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Abstract. We discuss the problem of translation in the wider context of the problem of mean-
ing in cognition and describe a structural statistical machine translation (MT) method moti-
vated by philosophical, cognitive, and computational considerations. Our approach relies on
a recently published algorithm capable of learning from a raw corpus a limited yet effec-
tive grammar that can be used to construct probabilistic parsers and language models, and
on cognitively motivated heuristics for learning construction-based translation models. A pi-
lot system has been implemented and tested successfully on simple English to Hebrew and
Spanish to English translation tasks.
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1 Introduction

Machine translation (MT) is the one application domain of computational linguistics where it
would seem to be impossible to achieve any progress without giving some thought to semantics.
For instance, the claim that the Spanisth perro mordié a un hombre should be translated

into English asa dog bit a man is merely a way of stating that these two utterancesmnthe

same thing. The meaning of “meaning” is, however, notoriously elusive (Putnam, 1975; Pietroski,
2003), and so practical approaches to MT wisely skirt theoretical semantics even as they embrace
various ways of defining meaning in computational terms.

In computational linguistics, including MT, both context and use serve to operationalize mean-
ing. For instance, a set of contexts inherent in a corpus can be distilled into a generative language
model, while information about the use of corresponding phrases that is implicit in a parallel cor-
pus can assist in the translation of new source-language utterances into the target language. In
the present paper, we capitalize on recent advances in structural language model inference and on
some cognitively motivated heuristics concerning cross-language construction mapping to derive
a simple yet viable MT method.

1.1 Computational approaches to translation

To date, there has been little interaction between studies of human translation on the one hand
and algorithmic developments in MT on the other hand (Poutsma, 2000), which is why we survey
these separately (and very briefly). In MT, a dominant approach in the past decade has been based
on the source-channel model of communication, according to which a Spanish utterance (say) is
taken to be a (very) “noisy” version of an English utterance that has passed through a distorting
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channel (Berger et al., 1994). Translation then reduces to the problem of finding the most probable
original English sentence, given its Spanish form.

Statistical approaches to translation relylanguage model@_M) that assign probabilities to

phrases and entire sentences (Goodman, 2001). These are an inherent part of the new empirical
basis for linguistics, according to which to know a language means to approximate the probability
distribution over the utterances that define it (Goldsmith, 2007). Given the set of all sirihgs
that can be formed out of the elements of some set of symfdthe lexicon), a grammar is then
defined as a function with the following propertiesy : >-* — [0, 1] such tha@sez* g(s) = 1.
To account for the content and not just the form of the utterances, this fundamental definition needs
to be extended by conditioning the probability of an utterance on its discourse context, as well as
on the extralinguistic circumstances that drive the discourse in question. This extension is beyond
the state of the art in natural language engineering, where practical applications, including those
in MT, rely on various approximations tp

The translation system developed by Berger et al. (1996), for example, used a smoothed trigram
LM. It ranked various hypothesized alignments between source and target sentences, performed
a perturbation search in the space of possible edits of the candidate sentence, and produced a
maximume-likelihood output. Later developments of this approach included augmenting a large-
scale general-purpose monolingual language model with a domain-specific one derived from a
parallel corpus (Zhao et al., 2004) and applying a variety of phrase transduction templates in
addition to edits (Kumar et al., 2005).

Koehn et al. (2003) evaluate several phrase-based methods within a Bayesian framework,
which casts the goal of finding the best target-language sentegigen a source-language sen-
tences asargmaxp(t|s) = argmax,p(s|t)p(t), thus separating the target language made)
from the translation model(s|t). They report that a heuristic combination of word alignment with
lexical weighting of phrase translations outperforms both pure word-based methods and syntactic
methods that insist on mapping constituents.

A recent alternative to the source-channel approach (Och et al., 2004) calls for directly mod-
eling the posterior probability via weighted alignment templates, along with a “smorgasbord” of
lexical, phrasal, and shallow syntactic features that are fed to a machine learning algorithm. A
large array of features fed to a machine learning stage (specifically, an online perceptron learning
algorithm) is also at the core of another alternative approach, which uses a discriminative rather
than generative probabilistic model (Liang et al., 2006).

Some of the newer methods that involve various kinds of syntactic information in addition to
“flat” phrases do prove effective in improving translation performance, compared to the phrasal
alignment. For example, the method of DeNeefe et al. (2007) uses an aligned parallel corpus where
the target side has been parsed to learn translation rules; a rule consists of a sequence of words and
variables in the source language, a syntax tree in the target language that has words or variables at
the leaves, and a vector of feature values that attempt to capture the rule’s likelihood. These latter
are processed using sophisticated, typically extremely data-hungry approaches (Fossum et al.,
2008).

May and Knight (2007) recently distinguished between an “idealistic” approach to MT (which
calls for learning a statistical generative model from a parallel (bitext) corpus, then translating
the target text using the estimated model) and a “realistic” one (in which the learned model is
used only to find word alignments in the bitext, which then serve as a basis for training and
interpolating a set of rules for translation). In their work, May and Knight attempted to address
what they described as a disconnect between alignment and translation models in the “realistic”
approach. They found that part of speech (POS) features helped, but other kinds of syntactic
features either hurt performance or did not help it; the best added feature improved performance
by about one percent over the baseline, as estimated automatically using the BLEU performance
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index (Papineni et al., 2002). This result is quite typical of the state of the art in MT: although the
involvement of syntax can lead to statistically significant performance boost, the absolute value of
the improvement is usually very small: one or two percent at best.

1.2 Cognitive aspects of translation in human bilinguals

Given the persistent gap between the performance of MT systems and of human translators, it
seems natural to turn to studies of human translation in search of guidance. Unfortunately, the
applied linguistics literature on interpreting and translation (see@gathd Angelelli (2003) for

a review) steers clear both of computational theories and of empirical methods for performance
assessment. Likewise, of the many studies of bilingualism in cognitive psychology and psycholin-

guistics, only very few deal with interpreting and translation (¥aldnd Angelelli, 2003).

One such study is that of Christoffels and de Groot (2004), who compared subjects’ perfor-
mance in repeating sentences (shadowing), reformulating sentences in the same language (para-
phrasing), and translating (interpreting) sentences, all delivered auditorily, in simultaneous and
delayed conditions. They found that both “transcoding” (a concept that corresponds roughly to
source to target alignment in MT) and target-language semantic processing were needed to ac-
count for the pattern of results.

The latter kind of processing plays a particularly important role in the Revised Hierarchical
Model (RHM) of bilingual conceptual memory (Kroll and Stewart, 1994). According to the RHM,
true bilinguals (people who are equally fluent in both their languages) maintain two sets of lexical
semantic representations of concepts. The corresponding lexical records in the two languages
are linked primarily via a common non-linguistic conceptual system, over and above any direct,
asymmetrical associations at the lexical level (hence the attribution “hierarchical”). For example,
in a Spanish-English bilinguaherro would be associated witthog, but, more importantly, both
these words would be linked to the conc*ntall with different weights.

Support for RHM has been provided by a great number of behavioral studies, reviewed by
French and Jacquet (2004). The asymmetrical associations posited by RHM emerged also from
a recent study specifically designed to test this model (Hatzidaki and Pothos, 2008); that study
also found context- and task-specific effects on translation processing. A detailed look at the
time course of lexical access in bilinguals revealed parallel real-time activation of first- (L1) and
second- (L2) language lexical representations (Marian et al., 2003). This and other studies of
the brain basis of bilingualism reviewed by Perani and Abutalebi (2005) suggest that L1 and L2
processing is subserved by the same brain areas and likely by the same mechanisms.

Although RHM is not nearly detailed enough to qualify as a model in computational linguistics,
it can help distinguish between engineering approaches that are compatible with the behavioral
and neurobiological findings and those that are less so. In particular, these findings suggest that
computational methods that rely exclusively on direct L1-L2 phrasal alignment cannot be very
good models of human translation. This category includes extreme examples (such as the approach
of Chiang (2005), which links hierarchically structured phrases in the two languages by learning a
synchronous bilingual grammar from a bitext corpus), as well as the phrasal alignment approaches
and the hybrid ones that are augmented with syntactic cues, as discussed in the preceding section.

2 MT based on learning structural-statistical generative language models

The RHM approach assigns a central role in the translation process to an indirect route that first
maps a source utterance to its conceptual representation, which is then mapped further into a
well-formed and appropriately meaningful sentence into the target language. Because building
a full-scale model of the conceptual system of a human bilingual is at present infeasible, we
chose to focus on modeling its most relevant subsystem, namely, the network of constructions that
mediates between concepts and the channels of linguistic input (utterance comprehension) and
output (utterance production).
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Figure 1: An illustration of the main principles behind our method, using English to Spanish translation as

an example. The source-language grammar (learned from a corpus bgithe algorithm; Solan et al.,

2005), consists of terminals (such eat or the), collocation patterns (which may be only partially lexi-
calized, as irthe ___ is running’), and equivalence classes (such as the{sat, dog}). The terminals

evoked by the novel input (the senteritle cat is running’) are shown in bold. These in turn activate
corresponding target-language terminals on the right; patterns and equivalence classes also activate their
counterparts. Due to polysemy (here, between the different sensasnifig) and initial structural ambi-

guity, a source element can activate more than one target element; the disambiguation is enforced by the
context (Karov and Edelman, 1998) via the interaction between the activated target elements and the tar-
get language model. The target-language grammar and the associated structural-statistical language model
(SSLM) are also learned automatically. Given a set of active elements, the target-language model constructs
the most probable sentence that is consistent with the source-language original.

In the technical sense used here, constructions are the elements of a construction grammar
(Fillmore, 1985; Goldberg, 2005) — partially lexicalized forms of varying phrasal complexity that
carry meanings of varying specificity. Constructions are language-specific (similar meanings may
be conveyed in widely different ways in different languages; Croft, 2001), and so our bilingual
network of constructions is bipartite. Recently published results suggest that constructions can be
learned in an unsupervised fashion from raw corpus data with a degree of success (as measured by
precision and recall) that may be limited, but sufficient for certain applications (Solan et al., 2005).
Consequently, one feature of our approach to MT is its reliance on the ability to acquire for each
language in question a probabilistic grammar — a generative model along with a probabilistic
parser — that is learned automatically from a corpus (instead of being designed by hand on the
basis of syntactic analysis).

To be useful for translation, constructions belonging to the source-language grammar need to
be linked to those in the target-language grammar. Establishing these associations (which are
the basis for existing phrasal alignment approaches to MT) is, however, only the first step in our
approach. The system that we describe below seeds the source-to-target construction map with
simple lexical associations gleaned from a machine-readable dictionary (MRD). It then extends the
lexical associations to encompass phrasal constructions and refines the resulting map iteratively,
as a way of approximating abstract, conceptual-level associations between the representations
of meaning in the two languages (cf. Figure 1), thus completing the training phase. Given an
utterance in the source language, the trained system maps its shallow parse to a set of “evoked”
constructions — which is how we operationalize meaning — in the target language, then lets the
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target-grammar LM generate the output utterance (instead of arbitrating among or merging various
phrasal output candidates; Feng et al., 2009). The training and usage phases of our system’s
operation are described below.

3 Training the translation model

When seeking to map a construction in the source language to its counterpart(s) in the target
language, one must recursively establish correspondence between the possible fillers in any of their
open slots (equivalence classes). Our approach used this recursive correspondence information
to enforce the proper thematic relations between the words in the target language, as they are
strung together by the output language model. Consider the transitive form of théitesb
Structurally, any pattern that captures its thematic content must possess two slots (arguments), as in
bites(actor,patient). A symbol-level translation mappingvould then include a correspondence
between the slots in the two languages, as in

T (bites, muerde) = (x1 bites z:3) <+ (T (x1) muerde T (z2))

where the correspondence is indicated by shared indices. When the two possible outputs (dog
bites man andman bites dog) are ranked, the one that preserves the correspondence should be

primed to win, enabling the system to figure out, given the proper context of the source utterance,
who bit whom.

We base the learning of the mappifigon the same principle that underlies multidimensional
scaling (Shepard, 1987): the layout of a metric space can be recovered from a table of pairwise
distances between points sampled from that space, or, more importantly, even just from the ranks
of the distances (for example, a rough map of the US can be obtained from a table of inter-city
driving distances — thdistance spectrum). As suggested by Edelman (1999), this principle can
be used to compute an optimal translation mapping between two disjoint symbol systems, such
as the vocabularies of two languages, as long as they refer to same conceptual network, which
constitutes the common underlying metric space (Goldstone and Rogosky, 2002). Intuitively, this
is the “meaning space” shared by the speakers of the two languages.

Here, we extend this idea from mapping vocabulary entries to mapping supra-word (phrasal)
constructions (thabpios algorithm that we use (Solan et al., 2005) treats lexical items and more
complex constructions on an equal footing, as do construction grammars). Specifically, we seek
an optimal mapping using as inter-symbol distances in the two domains — language (A) and
language (B) — the probabilities of symbol co-occurrentég;, , a;,) and P(by,, by, ), where
the symbols stand for the various constructions. These distance matrices are estimated from the
bilingual training corpus (which need not be parsed or even aligned very precisely; co-occurrence
of constructions within a certain window over utterances may suffice). The distance matrices
are optionally subjected to relaxation (Al-Homidan and Wolkowicz, 2005) to alleviate sparseness
effects. The construction grammars for the source and target languages are learnedthg ¢he
algorithm, which can cope with large, realistic corpora but is also capable of making good use of
very little data (Solan et al., 2005).

4 Using the trained translation model

The resulting translation model is used as follows. Infitst stage, a set of candidate translations
of the individual items that appear in the source sentence is formed, using a bilingual MRD in
conjunction with the mapping™ from source constructions to target constructions, learned as
described in the previous section.

In the second stage, the target-language structural statistical language model (SSLM) is used
to thread together the candidate constructions to form a properly structured sentence that is the

658



most consistent (i) with the priors on the candidates, and (ii) with the structural knowledge of the
target language embodied by the SSLM. To that end, we use a simple pruned search with back-
tracking: the algorithm calculates the average perplexity scores (Goodman, 2001) of all possible
paths through the SSLM that start from the initial element, while pruning branches whose average
perplexity exceeds that of the best pathily or more?

5 Performance

Pending a planned full evaluation using the Moses system (Koehn et al., 2007) as a benchmark, we
tested the MT method outlined above on two simple tasks. The first task was English to Hebrew
translation, using corpora generated by a simple context-free grammar with 50 terminals and 28
rules (grammar TA1, whose full specification can be found in the supplementary material to Solan
etal., 2005, and its Hebrew counterpart). Despite its simplicity, the grammar could produce rather
involved sentences, such dsat a cow barks and the bird jumps worries the horse’, which
translates into Hebrew ¢mon nx »xT n¥ap maym nna maw nr, The quality of the translation

was assessed by the BLEU index (Papineni et al., 2002), calculated using a Perl script provided by
NIST2 The system was trained on a 100-sentence parallel corpus, achieving, on a distinct corpus
of the same size, a BLEU score@b?2.

We then tested the system on a Spanish-English parallel version of the Air Traffic Information
System (ATIS) corpus (Hemphill et al., 1990). Most of the corpus (11294 sentences) was used
to learn the source-language (Spanish) grammar and parser, to learn the target-language (English)
grammar and train the corresponding language model (usimgptites algorithm), and to estimate
the translation candidate mapping. The remainder (1870 sentences) were translated using the
resulting model. A very simple Spanish-English MRD was used to seed the translation mapping.

The two examples below show the source sentence [S], the translation obtained from the
Google language tools [G], and thel0s translation [A]:

S1 hay un vuelo de ontario california a orlando florida con una escala
G1 there is a californian flight of ontario to trimming flowery with a scale
Al isthere aflight from ontario to florida with a stopover

S2 por favor enumere los vuelos por la mafiana de filadelfia a toronto
G2 please it enumerates the flights in the morning from philadelphia to toronto
A2 please list the flights for tomorrow from philadelphia to toronto

The mean BLEU score over the test corpus in this taskoaafor Google and).4 for our method.

The performance of our system is comparable to the state of the art in Spanish-English MT, as
exemplified by the METIS system (Melero and Badia, 2007). It should be possible to improve it
by various available means, such as training with more data (Brants et al., 2007), using a better
MRD, and performing state of the art word alignment (Och and Ney, 2003).

We hasten to remark that the comparisons we presented (especially the one with Google) may
not be entirely fair, seeing that the Google engine and the METIS system are general-purpose,
whereas theDIos-based model has been trained on the very small ATIS corpus, which pertains to
a linguistically highly impoverished domain. Building a general-purpose translation system using
the approach described here would require a much more powerful method for grammar inference
than theabpios algorithm. It is important to realize, however, that keios algorithmcanlearn

1The pseudocode for learning the required representations and for using them appears online at
http://kybele.psych.cornell.edu/ edelman/MT-pseudocode.pdf

2 Seeftp:/ljaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl; the BLEU index ranges from 0 to 1, where 1 is the
best possible score.

3 http://www.probertencyclopaedia.com/dic/sp-eng-a.htm
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a highly effective (low-perplexity) language model from very little data, such as an unannotated,
unparsed corpus of a few thousand sentences (Solan et al., 2005). Thus, from the standpoint of
performance, we can afford to learn a specialized translation model for each narrow domain or
task.

6 Conclusions

We described a viable method for MT, based on the idea that the process of translation involves
(i) a cognitively motivated mapping of constructions (which pertain both to form and to meaning)
from the source to the target language and (ii) a generative model for the target language that
produces the output from the evoked bag of constructions. Thus, in our method, correspondences
between lexical and phrasal constructions in the two languages, inferred automatically from a par-
allel corpus, enforce thematic consistency of the output, while an automatically learned structural
statistical language model for the target language is used to enforce output grammaticality. The
encouraging performance of our simple model (whose computational sophistication falls far short
of the state of the art in MT; Callison-Burch et al., 2009) should serve to motivate further work
in bridging the gap between cognitive characterizations of bilingualism and their application in
machine translation.
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