PACLIC 24 Proceedings

Arguments for Parallel Distributed Parsing
Toward the integration of lexical and sublexical (semantic) parsings

Kow KURODA

National Institute of Information and Communication Technologies (NICT), Japan

Abstract. This paper illustrates the idea of parallel distributed parsing (PDP), which allows us to
integrate lexical and sublexical analyses. PDP is proposed for providing a new model of efficient,
information-rich parses that can remedy the data sparseness problem.

1 Introduction

In the usual sense of syntactic parsing, the analyses of relationships among words and relationships among
morphemes are separated. The former is called syntactic analysis (or syntactic parsing) and the latter is
called morphological analysis (the term “morphological parsing” exists but it seems to denote a somewhat
different notion). Sometimes, however, sublexical analysis is relevant. This is evident in shallow semantic
parsing which is understood to be “labeling phrases of a sentence with semantic roles with respect to a
target word. For example, the sentence (1) is labeled as (2):”!

(1) Shaw Publishing offered Mr. Smith a reimbursement last March.

(2) [Agent Shaw Publishing | offered [Recipient Mr. Smith] [Theme a reimbursement] [Tiye last March] .

The target of the labeling in (2) is offered. Note that the same kind of labeling should be available for the
argument structure of reimbursement, which can be illustrated in (3):

(3) [Payer (as Agent) Shaw Publishing] offered [Recipient Mr. Smith] [Targer reimburse]-ment last March. (No
explicit mention of Payment (as Theme))

Clearly, semantic role labeling requires a high-precision predicate-argument analysis of a target predi-
cate, whether the target is a word (e.g., offer) or a morpheme (e.g., reimburse) embedded in a word. The
comparison of the two cases shows that a certain kind of parsing is necessary in effective semantic labeling,
as Gildea and Palmer (2002) pointed out. But the problem is how to combine the lexical parse by which
the predicate-argument structure of offer is recognized with the sublexical parse by which the predicate-
argument structure of reimburse is recognized. Integrating the two kinds of parses is not a trivial task.

This paper presents the idea of Parallel Distributed Parsing (PDP) that is able to straightforwardly carry
out the integration. The presentation, however, is theoretically oriented and the content is rather preliminary:
no empirical results are presented other than a few sample parses. No parser implementation is available.
The main purpose of this presentation is to illustrate a new model for parsing that integrates lexical and
sublexical parsings, which I argue can be a remedy for the problem of data sparseness.

Data sparseness is a serious problem in natural language processing (NLP) even now that computers
can access more raw data than the average human does. The size of textual raw data automatically acquired
from the Web exceeds that which a normal human can read in a lifetime. This suggests, however, that no
human seems to suffer from data sparseness. What makes this more mysterious is that humans do also
employ statistical information in their language processing. The difference between humans and machines,
therefore, should lie in the difference in efficiency with which they acquire knowledge, be it is syntactic,
semantic or morphological, from linguistic data given. Humans are certainly, at the present, able to acquire
knowledge far more efficiently than computers. The crucial question is: How is this possible?

I argue that data sparseness is a problem in NLP not only because distributional data itself is sparse,
but also because parses availabe today are sparse and inefficient; otherwise, data sparseness should impact
human language processing in the same way it does computers. The explanation I consider is that data
contains enough information but current technologies fail to extract it due to inefficiency of available parses.
PDP is proposed to make parses of linguistic data more efficient and less sparse. In what follows, I show
how PDP can remedy the data sparseness.

D The example and explanation were taken from http://nlp.stanford.edu/projects/shallow-parsing.shtml.

455

456 Poster Papers

2 Efficient parsing with PDP

2.1 Preliminaries
To begin with, take the example (4):

(4) a. Ann gave Bill a headache
b. Ann gave Bill a hug.

On reading (4a), we, as human, understand at least the following:

(5) a. CAUSE(x, z,t1,...)
b. x=Ann, z=EXPERIENCE(y, a headache, #,, ...), y=Bill, t, C #; C PAST
c. # 77=HEADACHE(x, y, f2, ...),to C t; C PAST

On reading (4b), we, as human, understand at least the following:

(6) a. CAUSE(x,z,t1,...)
b. x=Ann, z= EXPERIENCE(y, a hug, 1, ...), y=Bill, t, C #; C PAST
c. = 7=HUG(x,y,tp,...),to C t; C PAST

We have at least the following problems: i) Why do we have CAUSE(. . .) for the semantics of give? ii) Why
do we have the different elaborations for z-term? Namely, why do we have HUG(x, y, ...) in (4b) and not
have HEADACHE(x, y, ...) in (4a)? More specifically, how can we elaborate CAUSE(x, EXPERIENCE(y,
a hug), ...) into CAUSE(x, HUG(x, y), ...) and not elaborate CAUSE(x, EXPERIENCE(y, a headache),
...) into *CAUSE(x, HEADACHE(x, y), ...)??

Putting aside the first problem, I limit myself to the second problem. The difference lies in the difference
in the semantic structures of headache and hug, which is obvious. The question I want to address is: Does
syntactic parsing/analysis play no role in this kind of elaboration? I raise this question based on the
following contrast:

(7) a. *Ann headaches Bill. [cf. Bill aches in the head.]
b. Ann hugs Bill.

This contrast indicates that transitive use of headache is disallowed whereas transitive use of hug is al-
lowed.® T argue that the contrast in (7) is exactly the information that we need for the elaboration of
CAUSE(x, EXPERIENCE(y, a hug), ...) into CAUSE(x, HUG(x, y), .. .).

Many theories of parsing are happily posit that such information can be obtained by accessing the
“lexicon” and syntactic parsing can (and should) be freed from it. The process by which we arrive at
targeted semantic elaboration is called a series of “inferences.” But nothing prevents us from doubting this
position, especially when we are ready to expand the scope of syntactic parsing to include the recognition
of as many semantic relations in a given input as possible. The problem of data sparseness encourages this
expansion of the scope, because it is a key to overcoming the data sparseness mentioned earlier.

The greatest technical problem, of course, is how to encode semantic information in syntactic parsing
without considerably increasing the complexity in parsing and incompatibility with orthodox (tree-based)
parsing. The framework of parallel distributed parsing (PDP) is proposed for meeting such requirements in
the most straightforward way.

2.2 Sample PDPs

An implicit assumption under the traditional view of syntactic parsing is that not enough information is
available on the surface to obtain such “inferences.” But this assumption turns out to simply be wrong if
we are allowed to apply sublexical parsings of (4a) and (4b) that account for the difference in (7).

2 Technically, causation is nonreflexive transitive in (4a) and reflexive transitive in (4b).
3 This is simply because the latter is a zero-derived form of a verb hug; kiss is a similar case.

PACLIC 24 Proceedings

Table 1: PDP of (4a) Table 2: PDP of (4b)

e=p0 Ann gave Bill a head | ache e=p0 Ann gave Bill a hug
pl Ann \Y% pl Ann v
p2 S gave o1 a 02 p2 S gave 0O1 02
p3 S v Bill p3 (S) V) Bill
p4 (S) V) (&) a M) T p4 (S) V) (&) a T
p4 S) (4%)) D head T pS S O* M hug
p5 S M1 M2* ache

2.2.1 Basics. For illustration, sample PDPs of (4a) and (4b) are given in Tables 1 and 2. The PDP of input
e results in a set of n parses when e has n segments. This is presented in table form as in the two tables.
The first row of the table represents the input under a certain type of segmentation. The other rows below
represent parses of n segments, pl, p2, ..., prn which specify the parses of the Ist, 2nd, ...nth segment of
the input. These are called “patterns.”

Each parse is a string-like object that consists of “constants” (e.g., Ann, gave, Bill, a, head and ache)
and “variables” (e.g., S, O, V, P, etc). Constants in a pattern are called the pattern’s “anchors.” To enhance
readability, anchors are usually in italics. Note that anchors usually appear on the diagonal in PDP.

Variables serve as “matching sites” or “binding sites” because they encode the information necessary
to integrate a set of patterns. Patterns p = [uj,uz,...,u,| and g = [vi,va,...,v,] are unified if and only if
(i) they have the same number of segments (i.e. m = n) and (ii) either IS-A(u;,v;) or IS-A(v;,u;) holds.
Variables license the IS-A relation. In some cases, variables are put in parentheses to indicate that they
encode conditional information.

Take some examples. “S gave Ol O2” is a pattern that specifies the predicate-argument structure of
gave. Likewise, “S V Bill O2” is a pattern that specifies the predicate-argument structure that accounts for
the presence of Bill in this input. This form of encoding is called the “co-occurrence structure” of Bill,
because Bill, as a noun phrase, does not have a predicate-argument structure of its own. Case assignment is
involved in co-occurrence structure. Compare ¢1: “Bill V,” ¢2: “S V Bill” and ¢3: “S V P Bill,” each of
which specifies a co-occurrence structure of Bill. ¢1 specifies the nominative form of Bill, and ¢2 and ¢3
the accusative form of it, though ¢2 and ¢3 are not really the same.?

Relational nouns (e.g., head, frend) including derivational nouns (e.g., hug) have a “co-argument struc-
ture” that needs to be distinguished from the co-occurrence structure. The co-argument structure of term w
is a specification of the prototypical predicate argument structure in which w serves as an argument. This
is relevant only when w is not a genuine predicate. For relevant information, refer to Kuroda et al. (2009).
It deserves a mention that co-occurrence structure and co-argument structure are identical in certain uses of
relational terms, quite unfortunately.

Let me mention several confusing cases. On the one hand, p6: “S M1 M2* ache” in Table 1 specifies
the argument structure of ache as a verb, rather than the co-occurrence structure of ache as a noun. Also,
pS: “S O* M hug” in Table 2 specifies the argument structure of sug as a verb rather than the co-occurrence
structure of hug as a noun. Their co-occurrence structures must be p6’: “(S)(V) (O1) D M ache” and p5':
“(S)(V)(O) D hug,” but they do not give us desirable results. On the other hand, p5: “(S)(V)(O) D head
T” in Table 1 specifies the co-occurrence structure of head rather than its co-argument structure. Its co-
argument structure should be like p5’: “S head” with S matching Bill, but this does not really fit the context
of (4a). In the current version of PDP, either (co-)argument structure or co-occurrence structure is specified
in this priority, and not both. Admittedly, this is not a systematic solution but a compromise was made to
reduce the complexity of the analysis. In the full version of PDP, a constant may have multiple parses as far
as they are not incompatible. This is clearly desirable for relational nouns.

The order of variables within a pattern is important because patterns are expected to be as surface-true
a specification as possible of the predicate-argument structure of lexical items. But in some cases, the
arrangement of variables cannot be surface-true and generates a mismatch. For example, p5: “S O* M hug”
in Table 2 is not surface-true in that it deviates from “S M hug O” which is a generalization of instances
like she once hugged him. To encode the positional deviation of variables, “*” is used: «a* encodes the
positional deviation of ¢. For example, O* in “S O* M hug” indicates its positional deviation.

4 In many languages, case-marking systems are not elaborated enough to reflect the distinction between cases like ¢2 and ¢3.

457

458

Poster Papers

2.2.2 Interpretation of PDPs. Under the brief explanation above, the two PDPs read as follows: In the
PDP in Table 1, p1 says that Ann is the subject of a certain verb, symbolized by V, which is either transtive
or intranstive. V is to be unified with gave. p2 says that gave is a ditrantive verb: its subject, direct and
indirect objects are to be unified with Ann, Bill and ache, respectively. p3 says that Bill is the direct object
of a ditrantive verb: its subject is unified with Ann, its verb with gave and its indirect object with ache.
p4 says that a is the determiner for a theme/target, which is to be unified with ache. p5 says that head is
a prenominal modifer to a theme/target to be unified with ache. p6 says that hug is a transitive verb: its
subject is to be unified with Ann, its object with Bill and its two modifiers are bound to a and head. If M1
means anything, it would mean once when it is bound to a. If M2 means anything, it would mean (in the)
head. Note that p6 allows us to state that Bill aches in the head is embedded in the PDP of (4a).

In the PDP in Table 2, p1 says that Ann is the subject of a certain verb. p2 says that gave is a ditrantive
verb: its subject, direct and indirect objects are to be unified with Ann, Bill and hug, respectively. p3 says
that Bill is the direct object of a ditrantive verb: its subject, verb and indirect object are to be unified with
Ann, gave and hug. p4 says that a is the determiner for hug, its theme/target. pS says that hug is the verb:
its subject and object are to be unified with Ann and Bill. If a is bound to its modifier M, it can imply S hug
O once. Note that p5 allows us to state that Ann hug(ged) Bill (once) is embeded in the PDP of (4b).

2.3 Procedure
In the simplet form, the PDP of input e is peformed in the following procedure:

(8) a. Step of segmentation: Segment ¢ into a list of units. Most simply, we have [uy, uy, ..., u,] when
e=1uy-uy---Uy.
b. Step of pattern identification: For u; in [u], uy, ..., u,], find out a “pattern” p; that specifies the
predicate-argument structure of «; in the optimal granularity.
where specifications of p; and p; can be independent.

In the following, the explanation of segmentation follows the explanation of pattern identification.

Table 3: Initial state of PDP of (4b) Table 4: Phase 1 of PDP of (4b)
e=p0 Ann gave Bill a hug e=p0 Ann gave Bill a hug
pl Ann gave Bill a hug pl Ann \Y% o1 D 02
p2 Ann gave Bill a hug p2 S gave 0Ol D 02
p3 Ann gave Bill a hug p3 S v Bill D 02
p4 Ann gave Bill a hug p4 S) V) Bill a T
pS Ann gave Bill a hug p5 S \Y% 0Ol D hug

2.3.1 Essence of pattern identification. PDP is still under construction because no implementation is
available for pattern identification, but I present a rough sketch of it here by taking (4b) for example. I
expect that implementation is feasible using a method of supervised machine learning such as SVM.>

PDP starts with the initial state like the one in Table 3. This undergoes the process of abstraction in the
following sense. For every parse, all constants except for the anchor (usually on the diagonal) are abstracted
by replacing them by labels such as S, O, V, and P. Replacement of constants cy, ¢3, ..., ¢, in parse p =
c1-¢cy---a---c, with anchor a is carried out in such a way that constant ¢; is replaced by a grammatical
role/function that is defined relative to a. Thus, pl: “Ann gave Bill a hug” is rendered into the sequence
“Ann 'V O1 D O2” because gave, Bill, a and hug bear the roles of verb (V), direct object (O1), determiner
(D) for 02, and indirect object (O2) relative to Ann. The same holds for other parses. This results in the
specification in Table 4.9

The next thing to do is to take care of the informational asymmetry between the past and future. The
presence of any constants after the achor is less certain. This requires variables to be less specific after the
anchor than before. If this asymmetry is taken care of, we finally have a PDP like the one in Table 2.

5) Theoretically, all we need is a high-precision training corpus with enough coverage, but the means of preparing it is a different
matter.
6) 1 omitted the details in constructing “(S)(V)(01) a T, which requires the definition of theme/target T.

PACLIC 24 Proceedings

As mentioned above, variables like S, O, V, P, etc encode what grammatical roles/functions constants
bear against an achor. For example, ache is a verb inside p6 in Table 2 and hug is a verb inside p5 in Table 2
But they are indirect objects of gave in p2 in Tables 1 and 2. Note that uniqueness is not required on the
role assignment across the set of patterns. In this sense, identification of grammatical relations is relativized
to each constant. Parallelism would be impossible without it.

2.3.2 Essence of segmentation. Segmentation need not be lexically based. It can be done sublexically
or superlexically. If every u is a word, it gives lexical PDP. If a u is a morpheme, this gives sublexical PDP.
Specifications of p5: “(S) (V) D head T” and p6: “S M1 M2* ache” in Table 1 for head and ache are cases
of sublexical parsing.

Table 5: PDP of (1) where constants appear on the diagonal in italics, and variables in normal face.

pO | S. Publishing | offered | Mr. | Smith | a | reimburse | -ment | last | March
pl | S. Publishing A%

p2 S offered (0} 02

p3 S) V) Mr. T

p4 S \Y% D | Smith

p5 S V) ©) |a M) T

po S O* reimburse M)
p7 S v -ment

p8 S) V) last T
P9 T M | March

2.4 More details of PDP

2.4.1 Composition by superposition. PDP is compositional but in a different way. In most traditional
theories of syntactic structure, composition of substructures s1, s2, ... s, into a whole structure ¢ is achieved
by means of substitution of certain “variables” in ¢ by substructures. For example, Ann gave Bill a
headache results when Ann, gave, Bill, and a headache are substituted for S, V, Ol and O2 in the host
structure “S V O1 02” (or for NP1, V, NP2 and NP3 in the host structure “NP1 V NP2 NP3”).”. This is

not true of PDP, where superposition is used instead. As Table 1 indicates, pl, p2, ..., p6 are superposed
on each other to produce p0 = (4a). Superposition of pl, p2, ..., pn into p0 is column-wise (feature-based)
unification. Thus, substitution plays no role in composition of p0O out of pl, 2, ..., pn in PDP. This is

expected to reduce the computational complexity.

2.4.2 Constraints on patterns. A pattern is a sequence of either lexical items, called constants, such as
Ann, gave, Bill, a, headache, ..., or some of the variables listed in (9):

(9) a. Predicate types: V (verb), U (auxiliary verb), P (preposition, particle and postposition), R (un-
derspecified type between V and P), J (junction)®, and A (adjective).”
b. Argument types: S (subject), O (object) [O1 direct object and O2 indirect object. In general, On
for the nth object of a predicate], C (nominal complement of be-type verb)

c. Functional types: D (determiner), and Q (quantifier)

d. Other types: T (theme/target of a determiner), M (modifier), and X (unknown type: use needs to
be avoided whenever possible).

e. Hybrid types: types like @ + 8 (e.g., S+V, P+O2) and o = § = y = ---. The former encodes the
amalgamation of type o and 3. The latter encodes the multiplicity of labels.

The list of pattern variables here is not meant to be exhaustive.

To make PDP descriptively adequate, patterns need to be well constrained. In respect to the formulation
of such constraints, PDP is still under develpment. It is still unclear what makes patterns valid or invalid.
But we can state a few requirements on good patterns:

7) Notably, grammar is responsible for generation of structures like S V O1 O2 or NP1 V NP2 NP3.
8 This is a generalized class of conjunction and disjunction.
9 There is no type for adverbials because they are usually not referred to by other lexical units.

459

460 Poster Papers

(10) a. A pattern needs to be a description of an argument structure within a minimal span.

b. A pattern is valid when it expresses a generalization as surface-true as possible of the predicate
argument structures of a lexical item or a series of lexical items.

3 Parallel relational parsing with PDP

3.1 Further issues

After the brief introduction to PDP above, let us now turn to the analysis of (1), which is a case more
complicated than two cases in (4). The PDP of (1) is given in Table 5, which illustrates distinctive features
of PDP.

3.1.1 Effects of parallelism. In the first place, PDP allows for sublexical parses without introducing
contradiction with lexical parses. As mentioned, the problem is how to integrate the parses for offer and
reimburse in S. Publishing offered Mr. Smith reimbursement last March [=(1)]. The PDP solution is given
in Table 5. More specifically, the peaceful coexistence of p2 and p6 in Table 5 shows that the integration is
successful.

There is a subtle point related to the interpretation of last March.'? Tt is possible to read it so that
reimbursement was made in a month referred to as last March. But this is only a suggestion because the
interpretation is no longer valid in cases like: The company offered Mr. Smith reimbursement last March
but he declined. This contrast suggests that the completion of the reimbursement by Mr. Smith is implied
only when the completion of the company’s offer of it is factive. This confirms that the modification by last
March to offer is direct and its modification to reimburse is indirect and probably conditional. This effect is
more or less predictable from the information encoded by p9: “T M March” in Table 5.!1

There are still some subtleties in PDP, however. First of all, I have to admit that it is not true that
everything in PDP has a precise interpretation. This is actually false. There are several cases in which
patterns fail to receive straightforward interpretations. For example, it is not clear what -ment means in p7
in Table 5. My best guess is that it serves as a kind of auxiliary here. With this problem remaining, PDP
should turn out be useful for limited purposes.

3.1.2 Effects of distributed representation. Another interesting characteristics of PDP is that it allows
us to assign multiple grammatical roles to a lexical item. In fact, it allows us to directly encode “hidden”
roles which are usually indirectly encoded using transformations or lexical redundancy rules. For example,
“subjects” are assigned to implict verbs like ache in (4a) and hug in (4b). This means that PDP is able to
encode grammatical relations in term of distributed representation.

But subjects are not exclusively assigned to verbs and adjectives: they are assigned to prepositions,
particles (e.g., up), adverbs and adverbials, too. This point is illustrated in the PDP of (11) presented in
Table 6.

(11) On this note, C-in-C gave up the idea of retaining Ben in the front.

In PDP, all relational kinds of constants are expected to have subjects of their own.'?

3.1.3 Sparseness somehow remedied. Sparseness of the label distribution in Table 6 suggests that syn-
tactic structure consists mainly of local, short-distance dependencies. But there are special constructions
like support verb constructions (e.g., S give up the idea of V-ing = { p5, p6, p7, p8, p9, pl1 }) that can
extend localities to some extent.!?

From the PDP in Table 6, we can get at least the following predications:

(12) a. C-in-C gave up the idea [presupposed by the semantics of On this note].
b. C-in-C (wanted to) retain Ben [presupposed by the semantics of give up the idea].
c. Ben (was) in the front [presupposed by the semantics of retain].

1) This point was brought to my attention by one of the anonymous reviewers, for which I'm grateful.

D This is also related to a subtle point that it is discouraged to have (M) in p6: “S O* reimburse (M)” because specification of unseen
elements, which occurr in the future, needs to be less specific.

12) By this, it is safe to state that PDP captures the effects of “trace” without positing movement and those of pro and PRO without
positing specific configuration of phrase structure.

13) Note incidentally that S give up the idea of V-ing can be a paraphrase of “S stop thinking of V-ing”” They are both cases of
subject-to-subject raising.

PACLIC 24 Proceedings

Table 6: PDP of (11) [constants in italics, and variables in normal face]

pO | on | this | note | X | gave up the | idea | of | retain | ing | B. in | the | front
pl on (0] S) | V=T

p2 | P | this T

p3 P D note | (S) | V=T

p4 X v

p5 S | gave | P+O2 (0}

po ™M) up S

p7 S| v M) | the T

p8 S v M) D | idea

p9 S of (0]

pl0 S retain o

pll S v ing
pl2 S v B

pl3 S in o
pl4 S) | (P) | the T
pl5 S P D | front

They justify, in combination, that C-in-C are subjects of gave up and retain and Ben is the subject of (be)
in the front.

What of does in (11) is, as specified by p9, bridges the two propositions encoded by idea and retain.
In this respect, it is desirable to detect that “S think of V-ing and “S want to V” are in the relation of a
paraphrase. Relating to this, it should be added that C-in-C is identified as the subject of think if we can
somehow identify that the relation of “S idea of V-ing” and S think of V-ing” is of a paraphrase, but this is
not specified in the PDP in Table 6. PDP is not responsible for the detection of paraphasability.

As pointed out in §1, it is often the case that inefficient parses increases the severity of data sparseness.
Inefficiency comes from the sparseness of parses. Parallel distributed sublexical parses provided by PDP
would be useful for remedying this.

3.2 Related work

Table 7: Simplified from of MST Parse of (11) Table 8: PMA format of parse in Table 7

Lemma | TAG | Target | Function on this | note| the |C-in-C| gave up the idea of |retaining| Ben in the | front
1 On IN 7 VMOD pl on
2 this DT 3 NMOD p2 this
3 note NN 1 PMOD p3 | PMOD|NMOD| note
4 s s 7 P p4 ,
5 the DT 6 | NMOD b5 the
6 | C-in-C | NN 7 SUB pé NMOD| C-in-C
7 gave VB 0 | ROOT p7 | VMOD P SUB | gave | VMOD! OBJ
8 up RP 7 VMOD p8 up
9 the DT 10 | NMOD p9 the
10 idea NN 7 OBJ pl0 NMOD | idea [NMOD
11 of IN 10 NMOD pll of PMOD
12 | retaining| VB 11 PMOD pl2 retaining| OBJ | VMOD
13 Ben NN 12 OBJ pl3 Ben
14 in IN 12 VMOD pl4 in
15 the DT 16 | NMOD pls the
16 front NN 14 PMOD pl6 PMOD NMOL] front

3.2.1 Dependency parsing All parses in PDP can be seen as distinct runs of dependency parsing that
run in parallel. What distinguishes it from other formalisms is that it tries to make use of parallelism. For
one, PDF does not avoid crossing-links (McDonald et al., 2005). To make this point clear, take the analysis
of (11) for example. MST Parser (v0.4.3) produces the dependency parse in Table 7. Its comparison with
Table 6 reveals that the dependency parse in Table 7 is a subset of the PDP in Table 6. This point is made
clear in Table 8. In other words, PDP describes whatever dependency parsing describes.

3.2.2 Word Expert Parsing. There is an important conceptual precursor of PDP. Word Expert Parsing
(WEP) was developed by Small (1979; 1983; 1988) to implement the idea of “parsing as cooperative

461

462 Poster Papers

distributed inference,” and extended to Parallel Word Expert Parsing (PEP) by researchers like (Hahn, 1986;
Devos et al., 1988).

WEP/PEP has many things in common with PDP. Simply speaking, PDP could be seen as merely adding
linguistic sophistication to WEP/PEP. There is, however, an essential difference. First, WEP/PEP only tar-
gets the construction of semantic interpretation, or more precisely it only targets word sense disambiguation
tasks, and accordingly does not really “parse” the text, though it is called a framework for text parsing.
Second, WEP/PEP embodies a very simplistic view of the lexicon in the sense that it defines “words”
as elementary units of syntactic representation and tries to directly associate them to semantic/conceptual
structures. This means that there is no place where context-sensitive encodings like p3 = “S offered O1 02,”
p4 =“S V D Smith,)” and p5 = “S V O1 a O2” play any role (some familiar examples of such patterns are
“multi-word expressions” (Sag et al., 2002) and “constructions” (Fillmore, 1988; Goldberg, 1995)). In con-
trast, patterns are fundamental units of linguistic representations in PDP, and more importantly, parallelism
is required to handle them in the most natural way.

4 Conclusion

In this short, far from a complete paper, I presented arguments for parallel distributed parsing (PDP). It is
motivated for the integration of lexical and sublexical parses. I must admit that PDP is still underdeveloped,
as many technical details required for serious parsing are missing. But this does not mean, I hope, that it
cannot be a new model of syntactic description. I say this because it may give us a clue for overcoming the
data sparseness problem from which many NLP researchers suffer.

References

G. Adriaens and Steven L. Small. 1988. Word expert parsing revisited in a cognitive science perspective.
In Lexical Amibiguity Resolution: Perspectives from Psycholinguistics, Neuropsychology, and Artificial
Intelligence, pages 13—43. Morgan Kauffmann Publishers.

M. Devos, G. Adrieans, and Y. D. Willems. 1988. The parallel expert parser (pep): A throughly revised
descendent of the word expert parser (wep). In Proceedings of the 12th Conference on Computational
Linguistics, Vol. 1, pages 142—147.

C.J. Fillmore. 1988. The mechanisms of ‘Construction Grammar’. In BLS, volume 14, pages 35-55. BLS.

D. Gildea and M. Palmer. 2002. The necessity of parsing for predicate argument recognition. In Proceed-
ings of ACL 2002, pages 239-246.

A. D. Goldberg. 1995. Constructions: A Construction Grammar Approach to Argument Structure. Uni-
versity of Chicago Press, Chicago, IL.

U. Hahn. 1986. A generalized word expert model of lexically distributed text parsing. In Proceedings of
the 7th ECAI (Brighton, UK), Vol. 1., pages 203-211.

K. Kuroda, M. Murata, and K. Torisawa. 2009. When nouns need co-arguments: A case study of semanti-
cally unsaturated nouns. In Proceedings of the 5th International Workshop on Generative Approaches
to the Lexicon, Sep. 17-19, 2009, Pisa, Italy, pages 193-200.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji¢. 2005. Non-projective dependency parsing using span-
ning tree algorithms. In Proceedings of HLT/EMNLP 2005.

C. Rieger and Steven L. Small. 1979. Word expert parsing. In Proceedings of the 6th International Joint
Conference on Artificial Intelligence, 1979.

I. Sag, T. Baldwin, F. Bond, A. Copestake, and D. Flinckinger. 2002. Multiword expressions: A pain in the
neck for NLP. In Proceedings of the 3rd International Conference on Intelligent Text Processing and
Computational Linguistics (Mexico City), pages 1-15.

S. L. Small. 1983. Parsing as co-operative distributional inference: Understanding through memory inter-
action. In M. King, editor, Parsing Natural Language. Academic Press.

