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Abstract. This paper reports about the development of a Manipuri NER system, a less 
computerized Indian language. Two different models, one using an active learning 
technique based on the context patterns generated from an unlabeled news corpus and the 
other based on the well known Support Vector Machine (SVM), have been developed.  
The active learning technique has been considered as the baseline system. The Manipuri 
news corpus has been manually annotated with the major NE tags, namely Person name, 
Location name, Organization name and Miscellaneous name to apply SVM. The SVM 
based system makes use of the different contextual information of the words along with 
the variety of orthographic word-level features which are helpful in predicting the NE 
classes. In addition, lexical context patterns generated using the active learning technique 
have been used as the features of SVM in order to improve performance. The system has 
been trained and tested with 28,629 and 4,763 wordforms, respectively. Experimental 
results show the effectiveness of the proposed approach with the overall average Recall, 
Precision and F-Score values of 93.91%, 95.32% and 94.59% respectively. 

1 Introduction 

Named Entity Recognition (NER) is an important tool for several Natural Language Processing 
(NLP) application areas. The objective of NER is to identify and classify every word/term in a 
document into some predefined categories. The challenge in detection of Named Entities (NE) 
is that such expressions are hard to analyze using rule-based NLP techniques because they 
belong to the open class of expressions, i.e., there is an infinite variety and new expressions are 
constantly being invented. The development of an automatic NER system requires either a 
comprehensive set of linguistically motivated rules or a large amount of annotated corpora in 
order to achieve reasonable performance. But such rules or corpora have been developed for a 
few languages like English, most of the European languages and some of the Asian languages 
like Chinese, Japanese and Korean. NER systems for Indian languages are not readily available 
due to the unavailability of such handcrafted rules or annotated corpora.  

Rule based approaches focus on extracting names using a number of handcrafted rules. 
Generally, these systems consist of a set of patterns using grammatical (e.g., part of speech), 
syntactic (e.g., word precedence) and orthographic features (e.g., capitalization) in combination 
with dictionaries. One drawback of the rule-based approach is that it lacks the ability of coping 
with the problems of robustness and portability. Each new source of text requires significant 
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tweaking of rules to maintain optimal performance and the maintenance costs could be quite 
high. While early studies are mostly based on handcrafted rules, most recent ones use machine 
learning (ML) models as a way to automatically induce rule based systems or sequence labeling 
algorithms starting from a collection of training examples. Some of the very effective ML 
approaches used in NER are HMM (Nymble in Bikel et al. (1999)), ME (Borthwick, 1999), 
CRFs (Lafferty et al., 2001) and SVM (Yamada et al., 2001). The SVM based NER system was 
proposed by Yamada et al. (2001) for Japanese.  

Manipuri is a Tibeto-Burman, scheduled Indian language and highly agglutinative in 
behavior, monosyllabic, influenced and enriched by the Indo-Aryan languages of Sanskrit origin 
and English. The affixes play the most important role in the structure of the language. A clear-
cut demarcation between morphology and syntax is not possible in this language. The majority 
of the roots found in the language are bound and the affixes are the determining factor for the 
class of the words in the language. Classification of words using the role of affix helps to 
implement the NE tagger for a resource poor language like Manipuri with high performance. 
There is no report of NER work prior to our experiment for Manipuri. NE identification in 
Indian languages as well as in Manipuri is difficult and challenging as: 

1 Unlike English and most of the European languages, Manipuri lacks capitalization 
information, which plays a very important role in identifying NEs. 

2 A lot of NEs in Manipuri can appear in the dictionary with some other specific meanings. 
3 Manipuri is a highly inflectional language providing one of the richest and most challenging 

sets of linguistic and statistical features resulting in long and complex wordforms. 
4 Manipuri is a relatively free word order language. Thus NEs can appear in subject and 

object positions making the NER task more difficult compared to others. 
5 Manipuri is a resource-constrained language. Annotated corpus, name dictionaries, 

sophisticated morphological analyzers, POS taggers etc. are not yet available. 
In Indian language context, a HMM based NER system for Bengali has been reported in 

Ekbal et al. (2007), where additional contextual information has been considered for emission 
probabilities and NE suffixes are used for handling the unknown words. Other works in Bengali 
NER can be found in Ekbal et al. (2008), and Ekbal and Bandyopadhyay (2008) with the CRF, 
and SVM approaches, respectively. Other than Bengali, the works on Hindi can be found in Li 
and McCallum (2004) with CRF. Various works on NER involving Indian languages are 
reported in IJCNLP-08 NER Shared Task on South and South East Asian Languages 
(NERSSEAL)2

1 using various techniques. 
In this paper, Manipuri NER systems have been developed using an active learning technique 

as well as SVM. We collected the data from http://www.thesangaiexpress.com/ , a popular 
Manipuri newspaper. Initially, a baseline system has been developed based on an active 
learning technique that generates lexical context patterns from the unlabeled corpus in a 
bootstrapping manner. This corpus has been manually annotated with the four major NE tags, 
namely Person name, Location name, Organization name and Miscellaneous name. 
Miscellaneous name includes the festival name, name of objects, name of building, date, time, 
measurement expression and percentage expression etc. The SVM based system makes use of 
the different contextual information of the words along with variety of orthographic word-level 
features that are helpful to identify the various NE classes. A number of experiments have been 
conducted to identify the best set of features for NER in Manipuri under the SVM framework. 

2 Support Vector Machine 

The SVM (Vapnik, 1995) is based on discriminative approach and makes use of both positive 
and negative examples to learn the distinction between the two classes. The SVMs are known to 
robustly handle large feature sets and to develop models that maximize their generalizability.   

                                           
1   http://ltrc.iiit.ac.in/ner-ssea-08/proc/index.html 
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Suppose we have a set of training data for a two-class problem: 1 1{( , ),.....( , )}N Nx y x y , where xi 

ε RD is a feature vector of the ith sample in the training data and yi ε {+1, -1} is the class to 
which xi belongs. The goal is to find a decision function that accurately predicts class y for an 
input vector x. A non-linear SVM classifier gives a decision function f (x)= sign (g (x)) for an 

input vector where,  1

( ) ( , )i

m

i

i

g x w K x z b
=

= +∑
 Here, f(x)=+1 means x is a member of a certain 

class and f(x)=-1 means x is not a member. zi s are called support vectors and are 
representatives of training examples, m is the number of support vectors. Therefore, the 
computational complexity of g(x) is proportional to m. Support vectors and other constants are 

determined by solving a certain quadratic programming problem. ( , )iK x z is a kernel that 
implicitly maps vectors into a higher dimensional space. Typical kernels use dot products: 

( , ) ( . )iK x z k x z= .A polynomial kernel of degree d is given by ( , )iK x z = (1+x)d We can use 
various kernels, and the design of an appropriate kernel for a particular application is an 
important research issue. 

Our general NE tagging system includes two main phases: training and classification. The 
training process has been carried out by YamCha2

3 toolkit, an SVM based tool for detecting 
classes in documents and formulating the NE tagging task as a sequence labeling problem. Here, 
both one vs rest and pairwise multi-class decision methods have been used. We have also 
carried out different experiments with the various degrees of the polynomial kernel function. In 
one vs rest strategy, K binary SVM classifiers may be created where each classifier is trained to 
distinguish one class from the remaining K-1 classes. In pairwise classification, we constructed 
K (K-1)/2 classifiers (here, K=17, no. of NE tags) considering all pairs of classes, and the final 
decision is given by their weighted voting. For classification, we have used TinySVM-0.074

3 
classifier that seems to be the best optimized among publicly available SVM toolkits.  

3 Named Entity Tagset 

In the present work, the NE tagset used have been further subdivided into the detailed categories 
in order to denote the boundaries of NEs properly. Table 1 shows examples.  
 

Table 1: Named entity examples 

NE Tag Meaning NE Examples 

B-LOC ��� (Itham) 
I-LOC ������� (Moirang) 
E-LOC 

Beginning, Internal 
or the End of 

a multiword location name 	
��� (Purel) 
PER Single word person name ���
� (Irabot) 

LOC Single word location name �������� (Hiyangthang) 

ORG Single word organization name ��� (AR) 

4 Baseline NER System  

Here, we describe an active learning based NER system in Manipuri that has been used as the 
baseline model. Stacked framework for learning to predict dependency structures for natural 
language sentences is reported by (Martins et. at., 2008). The active learning method generates 
lexical context patterns from the unlabeled Manipuri news corpus of 174,921 wordforms. These 
ranked lexical context patterns have been also used as the features of the individual supervised 
classifiers in order to improve their performance. Given a small set of seed examples and an 

                                           
2 

  http://chasen-org/~taku/software/yamcha/  
3    

http://cl.aist-nara.ac.jp/~taku-ku/software/TinySVM  
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unlabeled corpus, the algorithm can generate the lexical context patterns in a bootstrapping 
manner. Each seed name serves as a positive example for its own NE class, negative example 
for other NE classes and error example for non-NEs. 

4.1 Seed List Preparation 

We have collected the frequently occurring words from the unlabeled corpus of 174,921 
wordforms to use as the seeds. There are 30, 40 and 30 entries in the person, location and 
organization seed lists, respectively.  

4.2 Lexical Pattern Generation 

The unlabeled corpus is tagged with the elements from the seed lists. For example,  
                       <Person name> Sonia Gandhi </Person name>, 
                       <Location name> Kolkata </Location name> and 

<Organization name> Jadavpur University </Organization name> 
For each tag T inserted in the training corpus, the algorithm generates a lexical pattern p using a 
context window of maximum width 6 (excluding the tagged NE) around the left and the right 
tags, e.g., p = [l-3l-2 l-1  <T> ...</T> l+1 l+2 l+3], where, l±i   are the context of p. Any of l±i 
may be a punctuation symbol. In such cases, the width of the lexical patterns will vary.  All 
these patterns, derived from the different tags of the training corpus, are stored in a Pattern 
Table (or, set P), which has four different fields namely, pattern id (identifies any particular 
pattern), pattern example (the pattern itself), pattern type (Person name/Location 
name/Organization name) and relative frequency (indicates the number of times any pattern of a 
particular type appears in the entire training corpus relative to the total number of patterns 
generated of that type). This table has 1745 entries, out of which 1249 patterns are distinct.  

4.3 Evaluation of Patterns 

Every pattern p in the set P is matched against the same unannotated corpus. In a place, where 
the context of p matches, p predicts the occurrence of the left or the right boundary of name. 
The POS information of the words as well as some linguistic rules and/or length of the entity 
have been used in detecting the other boundary of the entity. The extracted entity may fall in 
one of the following categories: 

• positive example: The extracted entity is of same NE type as that of the pattern. 

• negative example: The extracted entity is of different NE type as that of the pattern. 

• error example: The extracted entity is not at all a NE. 

4.4 Candidate Pattern Extraction 

For each pattern p, we have maintained three different lists for the positive, negative and error 
examples. The type of the extracted entity is determined by checking whether it appears in any 
of the seed lists (person/location/organization); otherwise, its type is determined manually. The 
positive and negative examples are then added to the appropriate seed lists. We then compute 
the accuracy of the pattern as follows: 
      accuracy(p)= |positive (p)|/[| positive (p)| + |negative (p)| + |error(p)|], 
where, positive(p), negative(p) and error(p) are the respective positive, negative and error 
examples of the pattern p. A threshold value of accuracy has been chosen and the patterns below 
this threshold value are discarded. A pattern is also discarded if its total positive count is less 
than a predetermined threshold value. The remaining patterns are ranked by their relative 
frequency values. The n top high frequent patterns are retained in the pattern set P and this set is 
denoted as Accept Pattern. 

4.5 Generation of New Patterns 

All the positive and negative examples extracted by a pattern p in Step 4.4 can be used to 
generate further patterns from the same training corpus. Each new positive or negative instance 
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(not appearing in the seed lists) is used to further tag the training corpus. We repeat steps 4.2-4.4 
for each new NE until no new patterns can be generated.  The threshold values of accuracy, 
positive count and relative frequency are chosen in such a way that in the first iteration of the 
algorithm at least 5% new patterns are added to the set P. A newly generated pattern may be 
identical to a pattern that is already in the set P. In such case, the type and relative frequency 
fields in the set P are updated accordingly. Otherwise, the newly generated pattern is added to 
the set with the type and relative frequency fields set properly. The algorithm terminates after 
the 10 iterations and there are 1929 distinct entries in the set P. 

5 Features for Manipuri Named Entity Recognition  

The main features for the NER task have been identified based on the different possible 

combination of available words and tags contexts. The features also include prefix and suffix for 

all words. The term prefix/suffix is a sequence of first/last few characters of a word, which may 

not be a linguistically meaningful prefix/suffix. The use of prefix/suffix information works well 

for the highly inflected languages as like the Indian languages. We have considered different 

combinations from the following set for inspecting the best set of features for NER in Manipuri:  

     F={ , .., 1, , 1, ....,i m i i i i nw w w w w− − + + , |prefix|<=n, |suffix|<=n, NE tag(s) of previous word(s), 

POS tag(s) of the current and/or the surrounding word(s), First word, Length of the word, Digit 

information, Infrequent word}, where iw  is the current word; i mw −  is the previous mth word 

and i nw +  is the next nth word. Following are the details of the features: 

1 Context word feature: Preceding and following words of a particular word since the 

surrounding words carry effective information for the identification of NEs. 

2 Word suffix: Word suffix information is helpful to identify NEs. This is based on the 

observation that the NEs share some common suffixes. The fixed length (say, n) word 

suffix of the current and/or the surrounding word(s) can be treated as the feature. If the 

length of the corresponding word is less than or equal to n − 1 then the feature values are 

not defined and are denoted by ‘ND’. The feature value is also not defined (ND) if the 

token itself is a punctuation symbol or contains any special symbol or digit. Word 

suffixes are the effective features and work well for the highly inflective Indian languages 

like Manipuri. 

3 Word prefix: Word prefixes are also helpful to identify NEs. It is based on the 

observation that NEs share some common prefix strings. This feature has been defined in 

a similar way as that of the fixed length suffixes.  

4 Named Entity Information: The NE tag(s) of the previous word(s) have been used as the 

only dynamic feature in the experiment. The output tag of the previous word is very 

informative in deciding the NE tag of the current word.  

5 Digit features: Several binary valued digit features have been defined depending upon the  

(i). Presence and/or the exact number of digits in a token. 

(a). CntDgtCma: Token consists of digits and comma 

(b). CntDgtPrd: Token consists of digits and periods 

(ii). Combination of digits and symbols. For example, 

(a). CntDgtSlsh: Token consists of digit and slash 

(b). CntDgtHph: Token consists of digits and hyphen 

(c). CntDgtPrctg: Token consists of digits and percentages 

(iii). Combination of digit and special symbols. For example, 

(a). CntDgtSpl: Token consists of digit and special symbol such as $, # etc. 

These binary valued digit features are helpful in recognizing miscellaneous NEs 

such as measurement expression and percentage expression. 
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6 Infrequent word: The frequencies of the words in the training corpus have been calculated. 

A cut off frequency has been chosen in order to consider the words that occur with less 

than the cut off frequency in the training corpus. A binary valued feature ‘Infrequent’ is 

defined to check whether the current word appears in this infrequent word list or not. This 

is based on the observation that the infrequent words are most probably NEs. 

7 Length of a word: This binary valued feature is used to check whether the length of the 

current word is less than three or not. We have observed that very short words are most 

probably not the NEs. 

8 Part of Speech (POS) information: We have used an SVM-based POS tagger (Doren et al., 

2008) that was originally developed with 26 POS tags, defined for the Indian languages. 

The POS information of the current and/or the surrounding words can be effective for NE 

identification. 

6 Evaluation Results 

Manipuri is a resource poor language. Applying statistical models to the NER problem requires 

large amount of annotated corpus in order to achieve reasonable performance. But, annotated 

corpus for Manipuri is not available. We have manually annotated approximately 28,629 

wordforms of the news corpus with the NE tagset. The annotation has been carried out by us 

and verified by an expert. 
The active learning technique that is used to generate the potential NE patterns has been 

considered as the baseline model. This active learning method is trained on a corpus of 174,921 
wordforms, out of which 37,443 wordforms are unique. 

The statistics of the training, development and test set is presented in Table 2. 
 

Table 2: Statistics of the training, development and test sets 

 Training Development Test 

# of sentences 1235 732 189 

#of wordforms 28,629 15,000 4,763 

# of distinct wordforms 8671 4,212 2,207 

7 Best Feature Selection for SVM  

To identify the best set of features in the SVM model, a number of experiments have 
been conducted taking the different combinations from the set of features F in order to 

find out the best combination of features. From our empirical analysis, we found that the 

following combination of features gives the best result for the development set. 
F={ 2 2 1 1 2i i i i i iw w w w w w− − − + + , Prefixes and suffixes of length upto three 

characters of the current word, dynamic NE tags of the previous two words, POS tags of 

the previous two and next two words, Digit information, Length of the word, Infrequent 
word}.The various notations used in the experiments are presented in Table 3. 

 

Table 3: Meaning of the notations 

Notation Meaning 

W[-i,+j]  Words spanning from the ith left position to the jth right position  

POS[-i, +j] POS tags of the words spanning from the ith left to the jth right positions 

Pre Prefix of the word 

Suf Suffix of the word 

NE [-i, -j] NE tags of the words spanning from the ith left to the jth left positions 
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We present the results on the development set in Table 4 in terms of Recall (R), 

Precision (P) and F-Score (FS) for some of the experiments. In this work, we have 

considered SVM that parses from left to right. 
 

Table 4: Results on the development set 

Feature  R (in %) P(in %) FS(in%) 

Static: W[-2,+2], POS[-2,+2], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, FirstWord, Digit  

Dynamic: NE[-2,-1]  

94.2 98.47 96.29 

Static: W[-3,+3], POS[-3,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-3,-1] 

88.91 97.82 93.15 

Static: W[-3,+2], POS[-3,+2], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-3,-1] 

91.3 96.99 94.06 

Static: W[-4,+3], POS[-4,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-2,-1] 

87.05 97.66 92.05 

Static: W[-4,+3], POS[-4,+3], |Pre|<=3, |Suf|<=3, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-3,-1] 

85.28 98.03 91.21 

Static: W[-2,+2], POS[-2,+2], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-2,-1] 

88.70 98.49 93.34 

Static: W[-3,+3], POS[-3,+3], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-3,-1] 

87.05 97.09 91.79 

Static: W[-4,+3], POS[-4,+2], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-2,-1] 

78.55 97.54 87.02 

Static: W[-4,+4], POS[-4,+4], |Pre|<=4, |Suf|<=4, 

Length, Infrequent, FirstWord, Digit 

Dynamic: NE[-3,-1] 

71.71 97.44 82.62 

8 Results on the Test Set 

After the selection of the best feature set, the SVM based system is tested on the test set of 

4,763 wordforms. Results are presented in Table 5 including the baseline model. For the 

baseline model, each pattern of the Accept Pattern set is matched with the test set. The 

identified NE is assigned the tag with the NE tag of the matched pattern. The system has 

demonstrated the Recall, Precision and F-Score values of 92.32%, 94.03% and 93.17%, 

respectively. Clearly, this shows significant improvement over the baseline model.   

Table 5: Results on the test set 

Model  Recall Precision F-Score 

Baseline 60.21 54.12 57.01 

SVM 92.32 94.03 93.17 
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Now, the patterns of the baseline model described in Section 4 have been used as the 

features of the SVM model. Words in the left and/or the right contexts of person, location and 

organization names carry effective information that could be helpful in their identification. A 

feature ‘ContextInformation’ is defined by observing the words in the window [−3, 3] (three 

words spanning to both left and right) of the current word. 

9 Conclusion 

In this paper, we have reported a NER system for a resource-constrained language, namely 
Manipuri.  Initially, an active learning technique has been used to develop a baseline NER 
system. This is based on the lexical context patterns learned from the unlabeled corpus of 
174,921 wordforms.  This unlabeled corpus is then manually annotated with a coarse-grained 
tagset of four NE tags in order to apply SVM. The SVM classifier makes use of the different 
contextual information of the words along with the various orthographic word-level features. 
The lexical context patterns generated from the unlabeled corpus have been also used as the 
features of the SVM. A number of experiments have been carried out to find out the best set of 
features for NER in Manipuri. The system has been trained and tested with the 28,629 and 4,763 
wordforms, respectively. We get effective result from news domain. The system has 
demonstrated the Recall, Precision and F-Score values of 93.91%, 95.32 and % 94.59%, 
respectively.  
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