

Incorporating Statistical Information of Lexical Dependency

into a Rule-Based Parser ∗∗∗∗

Yoon-Hyung Roh, Ki-Young Lee, and Young-Gil Kim

Natural Language Processing Research Team, Electronics and Telecommunications Research Institute,

161 Gajeong-dong, Yuseong-gu, Daejeon, 305-350, Korea

{yhroh, leeky, kimyk}@etri.re.kr

Abstract. This paper presents a method to incorporate statistical information into a rule-

based parser to resolve syntactic ambiguities. We extract the statistical information from the

Penn Treebank, and apply the information to the rule-based parser. For the extraction of the

statistical information the tag conversion is needed because of the disagreement of the tags

and the bracketing style. We will show the effect of the tag conversion with experiments.

The final result shows about 7% error rate reduction in the dependency evaluation. We will

also show how much each type of statistical information affects the parsing performance.

Keywords: rule-based parsing, syntactic ambiguity, statistical information, PCFG, lexical

dependency

∗ The work reported in this paper was supported by the IT R&D program of MKE, “Development of Machine

Translation Technology for Korean/Chinese/English Spoken Language and Business Documents”.

Copyright 2009 by Yoon-Hyung Roh, Ki-Young Lee, and Young-Gil Kim

1 Introduction

While it is easy to develop a rule-based parser and to improve the performance in the early

developing stage, it becomes more and more difficult to resolve the conflicts between the rules

as the number of rules increases. Because the rule-based parser has the limit in its ability to

resolve syntactic ambiguity, syntactic ambiguity is the challenging problem especially for the

rule-based parser using CFG as its grammar. One way to solve the problem is lexicalization.

Many recent parsing technologies have taken statistical approaches as we can get more

linguistic data such as the Penn Treebank (Collins, 1999; Collins, 2000; Charniak and Johnson,

2005). They also show encouraging performance. But practically the statistical parsing has the

efficiency problem and the scalability problem. The scalability problem means the difficulty in

incorporating other types of syntactic information such as lexical patterns or semantic patterns.

Also it is not easy to tune the parser minutely with respect to each sentence. So, we want to use

a PCFG parser as a base parsing system and use statistical information for syntactic ambiguity.

There are many researches about resolving syntactic ambiguity using statistical information.

The representative case is PP attachment disambiguation (Stetina and Nagao, 1997; Olteanu

and Moldovan, 2005; Foth and Menzel 2006). Most of them simplified the problem into

selecting an attachment site between a noun and a verb. However, in the real parsing the

situation is more complicated. There can be more attachment sites and the impact of PP

attachment on the other part has to be considered. In Foth and Menzel (2006), more

comprehensive disambiguation method was presented using Lexical Attraction, a sort of mutual

information.

Another related research area is dependency parsing technology (Kudo and Matsumoto,

2000; McDonald et al., 2006). But for the present, we want to add statistical information

without significant influence to the current weighting mechanism for the parsed tree selection.

493

23rd Pacific Asia Conference on Language, Information and Computation, pages 493–500

In the next section we introduce our base parsing system, and in the section 3, we present

the way to apply statistical information for syntactic ambiguity. In the section 4, by analyzing

the performance variation according to the types of statistical information, we improve the

efficiency by applying the statistical information selectively. Then, we conclude this paper with

several remarks on future works.

2 Base Parsing System

Our parsing system was developed for the general domain of the web. The parser conducts

bottom-up chart parsing using ACFG (Augmented Context Free Grammar) rules, where the

rules are constrained on various types of syntactic and semantic contextual condition.

The parsing rules are initially extracted from the Brown Corpus in the Penn Treebank. Not

only have the syntactic tags and the bracketing style been modified, but also the rules have been

revised and enlarged in the course of extending the target domain of the parser. In the beginning

stage, the reason that we didn’t adopt a statistical approach is due to the efficiency and the

scalability of the parser. Generally, a statistical parser use a huge amount of parameters and the

search space is large, so the parsing speed is relatively low and it is not adequate for a real time

application. In the preliminary test, the speed of the statistical parsing is more than 7 times

lower than that of the rule-based parsing. Also, in the side of scalability, usually a practical

parser use various types of additional knowledge for parsing, it is difficult to incorporate other

knowledge. Rules are easy to recognize and manage.

Our parser uses lexical patterns and verb subcategorization probability information besides

the parsing rules. The rules have many syntactic and semantic features and constraints for

prohibiting implausible syntactic structures and prioritizing the rules. Lexical pattern are hand-

crafted idiomatic expressions. They include at least one lexical item, and they are applied to

sentences comprising the specific word. The verb subcategorization probability information is

the probability that a certain verb takes a certain subcategorization type. It was also extracted

from the Brown corpus in the Penn Treebank.

Our parser shows over 90% dependency accuracy
1
 in the general domain, which is

competitive performance in the rule-based parsing. But the parsing performance is standstill

and now we need to resolve syntactic ambiguity for additional performance improvement. One

way is to use statistical information.

3 Applying Statistical information

When we consider what type of statistical information can be used from the Penn Treebank, the

inconsistency between our bracketing style and that of Penn Treebank is an obstacle to using

some knowledge like lexicalized rules because it require converting one bracketing style to

another. Maybe, the best plausible way to use lexical statistic information is statistical

information about lexical dependency. So we mainly consider using lexical dependency

information.

3.1 Lexical Dependency Information

There are two different dependency models depending on how the dependency probability is

conditioned. One is the bilexical dependency model (Collins, 1996) and the other is the

generative model (Collins, 1999). In the bilexical model, given two words wi, wh, the

probability that wi is dependent on wh is expressed as follows.

),|(hi wwDP (1)

1 We use our own dependency measure, which will be described later.

494

In the generative model, given a head wh, the probability that a dependent wi is generated is

expressed as follows.

)|(hi wwP (2)

The state-of-the-art in the statistical parsing is the generative model (Collins, 2000;

Charniak and Johnson, 2005). So, first we consider the generative model. The generative

probability that the i-th dependent (child) di is dependent on a head child h in a chart of a chart

parsing is expressed as follows.

))(),(),(|)(),(()|(idisthlhtdldtPhdP iii ≈ (3)

where t(x) represents the tag of x, l(x) represents the lexical root of x, and dist(i) represents the

distance feature between the head child and the i-th dependent in the chart.

The distance feature captures how far the dependent is from the head child and it is a

function of surface string as in Collins (1999). The problem of using such probability is that the

generative probability is too low. This makes it difficult to apply other type of knowledge such

as lexical or semantic pattern or to apply the statistical information selectively. The desirable

characteristic of the weight of lexical dependency is that the weight has 1 when the head child

and its dependent have no preference, has a value greater than 1 when two words have

dependency preference, and has a value between 0 and 1 when they have dependency

dispreference. For this, we normalize the generative probability by dividing it with the

generative probability given only the tag of head child. The dependency weight is expressed as

follows.

))(),(|)(),((

))(),(),(|)(),((
)|(

idisthtdldtP

idisthlhtdldtP
hdW

ii

ii
i =

(4)

Considering that the rule probability of PCFG reflects only the probability about syntactic

tag, the weight can be regarded as reflecting the variation by lexicalization. Also, the weight

can be expressed another way.

))(),(|)(),((*))(),(|)((

))(),(|)(),(),((
)|(

idisthtdldtPidisththlP

idisththldldtP
hdW

ii

ii
i =

(5)

It is the form of the mutual information when P(A) is))(),(|)((idisththlP and P(B) is

))(),(|)(),((idisthtdldtP ii .

The above method suffers from the data sparseness problem which the lexical statistical

approach usually has. The following back-off method can be used.

))(),(|)((

))(),(),(|)((
)|(

idisthtdtP

idisthlhtdtP
hdW

i

i
i =

(6)

Then the total weight of the rule r applied to a chart is calculated by the following.

495

∏=
i

i hdWrPrW)|(*)()((7)

Generally, the probability of a parse tree is calculated by multiplying all rules applied to the

parsed tree like ∏=
i

irPTP)()(. Likewise the weight of a parse tree with statistical

information is calculated by ∏=
i

irWTW)()(and the parse tree with the maximum weight is

selected as the final result.

Meanwhile, the dependency probability that the i-th dependent di is dependent on a head

child h in a chart in the bilexical model is expressed as follows.

))(),(),(),(),(|(),|(idistdldthlhtDPdhDP iii ≈ (8)

The dependency weight is expressed as follows.

))(),(),(|(

))(),(),(),(),(|(
),|(

idistdthtDP

idistdldthlhtDP
dhDW

i

ii
i =

(9)

When we cannot find the probability))(),(),(),(),(|(idistdldthlhtDP ii , it can also be

backed off as follows.

))(),(),(|(

))(),(),(),(|(
),|(

idistdthtDP

idistdldthtDP
dhDW

i

ii
i =

(10)

))(),(),(|(

))(),(),(),(|(
),|(

idistdthtDP

idistdthlhtDP
dhDW

i

i
i =

(11)

Actually we conducted preliminary test about the bilexical model and it showed lower

performance than the generative model. Besides, it generates too many parameters because the

sample space is all combination of two words in a sentence. So we will consider only the

generative model henceforth.

3.2 Extracting Lexical Dependency Information

We use the Penn Treebank as the linguistic data source. When we extract the dependency data

from the Penn Treebank, there are several points to consider.

The first is that the Penn Treebank uses some coarse tags. For example, the part of speech

(POS) tag “IN” includes both prepositions such as “in” and conjunctions such as “while”. Also

the Treebank does not distinguish the “TO” of a preposition and the “TO” of a to-infinitive.

Moreover, SBAR represents all types of clauses including noun clauses such as that-clause,

adverbial clauses such as if-clause, and relative clauses such as which-clause. For this problem,

we do not use a POS tag but the syntactic tag of the parent of the pre-terminal in the syntactic

tree.

The second is the problem by the difference of syntactic tags and bracketing style. Our

parser basically uses the Penn Treebank tags, but we modified syntactic and POS tags and

modified the bracketing style from the Penn Treebank. For example our parser distinguishes

adverbial clauses (SBARV) such as if-clause from that-clause (SBAR). So, the porting of tags

and structures is needed .

496

Lastly, using syntactic tag eliminates some important information. In case of a verb, the

syntactic tag “VP”(Verb Phrase) misses the form information of the verb such as an ing-form or

an infinitive form. So we distinguish them by using different tags such as VPG(present

participle VP), VPB(infinitive VP), VPN(past participle VP), etc, only in the case that the verb

is used as a dependent. In the case that the verb is used as a head, we do not distinguish them.

The overall procedure is as follows:

� All pre-terminals in the parse tree are recognized. For all the pre-terminals, conduct

the following.

For example, from the below parse tree, “He/PRP accused/VBD Dow/NNP

Jones/NNP of/IN using/VBG unfair/JJ means/NNS..” is extracted.

(SS (S

 (NP-SBJ (PRP He))

 (VP (VBD accused)

 (NP-1 (NNP Dow) (NNP Jones))

 (PP-CLR (IN of) (`` ``)

 (S-NOM

 (NP-SBJ-2 (-NONE- *-1))

 (VP (VBG using)

 (NP (JJ unfair) (NNS means))

…

 (. .) ('' '')))

� word/tag normalization: words are stemmed, the words tagged with “CD, NNP” are

replaced by their tags, and the tags “VBZ VBD” are replaced by “VBP” for

coverage, etc. (he/PRP accuse/VBP NNP/NNP NNP/NNP of/IN use/VBG unfair/JJ

mean/NNS..)

� Finding its head in the pre-terminals using tree structures.

(accuse/VBP! NNP/NNP of/IN)

� Tag conversion: As described above, some POS tags or syntactic tags are converted.

(VPG (VBG using)

 (NP (JJ unfair) (NNS means))

(PP-DIR (IN to)

 (NP (NN single-A-3)))

� Count all the events of word pairs with the distance feature.

From (accuse/VBP! NNP/NNP of/IN), the followings are generated.

000 accuse/VBP! NNP/NNP

100 accuse/VBP! of/IN

100 accuse/VBP

� Calculate all the lexical dependency weights according to the formula (4).

)100,|,(

)100,,|,(
)100,/|/(

VBPofINP

accuseVBPofINP
VBPaccuseINofW =

There are several tag usage strategies:

� Tag1: Using the POS tags of the terminal nodes.

From the parse tree (VP (VBG using) …), “use/VBG”

� Tag2: Using the parent tags of the terminal nodes. (“use/VP”)

� Tag3: Tag2 with reflecting the above considerations. (“use/VPG”)

For the experiment, we use the standard data division (Collins, 1999). The lexical data was

extracted from the section 02-21 of the WSJ corpus. And the section 23 was reserved for the

497

evaluation and the section 00 is used as a development set. The total number of extracted

dependency information is 60,550. Some extracted samples are shown below:

39.9245 89 000 account/VP! for/PP

1.6473 3 000 accountable/ADJP! PP

19.4185 3 000 accountable/ADJP! for/PP

1.7168 4 000 accrue/VP! PP

0.8807 4 000 accusation/NP! PP

1.2503 3 000 accusation/NP! of/PP

110.5855 18 000 accuse/VP! of/PP

3.4336 3 000 accustom/VP! PP

26.1406 3 000 accustom/VP! to/PP

In the above example, the word with “!” is a head and the first field is the dependency

weight. For example, “110.5855 18 000 accuse/VP! of/PP” means that the dependency weight

that the “of/PP” comes immediately after the head “accuse/VP” is 110.5855.

3.3 Applying Dependency Weight

When an inactive chart is generated in the chart parsing, all the dependency weights between

the head child and other children calculated and multiplied to the total chart weight. But we

exclude some children which have little dependency ambiguity like “the”.

3.4 Evaluation

The common method to evaluate the parsing performance is the way by matching bracketing.

But that method is affected heavily by the tags and bracketing style. Moreover, our parser uses

the lexical patterns, which does not follow usual recognition unit of syntactic constituent like

“IN -> in reference with”, “VB -> provide NP with”. So we use the dependency accuracy

between words.

All words in a sentence have their own headword except the headword of the whole

sentence. Therefore, the performance of dependency accuracy is measured by obtaining the

headwords and matching them. The usual dependency accuracy includes the match of the

relation between the head and its dependents (Lin, 1998). But we do not consider the tags or

any relation because of the disagreement of tags and bracketing style. Our method only discerns

whether the dependent is an argument or not. This makes it possible to distinguish whether to-

infinitive is used as an argument of a verb such as “want” or not.

Table 1 shows the parsing performance by dependency accuracy.

Table 1: The dependency accuracy of parsing results.

 Labeled

Precision

Dependency

Accuracy

Error Rate

Reduction

Collins Model2

(Collins, 1999)

88.3% 91.00%

Base parsing system 91.27%

Tag1 91.79% 5.95%

Tag2 91.72% 5.15%

Tag3 91.89% 7.10%

Tag3 with back-off 91.80% 6.07%

498

For comparison, Table 2 shows all the parsing performance with respect to the tag usage

strategy. The Tag3 method shows about 7% error rate reduction. Contrary to our expectation

the Tag3 with back-off shows performance degradation. It seems mainly due to the coarse

granularity of syntactic tags for the back-off model.

4 Analysis on the effect according to Lexical Dependency Information Type

There are two reasons of analyzing the performance variation of each dependency type. In the

parsing, the application of the statistical information causes the efficiency problem. So we want

to know what type of statistical information affects the parsing performance most little because

not all types of statistical information seem to contribute to the dependency performance. For

example the direct object of a verb has little ambiguity of dependency. And we do not apply

such type of statistical information.

Also, we want to know what type of dependency information we need to build. Building the

linguistic knowledge manually is an expensive task. So we want to know what type of

dependency information is most effective to the parsing performance. The dependency type is

obtained by categorizing the dependency by the tag pair of the dependency information. We can

test the selectional preference strength about each lexical dependency (Brockmann and Lapata,

2003).

where S(v) is a selectional preference strength of a verb v, P(c) is the overall distribution of

classes which the verb takes as the relation r. P(c|v,r) is conditional probability. We can get the

selectional preference strength of each dependency type by replacing v, r with a head, c with

the dependents of the head.

But for now, we want to know the direct effect to the parsing performance because though

direct objects have high selectional preference, they do not seem to contribute to the

performance enhancement. Table 2 shows the performance variation according to dependency

type.

Table 2: Performance variation according to dependency type

Lexical dependency

type

Dependency

Accuracy

Lexical

dependency type

Dependency

Accuracy

NP! PP 91.54% SINV VP! 91.29%

VP! PP 91.39% SS! VPN 91.29%

NP! VPF 91.39% PP VP! 91.29%

ADJP! PP 91.33% SBAR! VP 91.29%

VP! VPF 91.32% NP! WHNP 91.29%

VP! SBAR 91.30% VP! S 91.29%

NP! VPN 91.30% VP! VPG 91.29%

NP NP! 91.29% WHNP! VP 91.29%

PP! NP 91.29% VP! SBARV 91.29%

NP VP! 91.29% SS! VPB 91.29%

VP VP! 91.29% VPB VP! 91.29%

SS! VP 91.29% ADJP NP! 91.29%

S VP! 91.29% VP! VPN 91.29%

NP! NP 91.29% VP! PRT 91.29%

VP! VP 91.29% PP! PP 91.29%

ADVP VP! 91.29% PP! VPG 91.29%

VP! ADJP 91.29% VP! NP 91.28%

ADJP ADJP! 91.29% VP! VPB 91.28%

VP! ADVP 91.29% Base 91.27%

499

As the Table 2 shows, the statistical information types which contribute to parsing

performance is mainly by the attachment of PP, to-infinitive(VPF), SBAR, past participle

VP(VPN), etc.

5 Conclusion

This paper presented a method to incorporate statistical information into a rule-based parser to

resolve syntactic ambiguity. We employ a PCFG parser as a base system and use additional

lexical knowledge for the syntactic disambiguation. We extracted the statistical information

from Penn Treebank, and applied the information to the rule-based parser. The result shows

about 7% error reduction in the dependency evaluation.

We also conducted some analysis about how much each type of statistical information affects

the parsing performance, thus applying the statistical information selectively for efficiency.

This analysis result can be used for building additional information for syntactic

disambiguation.

For the future works, we need to analyze the sentences whose parsing accuracy is lower than

statistical parsing result and what information need to be reflected. And we should analyze why

the backed-off method deteriorates the performance. Lastly, we plan to add the verb

subcategorization type to the condition of the generative model to cope with data sparseness.

References

Brockmann, C. and M. Lapata. 2003. Evaluating and Combining Approaches to Selectional

Preference Acquisition. Proceedings of the Tenth Conference on European Chapter of the

Association for Computational Linguistics.

Charniak, E. and M. Johnson. 2005. Coarse-to-fine N-best Parsing and MaxEnt Discriminative

Reranking. Proceedings of 43rd Meeting of Association for Computational Linguistics, pp.

173-180.

Collins, M. 1996. A New Statistical Parser based on Bigram Lexical Dependencies.

Proceedings of ACL’96, pp. 184–191.

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis,

University of Pennsylvania.

Collins, M. 2000. Discriminative Reranking for Natural Language Parsing. Proceedings of the

Seventeenth International Conference on Machine Learning, pp. 175–182.

Foth, K. and W. Menzel. 2006. The benefit of stochastic PP attachment to a rule-based parser.

Proceedings of the COLING/ACL, pp. 223–230.

Kudo, T. and Y. Matsumoto. 2000. Japanese Dependency Structure Analysis Based on Support

Vector Machines. Proceedings of the Joint SIGDAT Conference on Empirical Methods in

Natural Language Processing and Very Large Corpora (EMNLP/VLC), pp. 18–25

Lin, D. 1998. A Dependency-based Method for Evaluating Broad-coverage Parsers. Natural

Language Engineering, 4(2), 97-114.

McDonald, R., K. Lerman and F. Pereira. 2006. Multilingual Dependency Analysis with a Two

Stage Discriminative Parser. Proceedings of the Tenth Conference on Computational

Natural Language Learning.

Olteanu, M. and D. Moldovan, 2005. PP-attachment Disambiguation Using Large Context.

Proceedings of the conference on Human Language Technology and Empirical Methods in

Natural Language Processing, pp. 273-280

Stetina, J. and M. Nagao. 1997. Corpus Based PP Attachment Ambiguity Resolution with a

Semantic Dictionary. Proceedings of the Fifth Workshop on Very Large Corpora, pp. 66–

80.

500

