise, the 
disambiguation CG was not allowed access to valency or semantic class tags from the main 
lexicon. To maintain tokenization compatibility, and thus matchability with the gold standard 
annotation,  we  retained  the  system's  own preprocessor,  but  for  a  new language  a  working 
version  could  be  produced  with  a  few lines  of  code,  basically  line-breaking  on  space  and 
punctuation,  with  a  few  exceptions  for  abbreviations  and  -  depending  on  the  language  - 
contractions, enclitics and possibly names.

All  experiments  were  performed  on  a  random  text  chunk  from  the  English  Wikipedia 
(en.wikipedia.org), with 3957 tokens (3510 functional words, 1699 word form types). 48.6% of 
running word form tokens (1705 words), or 80% of word form types (1368) were “unknown” 
once the main lexicon had been inactivated.

1 Rules like these can be improved considerably, and be made to include much longer and more fine-
grained lists of derivational morphemes. On the other hand, many suffixes will also be captures by a good 
endings heuristics (cp. below), which is why our rule was not made more elaborate in the current setup.
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5.1 The effect of APPEND rules and endings heuristics

In all evaluation scenarios we used a small CG module with about 40 APPEND rules for the 
heuristic assignment of part of speech (PoS) and inflexion tags to unknown words. Without a 
lexicon or analyzer, this module alone permitted the disambiguation CG a part-of-speech F-
Score of 87. Without a lexicon, the original analyzer helped only a little (89.6 for PoS), and its 
effect could be matched and surpassed by using a bare-bones analyzer using endings heuristics 
learned from a corpus: 

Table 1: performance with various input combinations for CG disambiguation grammar

No lexicon
no analyzer

No lexicon
but analyzer

No lexicon
but endings heuristics

Full
system

full lexicon +

base lexicon + + +

original analyzer + +

mini-analyzer with
endings heuristics (4 letters)

+
 (3.5 - 310 M words)

morph. APPEND cg + + +

CG disambiguation + + + +

PoS F-score 87 89.6 89.1-89.8 99.6

Morphology F-score 85.1 84.8 84.1-86.4 98.5

Base form F-score 93.1 93.4 93.3-94.6 99.2

Since endings heuristics are a very cheap resource to produce, we searched for the optimal 
number of letters to use, and investigated the effect of the size of the corpus used for learning 
endings patterns. In the table below, we looked at the last 2,3,4,5 or 6 letters, respectively, and 
distinguish between 3 different corpus sources:

1. Wikipedia test chunk endings (ca. 3.500 tokens revised), i.e. same corpus
2. Leipzig Internet corpus2 (ca. 3.500 words revised), i.e. small, but different corpus
3. Leipzig Internet corpus (ca. 310.000 words unrevised), i.e. moderate treebank size

Table 2: performance with various input combinations for CG disambiguation grammar (full 
disambiguation or choose first reading)

endings heuristics
number of letters

2 3 4 5 6

PoS F-score 87.3
84.2
87.7

89.3
86.1
89.2

91.9
89.1
89.8

92.8
89.1
89.6

92.1
88.6
89.5

Morphology F-
score

86.4
83.6
86.4

88.2
83.2
86.7

90.3
84.1
86.4

90.6
84.1
85.4

88.2
83.2
84.8

Base form F-score 92.2
91.9
92.1

93.9
92.7
93.7

95
93.3
94.6

95.6
93.3
94.1

94.9
92.9
93.

2 (Quaesthoff et al. 2006)
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As one  might  expect,  the  use  of  same-corpus  data  performed  best,  both  for  genre  and 
lexicon reasons, but this is not a realistic  scenario outside the realm of Wall Street  Journal 
linguistics.  Interestingly,  the  best  cross-corpus  F-Score  for  PoS was  achieved  with  4-letter 
endings3. The likely reason for this is that fewer letters will not capture enough morphemes, 
and leave too much ambiguity,  while  using too many letters  may lead to  a lower  level  of 
“abstraction”, and hence, coverage problems. Performance rose when using more corpus data4, 
even though we used unrevised annotations for the larger data set, and revised annotation for 
the small one.

Base form recognition performed better than PoS, and morphology worse, but both was to 
be expected, since, for instance, English verbs and nouns may share a common base form  (a 
house - to house), while especially verbs have a great deal of 0-morpheme inflexion in English 
(e.g. house V INF, house V -3S, house V IMP), allowing for morphological mistaggings even in 
the face of a correctly recognized V part of speech.

5.2 Recall ceilings before disambiguation

All of the above tests targeted overall performance, through the optics of an existing English 
disambiguation grammar. However, the rules in this grammar were written for input from a 
regular analyzer drawing on a large lexicon (> 200.000 lexemes) complete with valency and 
semantic class information. In order to get an idea about the potential performance ceiling of a 
new grammar, optimized for the kind of heuristic, over-ambiguous input our bare-bones setup 
is providing, it is interesting to know the point of departure for a disambiguation grammar, i.e. 
the recall and precision of a bare-bones analyzer with access only to an endings heuristics and 
morphological APPEND rules.

Table 3: Recall / precision / F-score for bare-bones analyzer without disambiguation CG
(endings lexicon from unrevised 310.000 word corpus)

endings heuristics 3 letters
Recall/Prec./F-score

4 letters
Recall/Prec./F-score

5 letters
Recall/Prec./F-score

PoS 95.6 /47.7 / 63 95 / 50.6 / 66 94.3 / 51.5 / 66.6

Morphology 93.9 / 46.9 / 62.6 92.7 / 49.4 / 64.5 91.4 / 49.9 / 64.6

Base form 95.6 / 81.6 / 88 96.1 / 84.8 / 90.1 95.4 / 85.3 / 90.1

The numbers show that for writing a disambiguation grammar from scratch, it might actually 
be a good idea to use shorter ending strings for heuristics, since the implicit over-generation 
will  ensure a higher recall.  Conversely,  precision is higher with the longer  5-letter  endings 
heuristics, giving an existing (reductionist) disambiguation grammar less room to make errors. 
The latter  effect,  however,  is  dependent  on a  sufficiently  large corpus base  -  with a  small 
corpus, even a manually revised one (!), both recall and precision will be higher with the more 
generalizing 3-letter endings:

Table 4: recall / precision / F-score for bare-bones analyzer without disambiguation CG
(endings lexicon from different, revised 3.500 word corpus)

endings heuristics 3 letters 4 letters 5 letters

PoS F-score 93.9 / 53 / 67.8 93.6 / 51.9 / 66.8 93.6 / 51.6 / 66.6

3 For same-corpus training,  the optimal number of  letters may be a little higher,  since longer  string 
matches may mean a more narrow modeling of individual, frequent words in the corpus. 
4 Still, this is also true of full form lexica built from the same corpora, so with bigger corpora available, 
the need to have endings heuristics in the first place will decrease.
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Morphology F-score 91.4 / 51.6 / 66 90.5 / 50.2 / 64.6 90.6 / 49.9 / 64.4

Base form F-score 94.5 / 84.7 / 89.3 94.2 / 84.6 / 89.1 94.1 / 84.6 / 89.1

5.3 The effect of fullform mini-lexica

Finally,  we simulated  the  availability  of  a  corpus-derived  fullform lexicon,  to  enhance  our 
bare-bones  system,  assuming  that  no  real  lexicon  resource  would  be  available,  and  that 
available  corpora  would  not  be  human-revised.  For  this  experiment  we  used  the  English 
Leipzig Internet corpus (2 million words, Quaesthoff et al. 2006), automatically annotated with 
the EngGram parser (Bick 2009). The corpus contained a maximum of 180.000 different non-
hapax word form types, not counting numerical expressions and compound names. Of these, 
we used the 1000, 10,000 and 100,000 most frequent forms to enhance the base lexicon of the 
bare-bones system. As before,  we used both an endings-based heuristics and morphological 
APPEND rules  to  handle  remaining  unknown  forms,  and  ran  the  evaluation  metrics  after 
disambiguation. For the endings heuristics we settled for a string length of 4, and used the same 
frequency chunk to build the endings lexicon, i.e. combining the 1.000 word min-lexicon with 
an endings lexicon likewise built from only 1.000 word forms, etc. One important difference 
between a fullform lexicon derived from a small  corpus,  and one generated from complete 
lexical  paradigms (or simply written by hand) is that  the former does not  guarantee  cohort 
completeness - for instance, the most frequent analyses of the word 'close' (say, adjective and 
infinitive) may be represented in the corpus, while others (say, finite verb and imperative) are 
missing.  To  simulate  a  generated  cohort-complete  resource  for  comparison,  we  ran  an 
alternative evaluation where rarer forms below the chosen frequency threshold were added,  if  
another, more frequent reading for the same form had been found above the threshold. Figures 
for both scenarios are given in the table below, the cohort-complete results in parentheses. 

Table 5: The influence of mini-lexicon size (endings files built from same lexicon size)

mini lexicon
size in words

1 000 10 000 100 000 180 000 (all)

PoS F-score 90 (89.8) 93.7 (93.3) 95.3 (95.2) 95.2 (95.2)

Morphology F-score 87 (87.2) 91.8 (91.7) 94.1 (94.1) 94.1 (94.1)

Base form F-score 93.6 (93.3) 96 (95.8) 96.8 (96.8) 96.8 (96.8)

The figures show the expected performance increase with bigger corpora, but also that growth 
is asymptotic - the Zipf tail of the frequency, i.e. frequencies close to the hapax level, do not 
contribute. An interesting finding is that completing cohorts with rarer readings does not help. 
The expected beneficial recall  effect is canceled out either by the loss of implicit  statistical 
disambiguation, or by corpus annotation errors found in the low frequency bracket. In this light, 
it must be emphasized that no human revision of either corpus or lexicon was involved, and 
that  cohort-completeness  was simulated  from corpus  data.  In  a  development  setting,  better 
results might be achieved with revised corpora (treebanks), or by manually cohort-completing 
the top frequency bracket of a corpus-derived lexicon.

6 Conclusions and Outlook

We have  shown how the  necessary  morphological  input  for  the  disambiguation  rules  of  a 
Constraint Grammar tagger can be generated in a resource-poor environment. To bypass the 
usual  lexico-analytical  setup  (analyzers,  lexica,  finite  state  machines),  we  compared  and 
combined 3 methods - (a) morphological APPEND rules, (b) endings heuristics and (c) corpus 
derived  mini-lexica.  With  an  annotated,  but  unrevised  2-million  word  corpus  as  “maximal 
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resource”,  the  best  combination  of  a-c  achieved  F-scores  of  95.3  for  PoS  and  96.8  for 
lemmatization,  respectively,  even in  a  cross-genre  evaluation.  Even with a  lexicon  of  only 
closed-class words, a combination of (a) and (b) came close to 90% correctness for PoS, with a 
theoretical recall ceiling of 95.6 without disambiguation. Future research should determine if 
using a newly written, tailor-made disambiguation grammar could exploit  this recall  ceiling 
better than the existing grammar made for non-heuristic lexico-analytical input.

An important  lesson  learned,  and a  nice  aspect  for  resource-savers,  was  the  fact  that  for 
generating data-driven lexica, corpus size matters more than whether the corpus annotation has 
been human-revised - this being true both for full form lexica and endings heuristics.  For the 
latter, we established 4 letters as the optimal string length to use for English5. 

We chose English for our experiments not because CG has a special affinity or effectiveness 
for English, but simply to make our research maximally accessible for the research community 
as a whole. However, our intuition is that the effectiveness of both endings-based heuristics and 
morphological  APPEND rules should be higher for languages with a richer morphology,  as 
would be the case for most other Indo-European languages, for instance. On the other hand, the 
coverage of same-size fullform lexica should be lower for those languages. In a bare-bones 
setting we believe the treatment of unknown word forms to be more important than lexicon 
coverage,  but  this  intuition  need  to  be  corroborated  by  future  research  on  representative 
members of various language families.
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