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Abstract. This paper presents a method to incorporate statistical information into a rule-

based parser to resolve syntactic ambiguities. We extract the statistical information from the 

Penn Treebank, and apply the information to the rule-based parser. For the extraction of the 

statistical information the tag conversion is needed because of the disagreement of the tags 

and the bracketing style. We will show the effect of the tag conversion with experiments. 

The final result shows about 7% error rate reduction in the dependency evaluation. We will 

also show how much each type of statistical information affects the parsing performance. 

Keywords: rule-based parsing, syntactic ambiguity, statistical information, PCFG, lexical 

dependency 

                                                      
∗ The work reported in this paper was supported by the IT R&D program of MKE, “Development of Machine 

Translation Technology for Korean/Chinese/English Spoken Language and Business Documents”. 

 

Copyright 2009 by Yoon-Hyung Roh, Ki-Young Lee, and Young-Gil Kim 

1 Introduction 

While it is easy to develop a rule-based parser and to improve the performance in the early 

developing stage, it becomes more and more difficult to resolve the conflicts between the rules 

as the number of rules increases. Because the rule-based parser has the limit in its ability to 

resolve syntactic ambiguity, syntactic ambiguity is the challenging problem especially for the 

rule-based parser using CFG as its grammar. One way to solve the problem is lexicalization.  

Many recent parsing technologies have taken statistical approaches as we can get more 

linguistic data such as the Penn Treebank (Collins, 1999; Collins, 2000; Charniak and Johnson, 

2005). They also show encouraging performance. But practically the statistical parsing has the 

efficiency problem and the scalability problem. The scalability problem means the difficulty in 

incorporating other types of syntactic information such as lexical patterns or semantic patterns. 

Also it is not easy to tune the parser minutely with respect to each sentence. So, we want to use 

a PCFG parser as a base parsing system and use statistical information for syntactic ambiguity. 

There are many researches about resolving syntactic ambiguity using statistical information. 

The representative case is PP attachment disambiguation (Stetina and Nagao, 1997; Olteanu 

and Moldovan, 2005; Foth and Menzel 2006). Most of them simplified the problem into 

selecting an attachment site between a noun and a verb. However, in the real parsing the 

situation is more complicated. There can be more attachment sites and the impact of PP 

attachment on the other part has to be considered. In Foth and Menzel (2006), more 

comprehensive disambiguation method was presented using Lexical Attraction, a sort of mutual 

information. 

Another related research area is dependency parsing technology (Kudo and Matsumoto,  

2000; McDonald et al., 2006). But for the present, we want to add statistical information 

without significant influence to the current weighting mechanism for the parsed tree selection. 
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In the next section we introduce our base parsing system, and in the section 3, we present 

the way to apply statistical information for syntactic ambiguity. In the section 4, by analyzing 

the performance variation according to the types of statistical information, we improve the 

efficiency by applying the statistical information selectively. Then, we conclude this paper with 

several remarks on future works. 

2 Base Parsing System 

Our parsing system was developed for the general domain of the web. The parser conducts 

bottom-up chart parsing using ACFG (Augmented Context Free Grammar) rules, where the 

rules are constrained on various types of syntactic and semantic contextual condition. 

The parsing rules are initially extracted from the Brown Corpus in the Penn Treebank. Not 

only have the syntactic tags and the bracketing style been modified, but also the rules have been 

revised and enlarged in the course of extending the target domain of the parser. In the beginning 

stage, the reason that we didn’t adopt a statistical approach is due to the efficiency and the 

scalability of the parser. Generally, a statistical parser use a huge amount of parameters and the 

search space is large, so the parsing speed is relatively low and it is not adequate for a real time 

application. In the preliminary test, the speed of the statistical parsing is more than 7 times 

lower than that of the rule-based parsing. Also, in the side of scalability, usually a practical 

parser use various types of additional knowledge for parsing, it is difficult to incorporate other 

knowledge. Rules are easy to recognize and manage. 

Our parser uses lexical patterns and verb subcategorization probability information besides 

the parsing rules. The rules have many syntactic and semantic features and constraints for 

prohibiting implausible syntactic structures and prioritizing the rules. Lexical pattern are hand-

crafted idiomatic expressions. They include at least one lexical item, and they are applied to 

sentences comprising the specific word. The verb subcategorization probability information is 

the probability that a certain verb takes a certain subcategorization type. It was also extracted 

from the Brown corpus in the Penn Treebank. 

Our parser shows over 90% dependency accuracy
1
 in the general domain, which is 

competitive performance in the rule-based parsing. But the parsing performance is standstill 

and now we need to resolve syntactic ambiguity for additional performance improvement. One 

way is to use statistical information. 

3 Applying Statistical information 

When we consider what type of statistical information can be used from the Penn Treebank, the 

inconsistency between our bracketing style and that of Penn Treebank is an obstacle to using 

some knowledge like lexicalized rules because it require converting one bracketing style to 

another. Maybe, the best plausible way to use lexical statistic information is statistical 

information about lexical dependency. So we mainly consider using lexical dependency 

information. 

 

3.1 Lexical Dependency Information 

There are two different dependency models depending on how the dependency probability is 

conditioned. One is the bilexical dependency model (Collins, 1996) and the other is the 

generative model (Collins, 1999). In the bilexical model, given two words wi, wh, the 

probability that wi is dependent on wh is expressed as follows. 

 

),|( hi wwDP  (1) 

                                                      
1 We use our own dependency measure, which will be described later. 
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In the generative model, given a head wh, the probability that a dependent wi is generated is 

expressed as follows. 

 

)|( hi wwP  (2) 

 

The state-of-the-art in the statistical parsing is the generative model (Collins, 2000; 

Charniak and Johnson, 2005). So, first we consider the generative model.  The generative 

probability that the i-th dependent (child) di is dependent on a head child h in a chart of a chart 

parsing is expressed as follows. 

 

))(),(),(|)(),(()|( idisthlhtdldtPhdP iii ≈  (3) 

 

where t(x) represents the tag of x, l(x) represents the lexical root of x, and dist(i) represents the 

distance feature between the head child and the i-th dependent in the chart.  

The distance feature captures how far the dependent is from the head child and it is a 

function of surface string as in Collins (1999). The problem of using such probability is that the 

generative probability is too low. This makes it difficult to apply other type of knowledge such 

as lexical or semantic pattern or to apply the statistical information selectively. The desirable 

characteristic of the weight of lexical dependency is that the weight has 1 when the head child 

and its dependent have no preference, has a value greater than 1 when two words have 

dependency preference, and has a value between 0 and 1 when they have dependency 

dispreference. For this, we normalize the generative probability by dividing it with the 

generative probability given only the tag of head child. The dependency weight is expressed as 

follows. 

 

))(),(|)(),((

))(),(),(|)(),((
)|(

idisthtdldtP

idisthlhtdldtP
hdW

ii

ii
i =   

(4) 

  

Considering that the rule probability of PCFG reflects only the probability about syntactic 

tag, the weight can be regarded as reflecting the variation by lexicalization. Also, the weight 

can be expressed another way. 

 

))(),(|)(),((*))(),(|)((

))(),(|)(),(),((
)|(

idisthtdldtPidisththlP

idisththldldtP
hdW

ii

ii
i =  

(5) 

 

It is the form of the mutual information when P(A) is ))(),(|)(( idisththlP  and P(B) is 

))(),(|)(),(( idisthtdldtP ii . 

 

The above method suffers from the data sparseness problem which the lexical statistical 

approach usually has. The following back-off method can be used. 

 

))(),(|)((

))(),(),(|)((
)|(

idisthtdtP

idisthlhtdtP
hdW

i

i
i =  

(6) 

 

Then the total weight of the rule r applied to a chart is calculated by the following. 
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∏=
i

i hdWrPrW )|(*)()(  (7) 

Generally, the probability of a parse tree is calculated by multiplying all rules applied to the 

parsed tree like ∏=
i

irPTP )()( . Likewise the weight of a parse tree with statistical 

information is calculated by ∏=
i

irWTW )()(  and the parse tree with the maximum weight is 

selected as the final result. 

 

Meanwhile, the dependency probability that the i-th dependent di is dependent on a head 

child h in a chart in the bilexical model is expressed as follows. 

 

))(),(),(),(),(|(),|( idistdldthlhtDPdhDP iii ≈  (8) 

 

The dependency weight is expressed as follows. 

 

))(),(),(|(

))(),(),(),(),(|(
),|(

idistdthtDP

idistdldthlhtDP
dhDW

i

ii
i =   

(9) 

When we cannot find the probability ))(),(),(),(),(|( idistdldthlhtDP ii , it can also be 

backed off as follows. 

 

))(),(),(|(

))(),(),(),(|(
),|(

idistdthtDP

idistdldthtDP
dhDW

i

ii
i =   

(10) 

 

))(),(),(|(

))(),(),(),(|(
),|(

idistdthtDP

idistdthlhtDP
dhDW

i

i
i =   

(11) 

 

Actually we conducted preliminary test about the bilexical model and it showed lower 

performance than the generative model. Besides, it generates too many parameters because the 

sample space is all combination of two words in a sentence. So we will consider only the 

generative model henceforth. 

 

3.2 Extracting Lexical Dependency Information 

We use the Penn Treebank as the linguistic data source. When we extract the dependency data 

from the Penn Treebank, there are several points to consider.  

The first is that the Penn Treebank uses some coarse tags. For example, the part of speech 

(POS) tag “IN” includes both prepositions such as “in” and conjunctions such as “while”. Also 

the Treebank does not distinguish the “TO” of a preposition and the “TO” of a to-infinitive. 

Moreover, SBAR represents all types of clauses including noun clauses such as that-clause, 

adverbial clauses such as if-clause, and relative clauses such as which-clause. For this problem, 

we do not use a POS tag but the syntactic tag of the parent of the pre-terminal in the syntactic 

tree.  

The second is the problem by the difference of syntactic tags and bracketing style. Our 

parser basically uses the Penn Treebank tags, but we modified syntactic and POS tags and 

modified the bracketing style from the Penn Treebank. For example our parser distinguishes 

adverbial clauses (SBARV) such as if-clause from that-clause (SBAR). So, the porting of tags 

and structures is needed . 
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Lastly, using syntactic tag eliminates some important information. In case of a verb, the 

syntactic tag “VP”(Verb Phrase) misses the form information of the verb such as an ing-form or 

an infinitive form. So we distinguish them by using different tags such as VPG(present 

participle VP), VPB(infinitive VP), VPN(past participle VP), etc, only in the case that the verb 

is used as a dependent. In the case that the verb is used as a head, we do not distinguish them. 

The overall procedure is as follows: 

 

� All pre-terminals in the parse tree are recognized. For all the pre-terminals, conduct 

the following. 

For example, from the below parse tree, “He/PRP accused/VBD Dow/NNP 

Jones/NNP of/IN using/VBG unfair/JJ means/NNS..” is extracted. 

(SS (S  

    (NP-SBJ (PRP He) ) 

    (VP (VBD accused)  

      (NP-1 (NNP Dow) (NNP Jones) ) 

      (PP-CLR (IN of) (`` ``)  

        (S-NOM  

          (NP-SBJ-2 (-NONE- *-1) ) 

          (VP (VBG using)  

            (NP (JJ unfair) (NNS means) ) 

… 

    (. .) ('' '') )) 

 

� word/tag normalization: words are stemmed, the words tagged with “CD, NNP” are 

replaced by their tags, and the tags “VBZ VBD” are replaced by “VBP” for 

coverage, etc. (he/PRP accuse/VBP NNP/NNP NNP/NNP of/IN use/VBG unfair/JJ 

mean/NNS..) 

� Finding its head in the pre-terminals using tree structures. 

(accuse/VBP! NNP/NNP of/IN) 

� Tag conversion: As described above, some POS tags or syntactic tags are converted.  

(VPG (VBG using)  

            (NP (JJ unfair) (NNS means) ) 

(PP-DIR (IN to)  

            (NP (NN single-A-3) )) 

� Count all the events of word pairs with the distance feature. 

From (accuse/VBP! NNP/NNP of/IN), the followings are generated. 

000 accuse/VBP! NNP/NNP 

100 accuse/VBP! of/IN 

100 accuse/VBP 

� Calculate all the lexical dependency weights according to the formula (4). 

)100,|,(

)100,,|,(
)100,/|/(

VBPofINP

accuseVBPofINP
VBPaccuseINofW =  

There are several tag usage strategies: 

 

� Tag1: Using the POS tags of the terminal nodes.  

From the parse tree (VP (VBG using) … ), “use/VBG” 

� Tag2: Using the parent tags of the terminal nodes. (“use/VP”) 

� Tag3: Tag2 with reflecting the above considerations. (“use/VPG”) 

 

For the experiment, we use the standard data division (Collins, 1999). The lexical data was 

extracted from the section 02-21 of the WSJ corpus. And the section 23 was reserved for the 
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evaluation and the section 00 is used as a development set. The total number of extracted 

dependency information is 60,550. Some extracted samples are shown below: 

 

39.9245 89 000 account/VP! for/PP 

1.6473 3 000 accountable/ADJP! PP 

19.4185 3 000 accountable/ADJP! for/PP 

1.7168 4 000 accrue/VP! PP 

0.8807 4 000 accusation/NP! PP 

1.2503 3 000 accusation/NP! of/PP 

110.5855 18 000 accuse/VP! of/PP 

3.4336 3 000 accustom/VP! PP 

26.1406 3 000 accustom/VP! to/PP 

 

In the above example, the word with “!” is a head and the first field is the dependency 

weight. For example, “110.5855 18 000 accuse/VP! of/PP” means that the dependency weight 

that the “of/PP” comes immediately after the head “accuse/VP” is 110.5855.  

3.3 Applying Dependency Weight 

When an inactive chart is generated in the chart parsing, all the dependency weights between 

the head child and other children calculated and multiplied to the total chart weight. But we 

exclude some children which have little dependency ambiguity like “the”. 

3.4 Evaluation 

The common method to evaluate the parsing performance is the way by matching bracketing.  

But that method is affected heavily by the tags and bracketing style. Moreover, our parser uses 

the lexical patterns, which does not follow usual recognition unit of syntactic constituent like 

“IN -> in reference with”, “VB -> provide NP with”. So we use the dependency accuracy 

between words. 

All words in a sentence have their own headword except the headword of the whole 

sentence. Therefore, the performance of dependency accuracy is measured by obtaining the 

headwords and matching them. The usual dependency accuracy includes the match of the 

relation between the head and its dependents (Lin, 1998). But we do not consider the tags or 

any relation because of the disagreement of tags and bracketing style. Our method only discerns 

whether the dependent is an argument or not. This makes it possible to distinguish whether to-

infinitive is used as an argument of a verb such as “want” or not. 

Table 1 shows the parsing performance by dependency accuracy.  

 

Table 1: The dependency accuracy of parsing results. 

 Labeled 

Precision 

Dependency 

Accuracy 

Error Rate 

Reduction 

Collins Model2 

(Collins, 1999) 

88.3% 91.00%  

Base parsing system  91.27%  

Tag1  91.79% 5.95% 

Tag2  91.72% 5.15% 

Tag3  91.89% 7.10% 

Tag3 with back-off  91.80% 6.07% 
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For comparison, Table 2 shows all the parsing performance with respect to the tag usage 

strategy. The Tag3 method shows about 7% error rate reduction. Contrary to our expectation 

the Tag3 with back-off shows performance degradation. It seems mainly due to the coarse 

granularity of syntactic tags for the back-off model. 

4 Analysis on the effect according to Lexical Dependency Information Type 

There are two reasons of analyzing the performance variation of each dependency type. In the 

parsing, the application of the statistical information causes the efficiency problem. So we want 

to know what type of statistical information affects the parsing performance most little because 

not all types of statistical information seem to contribute to the dependency performance. For 

example the direct object of a verb has little ambiguity of dependency. And we do not apply 

such type of statistical information.  

Also, we want to know what type of dependency information we need to build. Building the 

linguistic knowledge manually is an expensive task. So we want to know what type of 

dependency information is most effective to the parsing performance. The dependency type is 

obtained by categorizing the dependency by the tag pair of the dependency information. We can 

test the selectional preference strength about each lexical dependency (Brockmann and Lapata, 

2003).  

 
where S(v) is a selectional preference strength of a verb v, P(c) is the overall distribution of 

classes which the verb takes as the relation r. P(c|v,r) is conditional probability. We can get the 

selectional preference strength of each dependency type by replacing v, r with a head, c with 

the dependents of the head. 

But for now, we want to know the direct effect to the parsing performance because though 

direct objects have high selectional preference, they do not seem to contribute to the 

performance enhancement. Table 2 shows the performance variation according to dependency 

type.  

Table 2: Performance variation according to dependency type 

Lexical dependency 

type 

Dependency 

Accuracy 

Lexical 

dependency type 

Dependency 

Accuracy 

NP! PP 91.54% SINV VP! 91.29% 

VP! PP 91.39% SS! VPN 91.29% 

NP! VPF 91.39% PP VP! 91.29% 

ADJP! PP 91.33% SBAR! VP 91.29% 

VP! VPF 91.32% NP! WHNP 91.29% 

VP! SBAR 91.30% VP! S 91.29% 

NP! VPN 91.30% VP! VPG 91.29% 

NP NP! 91.29% WHNP! VP 91.29% 

PP! NP 91.29% VP! SBARV 91.29% 

NP VP! 91.29% SS! VPB 91.29% 

VP VP! 91.29% VPB VP! 91.29% 

SS! VP 91.29% ADJP NP! 91.29% 

S VP! 91.29% VP! VPN 91.29% 

NP! NP 91.29% VP! PRT 91.29% 

VP! VP 91.29% PP! PP 91.29% 

ADVP VP! 91.29% PP! VPG 91.29% 

VP! ADJP 91.29% VP! NP 91.28% 

ADJP ADJP! 91.29% VP! VPB 91.28% 

VP! ADVP 91.29% Base 91.27% 
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As the Table 2 shows, the statistical information types which contribute to parsing 

performance is mainly by the attachment of PP, to-infinitive(VPF), SBAR, past participle 

VP(VPN), etc.  

5 Conclusion 

This paper presented a method to incorporate statistical information into a rule-based parser to 

resolve syntactic ambiguity. We employ a PCFG parser as a base system and use additional 

lexical knowledge for the syntactic disambiguation. We extracted the statistical information 

from Penn Treebank, and applied the information to the rule-based parser. The result shows 

about 7% error reduction in the dependency evaluation.  

We also conducted some analysis about how much each type of statistical information affects 

the parsing performance, thus applying the statistical information selectively for efficiency. 

This analysis result can be used for building additional information for syntactic 

disambiguation. 

For the future works, we need to analyze the sentences whose parsing accuracy is lower than 

statistical parsing result and what information need to be reflected. And we should analyze why 

the backed-off method deteriorates the performance. Lastly, we plan to add the verb 

subcategorization type to the condition of the generative model to cope with data sparseness. 
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