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Abstract. The present work deals with the extraction of emotional expressions and 
tagging of English blog sentences with Ekman’s six basic emotion tags and any of the 
three intensities: low, medium and high. Baseline system is developed based on WordNet 
Affect lists and dependency relations. Support Vector Machine (SVM) based supervised 
framework is employed by incorporating different word and context level features.  The 
feature analysis is carried out on 358 development sentences followed by Information Gain 
Based Pruning. Application of admissible tag sequences and a class-splitting technique 
improves the system’s performance and reduces the label bias problem of SVM. The 
supervised system outperforms the baseline system and achieves average F-Scores of 
82.72%, 76.74% and 89.21% for emotional expressions, sentential emotion tags and 
intensities respectively on 565 gold standard test sentences. A comparative evaluation 
shows that sentential emotion tagging based on emotional expressions, intensities and 
context features bridges the gap of identifying sentential emotion depending only on 
words. 
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1 Introduction 
In psychology and common use, emotion is an aspect of a person's mental state of being, 
normally based in or tied to the person’s internal (physical) and external (social) sensory feeling 
(Zhang et al., 2008). Emotion identification from natural language texts has drawn the attention 
of several information processing communities, e.g. reviews (Turney, 2002), news (Lin et al., 
2007), Question Answering (Wilson et al., 2005), Information Retrieval (Pang and Lee, 2008).  

Several efforts have been made by the natural language processing researchers to identify 
emotion at different level of granularities such as word, sentence or document (Ku et al., 2006; 
Das and Bandyopadhyay, 2009b; Das and Bandyopadhyay, 2010). But in many domains of text, 
the values of individual phrases may bear little relation to the overall sentiment expressed by the 
text. Just like words, phrases are considered as the informative and emotion expressive units of 
any sentence and are used in identifying document level emotion tags (McDonald et al., 2007). 
Hence, the current dependence on individual word level information to identify sentential emotion 
has motivated the search for phrase level clues.  

The present task extracts the emotional expressions (word/phrase) from each of the English 
blog sentences and assigns any of the Ekman’s (1993) six basic emotion tags along with any of 
the three intensity types: low, medium and high to each sentence. Blog is one of the crucial, 
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communicative and informative repository of text based emotional contents in the Web 2.0 (Lin 
et al., 2007). The English blog corpus (Aman and Szpakowicz, 2007) annotated with emotional 
expressions, sentential emotion tags and intensities is considered to accomplish our present task.   

The baseline system identifies emotional expressions, sentential emotion tags and intensities. 
Sentences are passed through the Stanford Dependency Parser (Marneffe et al., 2006) to identify 
the dependency relations. Emotional expressions are identified using WordNet Affect 
(Strapparava and Valitutti, 2004). Different types of dependency relations of the parsed sentences 
provide positional, as well as intensity related hints to the emotional expressions. The evaluation 
on 565 gold standard test sentences gives the F-Scores of 62.44%, 56.97% and 79.01% for 
emotional expressions, sentential emotion tags and intensities respectively. 

The best emotion feature set for the Support Vector Machine (SVM) based supervised 
framework is identified based on the F-Scores obtained from 358 development sentences. The 
features like emotion words, intensifiers, negations, conjuncts and discourse markers obtain high 
Information Gain (InfoGain) on the development sentences. The unnecessary words, which carry 
no emotion features, yield low Information Gain (InfoGain) and are filtered out. The performance 
of the supervised system is further improved by identifying the admissible tag sequences and a 
class splitting technique. Emotion pairs like happy-surprise, angry-disgust, and angry-sad and 
intensity pairs like high-medium and medium-low show the problem in sentential emotion and 
intensity tagging. Adding a special feature of emotional composition that identifies the closeness 
between two emotion types solves the problem. Overall, the supervised system achieves average 
F-Scores of 82.72%, 76.74% and 89.21% for emotional expressions, sentential emotion tags and 
intensities on 565 gold standard test sentences respectively. The supervised system outperforms 
the baseline system significantly and also performs better in terms of F-scores compared to the 
accuracy values of the word level system (Das and Bandyopadhyay, 2009a).  

The rest of the paper is organized as follows. Section 2 surveys the related work. Pre-
processing is described in Section 3. The baseline system is discussed in Section 4. Section 5 
describes a supervised framework for identifying the emotional components. Experimental results 
are discussed in Section 6. Finally Section 7 concludes the paper. 

2 Related Work  
The earlier works on polarity shifters and prior or contextual polarity approaches for sentiment 
analysis are described in (Polanyi and Zaenen, 2004; Kim and Hovy, 2004). Another related 
work described in (Wilson et al., 2005) gives the ground to analyze sentiment at phrase levels. 
The tasks described in (Meena and Prabhakar, 2007) determine the sentential sentiment based on 
the phrase level information considering the impact of conjuncts or intensifiers. Majority of the 
above studies are carried out for sentiment expressions whereas our present approach aims to 
identify emotional expressions and assigns the emotion tags and intensities to the sentences. 

In order to estimate affects in text, the model proposed in (Neviarouskaya et al., 2007) 
processes symbolic cues and employs natural language processing techniques for 
word/phrase/sentence level analysis, considering relations among words in a sentence. The 
current trend in the emotion analysis area is exploring machine learning techniques (Sebastiani, 
2002), which considers the problem as text categorization or analogous to topic classification and 
underscores the difference between machine learning methods and human-produced baseline 
models (Alm et al., 2005). As large blog data set is suitable for machine learning models, several 
supervised and unsupervised machine learning classification techniques on blog data for 
comparative evaluation have been carried out (Mishne and Rijke 2006). Affective text shared 
task on news headlines at SemEval 2007 for emotion and valence level identification 
(Strapparava and Mihalcea, 2007) has drawn the focus to this field. In contrast, our present task 
extracts the emotional expressions and identifies the sentential emotion tags and intensities based 
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on intensifier, negations and conjuncts. The incorporation of Information Gain Based pruning 
(IGBP) and class splitting techniques are the contributions in present task. 

3 Pre-Processing 
In the present study, we have used the English blog corpus described in (Aman and Szpakowicz, 
2007). The sentences are tagged with single or multiple emotion tags and intensities. Emotional 
expressions are also annotated in the corpus. The whole corpus is divided into training, 
development and test sets containing 2500, 300 and 500 sentences with single emotion tags 
respectively. In addition to that, 200, 58 and 65 sentences of mixed emotion types are considered 
for training, development and test respectively.  

The emotion word lists, WordNet Affect (Strapparava and Valitutti, 2004) is available for 
Ekman’s six basic emotions in English. The six lists are used to obtain the emotion or affect 
words present in the emotional expressions that in turn contribute for identifying sentential 
emotion tags. The blog corpus contains different emoticons (,, ) that represent different 
types of emotions. No prior knowledge was given for the emoticons in the corpus. Hence, the 
emoticons are replaced by the appropriate emotion words using a manually prepared 
knowledgebase. 

The input sentences are passed through the Stanford Parser (Marneffe et al., 2006), a 
probabilistic lexicalized parser containing 45 different part of speech (POS) tags from the Pen 
Treebank tagset. Different types of dependency relations and POS tags are retrieved successively 
from the parsed data. The parsed results are used in the baseline and supervised systems. 

4 Baseline System 
The overall emotion expressed in a sentence depends on the emotional constituents present in the 
phrases or in the words along with other surrounding contextual hints (Neviarouskaya et al., 
2007). The emotional components present in an emotional expression are represented as an 
anchoring vector. Each slot of the vector is filled by the information extracted from the emotional 
expression such as emotion or affect word, intensifier, negation and conjuncts. 

4.1 Extracting Emotional Expressions 
We extract all component words from the dependency relations that contain at least one emotion 
word, and match them against the WordNet Affect lists. The words present in the extracted 
relations are then treated as candidate seeds for the anchoring vectors representing emotional 
expressions. Identification of an emotional expression containing a single emotion word is 
straightforward. But, we include the positional information about words from the dependency 
relations in order to identify long emotional expressions. Consecutive words that appear in the 
dependency relations and contain at least one emotion word are identified as an emotional 
expression. For example, in the following sentence, the dependency relations containing the 
emotion word ”angry” and the consecutive component words ”really”, ”angry” and ”rant” with 
position number 9, 10 and 11 constitute the underlined emotional phrase.  

“But the rest of it came across as really angry rant”.  [advmod(angry-10,really-9), 
amod(rant-11,angry-10) ] 

In many cases, the components of a given emotional expression are separated by articles (e.g. 
a, an, the) conjuncts (e.g. and, or, but etc.), negations (e.g. not, neither etc.) or intensifiers (so, 
very, less, much). The aim is to accumulate the words for constructing the emotional expressions 
based on the positional clues with maximum coverage of the contributory components. Based on 
empirical testing, the limit for the maximum difference between the successive positions is set at 
2~3. The technique is used for identifying longer emotional expressions. For example, in the 
following sentence, two emotional words ”angry” and ”frustrated” are not consecutive but are 
joined by a conjunct ”or” and separated by 2 positions.  
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     “We feel angry or frustrated with others or ourselves”.  [acomp(feel-2, angry-3), 
acomp(feel-2, frustrated-5), conj_or (angry-3, frustrated-5)] 

In addition to the dependency relations containing emotion words alone, other dependency 
relations such as advmod()[adverbial modifier], amod() [adjectival modifier], neg [negation 
modifier], conj_( ) [conjunct] are also extracted as these relations carry emotional intensifiers that 
contribute towards tagging the sentences with emotion tags and intensity. Each emotional 
expression is tagged with the WordNet Affect classes in which the words of the emotional 
expression occur. Each of the sentences is also tagged with Ekman’s six emotion tags that are 
associated with its corresponding emotional expressions. Each sentence may contain more than 
one emotion tag. Otherwise, the sentences are treated as neutral sentences. 

4.2 Identification of Intensity 
Three types of intensities (I) (e.g. low (L), medium (M) and high (H)) have been considered in the 
present task. Two types of intensifiers (INTF) such as positive and negative are considered for 
assigning intensities to the sentences. The intensifiers may be present inside an emotional 
expression. The POS categories of the preceding and following elements of the emotion word in 
an emotional expression are identified from the parsed sentences. The JJ (adjective) and RB 
(adverb) tagged elements are considered as the candidate of intensifiers. To identify the polarity 
of an intensifier, each of them is searched in the SentiWordNet (Esuli and Sebastiani, 2006). If 
the candidate word is found in the SentiWordNet , then the positive and negative scores of the 
word are retrieved from the SentiWordNet . The intensifier is classified as either positive (pos) or 
negative (neg) for which the average retrieved score is higher. A list of commonly used negative 
words has been prepared manually. The words present in the neg [negation modifier] type 
dependency relation are also considered as the negative words.  Some rules (as shown in Table 1) 
are applied to capture the role of different intensifiers and negations in marking the sentences with 
post emotion tags along with intensity. 

Table 1: Rules for tagging an emotional anchoring vector with intensity. 

(Sentence with prior tag [EW])[Example] post tag [EW_I] 
([EW])[happy]  [EW_M] 

(INTFpos, [EW]) [very, happy]  [EW_H] 
(INTFneg, [EW]) [less, surprised]  [EW_L] 

(NEG, [EW]) [not, happy]  [EW_L] 
(NEG, INTFpos, [EW]) [not, very, happy] [EW_M] 

(NEG, INTFneg, [EW]) [not, less, disappointed]  [EW_H] 

4.3 Sentence Level Tagging 
Each sentence is assigned with the emotion tags according to its corresponding emotional 
expressions. The emotion tags are considered as prior tags to each sentence. The final sentential 
emotion tagging is done based on the intensity assignment along with the role of conjuncts.  

Rule based strategies have been adopted to cope with conjuncts. Emotional expressions 
containing conjuncts do not change the sentential emotion tags given for the corresponding 
emotional expressions. In the following example, the sequence of negation (nothing), conjunct 
(but) and emotion word (sorry) does not change the emotion tag, “sad”. Robert feels nothing but 
sorry for the common people”. Sometimes conjuncts present between two or more emotional 
expressions do not play any role to change the sentential emotion tags that were already 
associated with the sentence. For example, “They were very angry at that moment but you 
managed the situation with your impressive quality.” The rules are shown in Table 2. The 
symbol “X” stands for any of the three intensities as identified for the emotional expressions.  
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The baseline system achieves the average F-Scores of 62.44%, 56.97% and 79.01% for 
emotional expressions, sentential emotion tags and intensities respectively on 500 gold standard 
test sentences of single emotion tags and 65 sentences of multiple emotion tags. The detailed 
precision, recall and F-Scores are shown in Table 5. 

Table 2: Rules for conjuncts for sentence level emotion tagging. 

Rules for Tagging (Tag EWi≠j)[Example]  Final Tag(s)(Tag EW_I) 
NEG, CONJ, (EW)[nothing, but, sorry]  (EW_ X) 

(EWi), CONJ, (EWj )  (EWi _X, EWj _X) 

5 Supervised Framework 
The Support Vector Machine (SVM) (Cortes and Vapnik, 1995) based supervised framework has 
been used to extract the emotional expressions as well as to tag the sentences with emotions and 
intensities. The emotion and intensity tagging is done at sentence level. For emotional 
expressions, the task is to label any of the six emotion tags to a single word or a sequence of 
words in a sentence. Other words are tagged as neutral (emo_ntrl). The sentential emotion and 
intensity tagging to the sentences is based on the emotional expressions along with other discourse 
level features. First a set of standard pre-processing steps is carried out, viz., tokenizing, 
stemming and stop word removal. Tools provided by Rapidminer’s1 text plug in were used for 
these tasks. Stemming is done by WordNet’s morphological analyzer. The system is trained with 
2700 sentences. The best feature set is identified using the 358 development sentences. Different 
unigram and bi-gram context features (word, POS tag, Intensifier, negation) and their 
combinations were generated from the training corpus. The Information Gain Based Pruning 
(IGBP), Admissible Tag Sequence (ATS), Class Splitting technique and Emotional Composition 
features are applied on the development set and it improves the performance of the supervised 
system significantly. The detail results are shown in Table 4. All the results are obtained by 10 
fold cross validation method. 

5.1 Features for Training 
Feature plays a crucial rule in the SVM framework. By manually reviewing the blog data and 
different language specific characteristics, 11 active features, word level as well as context level, 
have been selected heuristically for our classification task. Each feature with discrete value is 
adopted for intensity at the word level. 

 Emotion/Affect Words (EW): The presence of a word in the WordNet Affect lists 
(Strapparava and Valitutti, 2004) identifies the emotion/affect words.  

 Parts-of-Speech (POS): We are interested with the verb, noun, adjective and adverb 
words as these are emotion informative constituents.   

 Intensifiers (INTF): Dependency relations such as amod() [adjectival modifier], 
advmod()[adverbial modifier] containing JJ (adjective) and RB (adverb) tagged elements 
are considered as intensifiers (“and he said he just doesn't have enough time to love”). If 
the intensifier is found in the SentiWordNet , then the positive and negative scores of the 
intensifier are retrieved from the SentiWordNet . The intensifier is classified into the list 
of positive (pos) (INTFpos) or negative (neg) (INTFneg) for which the average retrieved 
score is higher (very, less, few, enough, little, much etc.).  

 Direct and Transitive Dependency relations (DD and TD): The direct dependency (DD) 
is identified based on the simultaneous presence of the emotion word and the other word 
in the same dependency relation whereas the transitive dependencies (TD) are verified if 
they are connected via one or more intermediate dependency relations.  

                                                   
1 http://rapid-i.com/content/blogcategory/38/69/ 
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 Negations (NEG): Dependency relations such as neg_( ) [negation modifier] or the 
negative words from a manually prepared list (no, not, nor, neither etc.), e.g., “there's no 
way I'm turning it down”, are adopted for Negations feature.. 

 Conjuncts (CONJ): The dependency relation conj_( ) [conjunct] identifies the Conjuncts 
features (and, or, but), e.g., “But I asked him about WHY he doesn't cook for himself”. 

 Punctuation Symbols (Sym): Symbols such as comma (,), (!), (?) are often used in 
single or multiple numbers to emphasize emotional expressions and considered as crucial 
clues for identifying emotional presence (“I can't believe she is FINALLY here!!!”). 

 Discourse Markers (DM): The present task aims to identify only the explicit discourse 
markers that are tagged by conjunctive_() or mark_() type dependency relations of the 
parsed constituents (e.g. as, because, while, whereas). 

 Causal Verbs (CV): The lists for causal verbs are prepared by processing the XML files 
of English VerbNet (Kipper-Schuler, 2005). If a class contains any frame with semantic 
type as Cause, we collect the member verbs from that XML class file. The list contains a 
total of 250 causal verbs (e.g. cause, happen, occur etc.). 

 Capitalized Phrases (CP): A capitalized word or a long capitalized phrase segment, e.g., 
“I forgot how demeaning BME classes are”, “Terrorists MAKE ME SICK, they ought to 
all be horrifically detained” is considered as the Capitalized Phrases feature. 

 Emoticons (emot_icon): The emoticons (, ,  ) and their consecutive occurrence 
generally contribute as much as real sentiment to the words that precede or follow it. 

5.2 Feature Selection  
The combination of multiple features in comparison with a single feature generally shows a 
reasonable performance enhancement of any classification system. The impact of different 
features and their combinations were measured on the development set and the results are given in 
Table 3. We added each feature into the active feature list one at a time if the inclusion of the 
feature in the existing feature set improves the F-Score of the system on the development set. The 
final active feature set has been applied on the test data.  

The Emotion Word, POS, Intensifier and direct dependency features played an important role 
in extracting emotional expressions as well as tagging sentences with emotions and intensities. 
During the testing on development set, certain features (e.g. transitive dependency relations, 
causal verbs, discourse markers) play an effective role in sentential emotion tagging but degrade 
the performance of extracting emotional expressions. During SVM-based training phase, the 
current token word with three previous and three next words and their corresponding POS along 
with negation or intensifier were selected as context feature for that word. Evaluation results on 
the development set of 358 sentences demonstrated F-Score values of 76.07%, 64.23% and 
81.04% for emotional expressions, sentential emotion tags and intensities respectively.  

5.3 Information Gain Based Pruning (IGBP) 
The importance of incorporating the features is examined through Information Gain (InfoGain). 
This decision technique is used to measure the importance of a feature (X) with respect to the 
class attribute (Y). Formally, information gain of a feature X with respect to a class attribute Y is 
the reduction in uncertainty about the value of Y when we know the value of X.  

 
where X and Y are discrete variables taking values {x1, x2,....,xm} and {y1,y2,....,yn} respectively. 
The Entropy (Y) is defined as 

 
The conditional entropy of Y given X is defined as 
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Features with high Information Gain reduce the uncertainty about the class to the maximum. 
In our experiment on the development set, all the features except causal verbs and transitive 
dependency relations achieve an Information Gain above 50%. Hence, the information Gain of 
(50%) has been fixed as Information Gain (InfoGain) threshold. The word features (e.g. non-
emotional words such as gather, seem) are filtered from the corpus based on the Information 
Gain (InfoGain) threshold. 

Table 3: F-Scores (in %) of some crucial feature(s) applied on the development set. 

Feature(s)  Emotional  
Expression 

Sentential 
Emotion 

Intensity 
 

EW 42.45 46.65 - 
EW + POS 44.22 48.43 - 
INTFpos+ INTFneg - - 56.78 
INTFpos+neg+NEG  - - 60.09 
EW+POS+INTF 64.78 50.03 66.05 
EW+POS+INTF+DD 67.35 51.82 68.32 
EW+POS+INTF+TD 66.97 52.24 68.03 
EW+POS+INTF+DD+NEG 70.67 52.58 72.66 
EW+POS+INTF+DD+NEG+CONJ 72.08 54.77 74.54 
EW+POS+INTF+DD+NEG+CONJ+Sym 74.87 56.34 76.29 
EW+POS+INTF+DD+NEG+CONJ+Sym+DM 74.92 58.02 78.11 
EW+POS+INTF+DD+NEG+CONJ+Sym+DM+CV 73.44 61.21 79.76 
EW+POS+INTF+DD+NEG+CONJ+Sym+DM+CP+ 
emot_icons 

74.67 62.33 80.04 

EW+POS+INTF+DD+NEG+CONJ+Sym+DM+CP+
Contex Features 

76.07 64.23 81.04 

5.4 Assigning Admissible Tag Sequence (ATS) 
During evaluation on the development sentences, it is found that the classifier produces a 
sequence of inadmissible classes (e.g., Happy immediately followed by Sad or high followed by 
low) to a consecutive word sequence. To eliminate such sequences, we define a transition 
probability between word classes P(ci | cj)  to be equal to 1 if the sequence is admissible, and 0 
otherwise. The probability of the classes c1,….., cn is assigned to the words in a sentence “s” in an 
emotion class D is defined in the following equation  

 

where (ci | s, D) is determined by the SVM classifier. 
 

5.5 Applying Class Splitting Technique 
A close investigation for the emotional expressions on development set suggests that the errors 
are mostly due to the uneven distribution between emotion and non-emotion tags. The results on 
the development set are shown using confusion matrix in Table 7. The number of non-emotional 
or neutral type tags is comparatively higher than that of emotional tags of emotional expressions.  

So, one solution to this unbalanced class distribution is to split the ‘non-emotion’ (emo_ntrl) 
class into several subclasses effectively. That is, given a POS tagset POS, we generate new 
emotion classes, ‘emo_ntrl-C’|C Є POS. We have forty-five (45) subclasses in the English POS 
tagset, which correspond, to non-emotion regions such as ‘emo_ntrl-NN’ (common noun), 
‘emo_ntrl-VFM’ (verb finite main), ‘emo_ntrl-JJ’ (adjective) etc. Evaluation results of the system 
have shown the improvement for extracting emotional expressions sentential emotion tagging. 
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5.6 Adding Emotional Composition Feature 
The errors for sentential emotion tagging and intensity tagging are mostly due to the uneven 
distribution between some closely related emotion classes such as happy-surprise, angry-disgust, 
and angry-sad and intensity classes such as high-medium and medium-low. The confusion matrix 
for emotion and intensity classes are shown in Table 6 and Table 7 respectively. It is observed 
that the co-occurrence of this tag pairs is comparatively higher than other tag pairs. Hence, we 
have added a special feature for emotional composition that identifies the closeness of emotion 
classes.  For example, if any of the two tags happy and surprise is tagged in a sentence, the 
emotional composition feature is to be flagged for the other. This feature improves the 
performance of sentential emotion and intensity tagging. 

Table 4: Improvement F-Scores (in %) of the supervised system on development set. 

 Emotional Expression Sentential Emotion  Intensity 
Single Emotion (500) 75.80 64.09 80.99 
Mixed Emotion (65) 76.04 65.37 79.21 

After IGBP 77.01 66.74 82.43 
After ATS 79.33 69.14 83.75 

After Class Splitting 81.44 73.55 86.08 
Emotional Composition 82.72 76.74 89.21 

6 Experimental Results  
Each of the 500 gold standard test sentences contains an emotional expression, a single emotion 
tag and intensity. Other 65 gold test sentences contain multiple sentential emotion tags, emotional 
expressions and intensities. The sentential emotion tagging is done based on the majority voting of 
the emotion tags identified for emotional expressions. In case of a tie in majority voting, the 
intensities associated with the sentences are considered for assigning the final tag. The preferred 
ordering sequence is high > medium > low which means that the emotion tag with high intensity 
is assigned at the sentence level over the emotion tag with medium intensity and so on. A 
noticeable improvement of precision is achieved for sentential emotion tagging. It is observed that 
the sentences with high intensity type improve the precision rather than low or medium type. The 
reason may be more explicit usage of high intensity than the others. The individual contributions 
of three types of intensities in calculating the precision score are shown in Table 5. It is found 
that the intensities high (H) and general (G) types contribute reasonably than low (L) category. It 
signifies the fact that the system satisfactorily identifies the sentential emotion types from its 
associated intensity clues. In case of sentences containing multiple emotion types, all the emotion 
tags are considered as the probable candidates for assigning sentential emotion tags. 

The recall (R) value for sentential emotion tagging is measured by counting the number of 
sentences that are assigned with at least one sentential emotion tag. The precision (P) value is 
calculated by counting the number of sentences for which the assigned sentential emotion tags 
match with their corresponding gold standard annotated emotion tags. F-Score is defined as 
(2*P*R)/(P+R). The similar measures of precision, recall and F-Score are considered for 
evaluating intensity tagging and the results with respect to all emotion classes for the baseline and 
supervised systems are shown in Table 5. In comparison with recall, the loss in precision has 
occurred due to the frequent use of metaphoric words in blogs as the metaphors are hard to tag 
with their emotional senses. The supervised system performs significantly better than the baseline 
system as the baseline system suffers for the sentences that either start with conjuncts (CONJ) or 
the sentences where the negations (NEG) are present far apart from the identified emotional 
expressions (e.g. But, the fully sad story can give no enough detail”).  
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The task described in (Das and Bandyopadhyay, 2009a) deals only with words whereas our 
present task integrates the knowledge of context features (e.g. intensifier, negation, conjuncts) 
into account. The comparison of the F-Score values on sentential emotion tags based on 
emotional expressions with the accuracies obtained on sentential emotion tagging based on word 
level (Das and Bandyopadhyay, 2009a) is shown in Table 5. It shows that the present system 
produces significantly better results. The reason may be the integration of context level features 
such as intensity, negation, conjuncts, discourse markers etc. 
Table 5: Precision (P), Recall (R) and F-Scores (F) (in %) of baseline and supervised systems on test set 

 Emotional 
Expression 

Sentential 
Emotion 

Intensity  

P R F P R  F P (H, M, L) R F 
Baseline Single 
Emotion (500)  

.60 .64 .62 .53 .60 .56 .77 (.74, .03, .00) .81 .79 

Baseline Mixed 
Emotion (65) 

.57 .65 .61 .51 .53 .52 .72 (.68, .03, .01) .77 .74 

Supervised Single 
Emotion (500)  

.80 .85 .82 .71 .82 .76 .82 (.77, .03, .02) .95 
 

.89 

Supervised Mixed 
Emotion (65) 

.73 .85 .79 .72 .78 .75 .80 (.75, .02, .03) .94 .87 

Word Based  .6046 (Acc.)  
Table 6: Confusion Matrix for word level emotion tagging distribution (in %) on development set. 

 anger disgust fear happy sad surprise emo_ntrl 
anger 0.64 0.07 0.02 0.00 0.06 0.00 0.22 

disgust 0.08 0.65 0.00 0.00 0.02 0.00 0.25 
fear 0.02 0.01 0.61 0.00 0.05 0.00 0.28 

happy 0.00 0.00 0.00 0.68 0.00 0.07 0.25 
sad 0.07 0.00 0.05 0.00 0.67 0.00 0.21 

surprise 0.00 0.00 0.01 0.12 0.00 0.66 0.21 
emo_ntrl 0.00 0.00 0.00 0.00 0.00 0.00 0.87 

Table 7: Confusion Matrix for Intensity Tagging distribution (in %) on development set. 

 High (H) Medium (M) Low (L) 
High (H) 0.75 0.24  0.01 

Medium (M) 0.02 0.85 0.13 
Low (L) 0.00 0.21 0.79 

7 Conclusion 
The automatic extraction of emotional expressions, sentential emotion tags and intensities from 
English blog data is done in the present task. From the overall analysis, it is observed that the 
identification of intensities is helpful in tagging sentential emotions. The handling of metaphors 
and their impact in detecting sentence level emotion is not considered. Future analysis concerning 
the sentence level emotion can be used for document level emotion identification. 
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