
A grammar design accommodating packed argument frame
information on verbs

Petter Haugereid

Division of Linguistics and Multilingal Studies, Nanyang Technological University,
14 Nanyang Drive, Singapore 637332, Singapore

petterha@ntu.edu.sg

Abstract. This paper presents a comparison of two designs for implementing argument
frame information on verbs. In the first design, alternatingverbs will be represented with
one lexical entry pr. possible argument frame. In the other design, each verb form will be
associated with only one lexical entry containing a packed representation of the possible ar-
gument frames. The first design represents how valence alternations are treated in lexicalist
grammars, while the second shows how valence alternations can be handled in a construction-
alist grammar. The comparison is done with an implemented “deep” grammar of Norwegian.

Keywords: HPSG, grammar engineering, lexical representations, under-specification.

1 Introduction

In most “deep” grammar implementations, information aboutthe argument frame of a verb is spec-
ified in the lexicon. This can be observed in grammatical frameworks such as Head-driven Phrase
Structure Grammar (HPSG) (Pollard and Sag, 1994), Lexical Functional Grammar (LFG) (Bresnan,
2001), and Combinatory Categorial Grammar (CCG) (Steedman, 2000). Deep grammars need to
be as precise as possible since they are not only expected to parse grammatical sentences, but
also not to parse ungrammatical sentences. So, in order to avoid overgeneration, the grammar
needs, among numerous other things, to contain informationabout what syntactic frames a verb is
expected to appear in. The most natural place to put this information is in the lexicon.

In this paper I will discuss one problem associated with the way argument frame information
is specified in a lexicalist grammar, namely the use of multiple lexical entries for one verb form in
cases where the verb may appear in more than one argument frame. Multiple lexical entries for one
form leads to an increased processing effort for the parser.A possible solution to this problem is to
pack the information from the different entries into one. I will present a constructionalist grammar
design, where each verb form is assigned a single lexical entry with a packed representation of the
possible argument frames of the verb, using a type hierarchyof argument frame types to account
for argument frame alternations. I will show how the grammardesign compares toHPSG, which is
the framework mostly used for deep grammar implementations, and compare two versions of the
implemented grammar, one with an expanded lexicon and one with a packed lexicon, with regard
to competence and performance.

2 Valence in HPSG

In HPSG, a transitive verb has the information in Figure 1. The figureillustrates how the valence
requirements of a verb is represented by means of lists and also how the linking to the semantics
is accounted for.

Copyright 2011 by Petter Haugereid

25th Pacific Asia Conference on Language, Information and Computation, pages 31–40

31




PHON
〈

admire
〉

CAT




HEAD verb

VAL




SUBJ
〈

NP1

〉

COMPS
〈

NP2

〉







CONT |RESTR

〈


PRED _admire_v_rel
ARG1 1

ARG2 2



〉




Figure 1: Lexical entry for the verbadmire

For each argument realized by the valence rules (Head-Complement Rule and Head-Subject
Rule), an element on the valence lists will be unified with it and checked off. A verb projection is
accepted as a sentence when both theSUBJ list and theCOMPS list are empty.

Implemented HPSG grammars like the English Resource Grammar, ERG (Flickinger, 2000),
use a binary Head-Complement Rule to realize the complements (see Figure 2.) This rule realizes
one complement at a time (the first) and links the rest of the list in the mother (3) (see Saget al.
(2003, 97)). If the complement list contains more than one element, the Head-Complement Rule
will work repeatedly until theCOMPS list is empty.1




phrase

CAT

[
HEAD 1

VAL |COMPS 3

]

⇒


CAT




HEAD 1

VAL |COMPS
〈

2

〉
⊕ 3





, 2

Figure 2: Binary Head-Complement Rule

The subject of a clause is realized by the Head-Subject Rule (see Figure 3). This rule has as its
head daughter a word or phrase that has an emptyCOMPSlist and an element on theSUBJ list (2).
The element on theSUBJ list is realized as the non-head daughter, and theSUBJ list of the mother
is empty.




phrase

CAT




HEAD 1

VAL

[
SUBJ〈〉
COMPS〈〉

]





⇒ 2 ,


CAT




HEAD 1

VAL


SUBJ

〈
2

〉

COMPS〈〉










Figure 3: Head-Subject Rule

The fact that linking is accounted for in the lexicon means that a verb needs to have access to
its syntactic arguments in the lexicon. It is therefore difficult to account for verbs with more than
one argument frame with only one lexical entry. One approachto this problem is described in
Flickinger (2000), which implements a special type of listsin order to account for optional argu-
ments. A list is accepted as empty if all elements on it are marked asOPT + . This approach works
well for alternations like the intransitive/transitive alternation, but does not completely eliminate
the need for multiple lexical entries (or non-inflectional lexical rules).2 There are also methods for

1 By assuming such binary structures, rather than the flat Head-Complement Rule from (Pollard and Sag, 1994, 362–
363), the account of adjuncts intervening the complements becomes more straightforward, since a Head-Modifier
Rule can be allowed to apply in between two instances of the Head-Complement Rules.

2 The treatment of ditransitive verbs in combination with passive becomes more challenging, since the passive lexical

32

making parsing more efficient where local ambiguities are packed while parsing is going on, as
shown in Oepen and Carroll (2000), where the packing is done by the parser.

3 Norsyg

Norsyg is a typed feature structure grammar for Norwegian, developed with resources from the
open-source repository of the Deep Linguistic Processing with HPSG Initiative (DELPH-IN),3 in
particular theLKB system (Copestake, 2002), which is a software for parsing and grammar de-
velopment, and theHPSG Grammar Matrix (version 0.8) (Benderet al., 2002), which the gram-
mar Norsyg orignially is based on. Evaluation is done with the [incr tsdb()] system (Oepen and
Flickinger, 1998).

Even though much of the feature geometry of the Grammar Matrix has been kept, the design
is radically different from that of a standardHPSG grammar. It is now more a constructionalist
grammar, rather than lexicalist, inspired by the approach in Borer (2005a,b) and Åfarli (2007).

Norsyg (version 2011-07-28) is a grammar with 4,454 types, 133 features, 144,679 lexical
entries (of which 1,436 are hand-built), 52 grammar rules, and 51 lexical rules. In comparison,
theERG (version 2010-10-01) has 7,682 types, 202 features, 35,473lexical entries, 175 grammar
rules, and 73 lexical rules, andJACY (Jacy Japanese Grammar, version 2009-07-05) (Siegel and
Bender, 2002) has 2524 types, 183 features, 56,944 lexical items, 51 grammar rules, and 69 lexical
rules.

3.1 Linking types

In the approach taken in Norsyg, linking is done in the syntaxrather than in the lexical types.
Instead of assuming that a lexical entry has detailed information about a certain syntactic frame,
which is crucial in an approach that does linking in the lexicon (see Figure 1), it is assumed that
a lexical entry by default has little information about its syntactic environment. The syntactic
frames are not projections of the lexicon. They are rather constructions made up offunctional
signs, that is inflections, closed class lexical items, and syntactic rules. These signs do the linking
of the arguments of the open class lexical items that enter the syntactic frames, realizing what
I refer to as subconstructions as they serve as part of a larger, overall construction. In order to
avoid overgeneration, the open class lexical items are provided with information that restricts the
number of argument frames they can enter.

3.2 Four valence features

In the implementation of a grammar that does linking by meansof functional signs realizing sub-
constructions, I make use of four valence features (ARG1, ARG2, ARG3 andARG4), correspond-
ing to what in GB is referred to as the “external argument” (ARG1), the “direct object internal
argument” (ARG2), the “indirect object internal argument” (ARG3), and “goal/locative oblique”
(ARG4). The four features havesynsemas value.4 The typesynsemis given the featureLINK . The
value of theLINK feature is the typelink. In addition, there is a featureARGFRAME with the value
link. It is via this feature that a lexeme may put restrictions on what types of constructions it can
enter. There is also a featurePART which allows a lexeme to select for particles. The typevalence
now has the definition in Figure 5, rather than the definition with the SUBJ and COMPS lists as
presented in Figure 4.

rule looks for the first element on theCOMPS list to promote it to subject, and will not be able to find the second
element in case the first is not realized.

3 http://www.delph-in.net.
4 The typesynsemis a supertype ofphr-synsemand lex-synsem. This makes it compatible with both words and

phrases.

33




valence

SUBJ list

SPR list

COMPS list

SPEC list




Figure 4: The typevalencein the Grammar Matrix




valence

ARGFRAME link

ARG1 synsem
[

LINK link
]

ARG2 synsem
[

LINK link
]

ARG3 synsem
[

LINK link
]

ARG4 synsem
[

LINK link
]

PART|SAT bool




Figure 5: The typevalencein Norsyg

3.3 A hierarchy of linking types

The typelink has a hierarchy below it. Directly underlink, there are eight types, one positive and
negative type for each of the valence features in Figure 5 (see Figure 6).5 So there is onearg1+,
onearg1–, onearg2+, onearg2–and so on.

link

arg2+ arg1+ arg4+ arg3+ arg3– arg4– arg1– arg2–

arg1-12

arg12 arg1

Figure 6: The link hierarchy

Each of the types in the bottom of the hierarchy inherits fromfour of the top types. These
types represent different argument frames. For instance, the typearg12 represents an arg12-
construction, which is the frame type for transitive verbs like devourin John devoured the pizza.
The typearg1 is the type for unergative intransitive verbs likesmile in John smiled. If we study
the hierarchy above the bottom types, we see thatarg12 is a subtype ofarg1+, arg2+, arg3–, and
arg4–, and thatarg1 is a subtype ofarg1+, arg2–, arg3–, andarg4–.

3.4 Packingof argument frames

The intermediate types in the hierarchy are inserted in order to allow something that can be thought
of aspackingof argument frames.6 These types have two or more bottom types as subtypes. So a
verb that is specified in the lexicon with an intermediate link type will be compatible with all the
frames that correspond to the subtypes of the intermediate link type.

The verbeatcan occur with two valence frames, as illustrated in (1).7

(1) a. John eats.

b. John eats an apple.

5 The hierarchy in Figure 6 is very simplified. Most of the intermediate and bottom types are left out in order to keep
the illustration as simple as possible.

6 The termpackingwas suggested to me by Lars Hellan.
7 Passive and presentational variants of the examples I am using are not assumed to alter the argument frame, so I do

not mention them here.

34

In (1a)eathas an arg1-frame, and in (1b) an arg12-frame. In order to allow the verb to enter
both frames, it is given theARGFRAME valuearg1-12in the lexicon.arg1-12inherits fromarg1+,
arg3-, andarg4-, but is underspecified with regard to arg2. It has two subtypes, namelyarg1 and
arg12, which means thateatcan enter the relevant argument frames.

A verb like breakcan enter the frames illustrated in (2).

(2) a. John broke the cup.

b. John broke the cup to pieces.

c. The cup broke.

d. The cup broke to pieces.

(2a) has a transitive frame (arg12-construction), (2b) hasa transitive + resultative frame
(arg124-construction), (2c) has an unaccusative frame (arg2-construction) and (2d) has an un-
accusative + resultative frame (arg24-construction). In order to allowbreakin all these frames, it
is specified with the intermediate link-typearg12-124-2-24, which has the four subtypesarg12,
arg124, arg2 and arg24 (not displayed in Figure 6). In all, the hierarchy below the type link
consists of 126 types. The most frequent argument frame types with linguistic definitions are
given in Table 1. It shows that the most common alternation grouping among the verbs is the
transitive/intransitive alternation, with 1815 occurrences. In comparison, the number of verbs
alternating between (only) transitive and ditransitive is56.

Table 1: The 16 most frequent argument frame types in Norsyg

Frequency Argument Alternation grouping
frame type

3335 arg12 Transitive
1815 arg1-12 Transitive/intransitive
627 arg12-124 Transitive with optional delimiter
513 arg1 Unergative intransitive
341 arg1-14 Intransitive with optional PP complement
338 arg2 Unaccusative intransitive
139 arg12-14 Transitive/intransitive with PP complement (if intransitive)
124 arg1-12-14 Transitive/intransitive with optional delimiter (if intransitive)
114 arg14 Intransitive with PP complement
105 arg12-2 Transitive/unaccusative intransitive (causative/inchoative)
81 arg12-124-14 Intransitive/transitive with optional PP complement
76 arg124 Transitive with PP complement
75 arg1-2 Unergative/unaccusative intransitive
74 arg123 Ditransitive
59 arg12-123-124 Transitive/ditransitive with optional delimiter (if transitive)
56 arg12-123 Transitive/ditransitive

3.5 The composition of subconstructions

Figure 7 gives a simplified illustration of how the information about realized subconstructions
in the syntax and argument structure information specified on the main verb is represented.8 As
the figure shows, each valence rule switches a negativeLINK value in the mother to a positive

8 This tree does not reflect the fact that syntactic structuresproduced by Norsyg actually are left-branching, with the
initial constituent at the bottom-left.

35

LINK value in the daughter. The top node has only negativeLINK values. In this way, theLINK

values in the bottom of the tree reflect what subconstructions are realized higher up in the tree.
The argument structure information specified on the main verb is given as value of the feature
ARGFRAME (arg1-12). The tree also illustrates how linking is done by subconstructions, rather
than in the lexicon. The semantic representation composed in Figure 7 is a decomposed version
of the semantic relation in Figure 1. The relations introduced by the subconstructions in Figure 7
can be seen as Parsoninan sub-events.

S




CAT|VAL




ARG1|LINK arg1–

ARG2|LINK arg2–

ARG3|LINK arg3–

ARG4|LINK arg4–




C-CONT

〈
! arg1_rel

[
LBL 0

ARG0 1

]
!

〉




NP1

John
VP




CAT|VAL




ARG1|LINK arg1+

ARG2|LINK arg2–

ARG3|LINK arg3–

ARG4|LINK arg4–




C-CONT

〈
! arg2_rel

[
LBL 0

ARG0 2

]
!

〉




V




CAT|VAL




ARGFRAME arg1-12

ARG1|LINK arg1+

ARG2|LINK arg2+

ARG3|LINK arg3–

ARG4|LINK arg4–




CONT

〈
!

[
LBL 0

PRED _admire_v_rel

]
!

〉




admires

NP2

Mary

Figure 7: Information about realized subconstructions.




uni-link

ARGFRAME 1

ARG1|LINK 1

ARG2|LINK 1

ARG3|LINK 1

ARG4|LINK 1




Figure 8: Unification of LINK values
andARGFRAME value.

The typeuni-link (see Figure 8) unifies theLINK values with the argument structure information
specified on the main verb (the value ofARGFRAME). This type applies to constituents at the
bottom of the tree where the linking information is available.9 In the analysis of a transitive
sentence like that in Figure 7, the typesarg1+, arg2+, arg3–, arg4–, andarg1-12will be unified.
This gives the typearg12 (see Figure 6).

3.6 Lexical types in Norsyg

There are 100 handwritten and 126 automatically derived lexical entry types for verbs in Norsyg.
The lexical type for a transitive verb with an optional NP object, likeeat, is presented in Figure
9. The featureARGFRAME is given the valuearg1-12, which means that the verb is compatible
with both the unergative intransitive frame (arg1-construction) and the transitive frame (arg12-
construction). TheHEAD value of the (optional)ARG2 of the verb is specified to benominal.
Since optionality is expressed by means of the argument frame type, there is no need for the

9 This unification is left out in Figure 7 in order to show how thelinking types end up at the bottom of the tree.

36

featureOPT on syntactic arguments. ThePART|SAT value isplus, which means that the verb is not
a particle verb.




arg1-12_np_le

CAT|VAL




ARGFRAME arg1-12

ARG2|CAT|HEAD nominal

PART|SAT +







Figure 9: Thearg1-12_np_letype

The lexical type for verbs likepaint, which can be both intransitive, transitive and transitive
resultative, is given in Figure 10. TheARGFRAME value is specified asarg1-12-124, which means
that it can enter an unergative frame, a transitive frame, and a transitive frame with a delimiter.
TheHEAD value ofARG2 is specified to benominal, and theHEAD value ofARG4 is specified to
beadj. This ensures that the internal argument is an NP, and that the delimiter is an adjective.




arg1-12-124_np_ap_le

CAT|VAL




ARGFRAME arg1-12-124

ARG2|CAT|HEAD nominal

ARG4|CAT|HEAD adj







Figure 10: Thearg1-12-124_np_ap_letype

Given the means I have described for restricting the syntactic environment of verbs in Norsyg,
theARGFRAME values, theHEAD values of theARG2 andARG4 arguments, theKEY value of the
ARG4 argument, and thePRED value of the particles, one is free to give very specific constraints,
only allowing one particular argument frame, or one can let the constraints be less specific, so that
the verb can enter more frames.

3.7 Adaptation of Norsk Ordbank

Norsyg is adapted to Norsk Ordbank,10 which is a full-form lexicon for Norwegian with 1,179,549
entries (148,141 different lemmas). The verbs in Norsk Ordbank are annotated with the argument
frame information from the NorKompLeks project.11 A programconvlexconverts the lexicon
into a format compatible with the Norsyg grammar (143,263 uninflected lexical entries, of which
8,647 are verbs). It gathers the argument frame informationabout each verb and creates the corre-
sponding type if this type does not exist already. This is often necessary if a verb can enter many
argument frames. The lexical types for verbs have five kinds of information. First, they spec-
ify what kind of constructions the verb can enter. If the verbcan enter the arg1-construction, the
arg12-construction, and the arg124-construction, it is assigned theARGFRAME valuearg1-12-124.
Second, they specify theHEAD value of theARG2 argument (if applicable). If theARG2 is either
an NP or a subordinate clause, the new verb lexical entry typeinherits from the typearg2_cp-np.
Third, theARG3 value is specified to be a reflexive (if applicable). Forth, the new verb lexical
types specify theARG4 value (if applicable). If theARG4 value is a PP, the type inherits from the
typearg4_pp. Fifth, the new verb lexical entry type specifies whether theverb is a particle verb.
If it is a particle verb, it inherits from the typepart-verb, and if not, it inherits fromnon-part-verb.
Other information, like thePREDvalues of selected particles and prepositions, is specifiedon each

10 http://www.edd.uio.no/prosjekt/ordbanken/
11 NorKompLeks (NKL) is a Norwegian computational lexicon developed at NTNU, Trondheim, Norway. It contains

information about inflectional patterns and phonological representations as well as argument structure frames for
verbs. There are 105 different codes for argument structureframes in NKL, and each verb is provided with a list of
codes showing the possible argument structure frames.

37

individual lexical entry. Based on the argument frame information specified on verbs in Norsk
Ordbank, the lexicon conversion program builds 126 new types for verb lexical entries in addition
to the 100 lexical entry types for verbs that already exist. An example of an automatically created
verb lexical type is given in (3).

(3) arg12-124-2_part_np_pp_le := arg2_np & arg4_pp & part-verb &

[SYNSEM.LOCAL.CAT.VAL.ARGFRAME arg12-124-2].

The type in (3) is the type for the verbsetse(‘corrode’), helle (‘pour’/‘slope’), hive (‘throw’),
kippe (‘flip up’), and knalle (‘crack’). What these verbs have in common, is that they can enter
the arg12-construction, the arg124-construction, and thearg2-construction, hence theARGFRAME

valuearg12-124-2. The verbs are particle verbs, so the type inherits frompart-verb. The verbs
require an NP as value ofARG2 and a PP as value ofARG4 (if applicable), so the type inherits
from arg2_npandarg4_pp.

The entry of the infinitival form ofhelle in Norsk Ordbank is given in (4), where the fields
in angle brackets show what argument frames the verb can enter, <intrans2>, <adv6>, and
<part1/ut>.

(4) 27112 helle helle verb inf <intrans2> <adv6> <part1/ut> 021 1

These argument frame specifications are translated into thetype in (3) according to a ta-
ble distributed with the Norsyg grammar (‘nkl2lkb.txt’). When appearing alone,<intrans2>
translates into the typearg2_np_le(the type for intransitive unaccusative verbs),<adv6> trans-
lates into the typearg124_np_pp_le(the type for transitive verbs with PP complements), and
<part1/ut> translates into the typearg12_part_np_le(the type for transitive particle verbs
(the PRED value of the particleut (‘out’) is specified on the lexical entry)). When these threear-
gument frames appear on the same lexical entry, the typearg12-124-2_part_np_pp_leis created,
as shown above. It accommodates all the frames just mentioned.The lexical entry ofhelle in the
Norsyg grammar is given in (5).

(5) helle-v := arg12-124-2_part_np_pp_le &
[STEM <"helle">,

INFLECTION v1,

SYNSEM.LKEYS.ALTKEYREL.PRED _ut_p_rel,

SYNSEM.LKEYS.KEYREL.PRED "_helle_v_rel"].

4 Comparison of ‘packed’ vs. expanded lexicon

In order to check the impact of a lexicon with packed argumentframe representations as described
in the previous section, I used theconvlexprogram to generate two versions of the lexicon. In the
first version, all verbs were given packed representations,and in the other, each argument frame
version of a verb was spelled out as a separate lexical entry.

This means that a verb that has the typearg1-12_np_le(see Figure 9) in the packed lexicon,
in the expanded version is given two lexical entries, one of the typearg1_leand one of the type
arg12_np_le(one for each of the argument structure codes assigned by theoriginal Norsk Ordbank
lexicon). 5,329 of the verbs from the Norsk Ordbank lexicon are listed with only one frame, and
are therefore given only one lexical entry in the expanded lexicon, while 3,318 verbs are listed with
more than one argument frame and are given the correspondingnumber of lexical entries. This
gave me an expanded lexicon with 12,213 lexical entries for verbs, rather than the 8,647 lexical
entries for verbs in the packed lexicon, an increase of 3,566.

The data used for the comparison are taken from a 37 million word Norwegian Wikipedia
corpus (2,252,972 sentences). I selected 8,271 sentences containing 5-10 words where all the
words were covered by the dictionary of the grammar. This setis referred to asAll items in the

38

next section. The grammar had a coverage of 5,105 sentences with the packed lexicon and 5,078
sentences with the expanded lexicon. Of the sentences that were parsed with both version of the
lexicon, 3,446 sentences were given the same number of analyses with both versions. This set is
referred to asEqual coveragein the next section. I also created a third set of sentences where I
excluded the sentences containing the copula verb ‘å være’ ‘to be’ from the Equal coverageset,
since they are likely to be overrepresented in the data. (Typical short sentences in the Wikipedia
data are sentences likeLesotho er et land i Afrika‘Leshoto is a country in Africa’.) This set is
referred to asNo copulain the next section and has 1,902 items.

5 Results

I let the grammar loaded with the two different lexicons (packedandexpanded) parse the three
sets of sentences described in the previous section (All items, Equal coverage, andNo copula) and
compared the results. Table 2 shows that the two versions of the grammar, as already noted, have
similar coverage on theAll itemsset (61.4% and 61.7%), and, as expected, the same coverage
(100%) onEqual coverage, andNo copula. The two versions produce slightly more analyses on
average with the expanded lexicon (23.69) than the packed lexicon (20.58) forAll items. For the
Equal coverage, andNo copulasets, the two versions (as expected) produce the same numberof
analyses (14.39 and 13.66, respectively). More importantly, the table also illustrates the difference
in lexical ambiguity of the two grammars. The difference in lexical ambiguity of expanded vs.
packed is 4.20 vs. 3.41 onAll items, 3.73 vs. 3.20 onEqual coverage, and 3.81 vs. 3.22 onNo
copula. This means that on average more lexical items are entered into the parse chart with the
expanded lexicon than with the packed lexicon.

Table 2: Comparison of competence

Expanded lexicon ‘Packed’ lexicon
Data items lexical analyses coverage lexical analyses coverage

(%) (%)
All items 8,271 4.20 23.69 61.4 3.41 20.58 61.7
Equal coverage 3,443 3.73 14.39 100.0 3.20 14.39 100.0
No copula 1,902 3.81 13.66 100.0 3.22 13.66 100.0

Table 3 shows how the use of packed argument frames affects the performance of the parser,
compared to the use of the expanded lexicon. When applied to theEqual coverageset, the number
of tasks is reduced by 10.7%, and the use of space is reduced with 13.3%. Similarly, the number
of tasks is reduced by 12.8%, and the use of space is reduced with 13.2%, when applied toNo
copula. The numbers showing reductions forAll data are less reliable, since the set includes
sentences where the two versions of the grammar produce different numbers of analyses.

Table 3: Comparison of performance

Expanded lexicon ‘Packed’ lexicon Reduction (%)
Data items tasks space tasks space tasks space
All items 8,271 3,265 208,324 2,480 139,430 24.0 33.1
Equal coverage 3,443 2,022 102,964 1,805 69,540 10.7 13.3
No copula 1,902 1,341 59,080 1,170 51,294 12.8 13.2

One possible objection to this test would be that a grammar without the packing of argument

39

structure information could be implemented in a different way, that would make parsing more
efficient. However, this comparison is only done for testingthe impact of the packing of argument
structure information in a grammar that is implemented similar to Norsyg.

6 Conclusion

I have compared two versions of a lexicon for a grammar implementation. One, where valence
alternations are accounted for by means of multiple lexicalentries, and one, where valence alter-
nations are accounted for by means of packed type constraints. It has been demonstrated that the
packed version of the lexicon introduces fewer lexical items in the parse chart. The use of the
packed version of the lexicon also leads to a reduction of tasks performed and space used by the
parser.

References

Bender, E. M., Flickinger, D., and Oepen, S. (2002). The grammar matrix: An open-source
starter-kit for the rapid development of cross-linguistically consistent broad-coverage precision
grammars. In J. Carroll, N. Oostdijk, and R. Sutcliffe, editors,Proceedings of the Workshop on
Grammar Engineering and Evaluation at the 19th International Conference on Computational
Linguistics, pages 8–14, Taipei, Taiwan.

Borer, H. (2005a).Structuring Sense. An Exo-Skeletal Triology. Volume I. In Name Only. Oxford
University Press.

Borer, H. (2005b).Structuring Sense. An Exo-Skeletal Triology. Volume II. The Normal Course of
Events. Oxford University Press.

Bresnan, J. (2001).Lexical-Functional Syntax. Blackwell Publishers.

Copestake, A. (2002).Implementing Typed Feature Structure Grammars. CSLI publications.

Flickinger, D. P. (2000). On building a more efficient grammar by exploiting types. Natural
Language Engineering, 6(1), 15–28.

Oepen, S. and Carroll, J. (2000). Ambiguity packing in constraint-based parsing. Practical results.
In Proceedings of the 1st Conference of the North American Chapter of the ACL, pages 162 –
169, Seattle, WA.

Oepen, S. and Flickinger, D. (1998). Towards systematic grammar profiling. test suite technology
ten years after.Journal of Computer Speech and Language: Special Issue on Evaluation, 12
(4), 441–437.

Pollard, C. J. and Sag, I. A. (1994).Head-Driven Phrase Structure Grammar. University of
Chicago Press, Chicago.

Sag, I. A., Wasow, T., and Bender, E. M. (2003).Syntactic Theory: A Formal Introduction. CSLI
Publications, Stanford, 2 edition.

Siegel, M. and Bender, E. M. (2002). Efficient deep processing of Japanese. InCOLING:02, pages
1–8, Taipei, Taiwan.

Steedman, M. (2000).The Syntactic Process. Cambridge, MA and London: The MIT Press.

Åfarli, T. A. (2007). Do verbs have argument structure? In E.Reuland, T. Bhattacharya, and
G. Spathas, editors,Argument Structure, pages 1–16. Amsterdam: John Benjamins.

40

