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Abstract. The ability to accurately classify temporal relations between events is an 

important task in a large number of natural language processing and text mining 

applications such as question answering, summarization, and language specific information 

retrieval. In this paper, we propose an improved way of classifying temporal relations, using 

support vector machines (SVM). Along with gold-standard corpus features, the proposed 

method aims at exploiting useful syntactic features, which are automatically generated, to 

improve accuracy of the SVM classification method. Accordingly, a number of novel kernel 

functions are introduced and evaluated for temporal relation classification. Our evaluations 

clearly demonstrate that adding syntactic features results in a considerable performance 

improvement over the state of the art method, which merely employs gold-standard features. 
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1 Introduction 

In recent years, many progresses have been made in natural language processing (NLP). 

Combining statistical and symbolic methods plays a significant role in these advances. Tasks 

such as part-of-speech tagging, morphological analysis, parsing, and named entity recognition 

have been addressed with satisfactory results (Mani et al., 2006). Problems such as temporal 

information processing that requires a deep semantic analysis are yet to be addressed. 

Lately, the increasing attention in practical NLP applications such as question answering, 

information extraction, and summarization have resulted in an increasing demand for temporal 

information processing (Tatu and Srikanth, 2008). In question answering, one would expect the 

system to answer questions such as "when an event occurred", or "what is the chronological 

order between some desired events". In text summarization, especially in multi-document type, 

knowing the order of events is a useful source for merging related information correctly. It is 

also the case that in some information extraction applications, the temporal information 

between events can be very useful and effective (Alonso, 2009). 

Temporal information is usually encoded in the textual description of some events. For a 

given ordered pair of components ( )21 , xx , where 
1x  and 

2x  are times or events, a temporal 

information processing system tries to identify the type of relation 
ir  that temporally links 

1x  to 

2x . The type of relation 
ir  can be one of the 13 types proposed by James Allen (Allen, 1984). 

For example, in the sentence "Ocean Drilling said (e22) it will offer (e23) 15% to 20% of the 

contract-drilling business through an initial public offering (e25) in the near future (t67). 

(wsj_313), there are some relations between pairs (e23, e25), and (e25, t67). The task is to 

automatically tag these pairs with relations INCLUDES and BEFORE, respectively. 
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With recent construction of the Timebank corpus (Pustejovsky et al, 2003), the efficiency of 

different machine learning methods can now be compared. The recent work with Timebank has 

disclosed that six-class classification of temporal relations is a very complicated task, even for 

human annotators. In this paper, we propose an improved way of classifying temporal relations, 

using a machine learning approach. Support vector classification using effective kernel 

functions are specifically applied to two types of features: corpus gold-standard event features 

and underlying syntactic features of the contextual sentence. To capture either type of features, 

we apply an event-kernel to the gold-standard event features, and a convolution tree-kernel to 

syntactic features. The event kernel has been implemented according to (Mani et al., 2006) and 

some novel tree kernels have been employed as our syntactic tree kernel. Experimental results 

on Timebank validate the proposed method by showing 6% improvement over the state of the 

art method that merely uses gold-standard features. 

The remainder of the paper is organized as follows: section 2 is about previous approaches 

to temporal relation classification. Section 3 explains our proposed method. Section 4 briefly 

presents characteristic of the corpus that we have used. Section 5 demonstrates evaluation of 

the proposed algorithm. Finally, paper is concluded in section 6. 

2 Previous Works 

There are numerous ongoing researches focused on temporal relation classification. These 

efforts can be divided into three categories: 1) Pattern based; 2) Rule based, and 3) Anchor 

based. These categories are discussed in the next three sub-sections. 

2.1 Pattern Based Methods 

This group of methods tries to extract some generic lexico-syntactic patterns for events co-

occurrence. Extracting these patterns can be done manually or automatically. 

Manual Extraction of Patterns 

Perhaps the simplest pattern based method is the one that was developed using a knowledge 

resource called VerbOcean (Chklovski and Pantel, 2005). VerbOcean has a small number of 

manually selected generic patterns. The style of patterns is in the form of <Verb-X> and then 

<Verb-Y>. After manually creating these patterns, this method can obtain some of existing 

semantic relations between events. Similar to other manual methods, a major drawback of this 

method is its tendency to have a high recall but a low precision. One way to overcome this 

weakness is to create more specific patterns; however it is clear that this would be very hard 

and time consuming. 

Another way of resolving the low precision problem is using an additional component for 

pruning extracted relations. Many researches have tried to address this issue by a variety of 

approaches. In some studies, several heuristics have been employed to resolve the low precision 

problem (Chklovski and Pantel, 2005; Torisawa, 2006). Another solution is incorporating a 

classifier that is trained on a related corpus (Inui et al., 2003) and is used to refine the results. 

Automatic Extraction of Patterns 

These methods use machine learning techniques for pattern extraction. They try to learn a 

classifier from an annotated corpus, and attempt to improve classification accuracy by feature 

engineering. 

MaxEnt classifier is a good example of this group (Mani et al., 2006). MaxEnt assigns one 

of six relations to each pair of events from an augmented Timebank corpus. This classifier uses 

perfect features, which have been hand-tagged in the corpus, including tense, aspect, modality, 

polarity, and event class. In addition to these features, it relies on two additional features 

including pairwise agreement of tense and aspect. In this paper, we propose a new technique to 

improve this particular method. 
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There is another approach in this group that trains an event classifier for intra-sentential 

events, and builds a corpus that contains sentences with at least two events, one of which is 

triggered by a key time word (e.g., after, before, etc.). The classifier is based on syntax and 

clausal ordering features (Lapata and Lascarides, 2006). 

The state of the art in this group is very similar to the MaxEnt classifier. It relies on features 

extracted automatically from some raw text, and works 3% better than MaxEnt. This classifier 

tries to learn event attributes and event-event features in two consecutive stages. Event 

attributes are the same as that of MaxEnt, but event-event features are new and include part of 

speeches, event-event syntactic properties, prepositional phrase, and temporal discourses 

(Chambers et al, 2007). This method also uses some extra resources like WordNet to find 

words' synsets. 

There are also other methods that have used some machine learning techniques for 

acquisition of semantic relations between events (Abe et al., 2008). Such techniques can be 

applied to temporal relation classification as well. In addition to these methods, there is an 

SVM-based method which has been shown satisfactory results in event-time relation 

classification (Mirroshandel et al., 2009).  

2.2 Rule Based Methods 

The common idea behind rule based methods is to find some rules for classifying temporal 

relations. In most existing works, these rules are determined manually and are based on Allen's 

interval algebra (Allen, 1984). 

In a study, rules of temporal transitivity were applied to increase the training set by a factor 

of 10. Next, the MaxEnt classifier was trained on this enlarged corpus. The test accuracy on 

this enlarged corpus was very encouraging. There was nearly 32% progress in accuracy (Mani 

et al., 2006). 

Reasoning with determined rules is another usage of rules. In (Tatu and Srikanth, 2008), a 

rich set of rules (axioms) was created. Then by using a first order logic based theorem prover, 

they tried to find a proof of each temporal relation by refutation. 

2.3 Anchor Based Methods 

Anchor based methods use information of argument fillers (i.e., anchors) of every event 

expression as a valuable clue for recognizing temporal relations between events. They are based 

on the distributional hypothesis (Harris, 1968) and by looking at a set of event expressions 

whose argument fillers have a similar distribution, they try to recognize synonymous event 

expressions. Algorithms such as DIRT (Lin and Pantel, 2001), TE/ASE (Szpektor et al., 2004), 

and that of Pekar's system (Pekar, 2006) are some examples of anchor based methods. 

It has been shown that one can gain more accuracy by combining some of these three 

different methods. For example, pattern and rule based methods were merged (Mani et al., 

2006), and the new system showed to be more efficient than each of the base methods. In the 

other study, pattern and anchor based methods were combined (Chklovski and Pantel, 2005; 

Abe et al., 2008). However, there has been an exception: merging pattern and anchor based 

methods did not gain any improvement (Torisawa, 2006). 

3 Tree Kernel Based Temporal Relation Classification 

Syntactic features have been shown to be a great source of information in various NLP and text 

mining applications such as relation extraction, semantic role labeling, and co-reference 

resolution. Current works in temporal relation classification have not sufficiently utilized such 

features. Here, we aim at taking advantage of syntactic features. Because of promising results 

of Support Vector Machines (SVM) (Boser et al., 1992; Cortes and Vapnik 1995) in related 

works, it has been chosen as our classification algorithm. To incorporate syntactic features into 

SVM, convolution tree kernels are applied. More specifically, these tree kernels have been 
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combined with a simple event kernel. In the next sub-section, the simple event kernel is briefly 

discussed. Then the convolution tree kernels are described, followed by the explanation of ways 

of combining these kernels. 

3.1 Simple Event Kernel 

This is a linear kernel that exclusively uses gold-standard features of events. For each event, 

there are five temporal attributes which have been tagged in Timebank: 1) tense; 2) 

grammatical aspect; 3) modality; 4) polarity, and 5) event class. Tense and grammatical aspect 

define temporal location and event structure; thus, they are necessary in any method of 

temporal relation classification. Modality and polarity specify non-occurring (or hypothetical) 

situations. The event class shows the type of event. The range of values for these attributes is 

based on (Pustejovsky et al, 2003). 

In addition to these five attributes, it uses part of speech tags of event as an extra feature. 

This kernel can be defined as follows: 

 

( ) ( )∑ =
=

2,1 2121 .,.,
i iiETR ETRETRKTRTRK  (1) 

 

where 
1TR  and 

2TR  stand for two temporal relation instances, 
iE  is the thi  event of a temporal 

relation instance, and 
EK  is a simple kernel function over the features of event instances: 

( ) ( )∑=
i iiE fEfECEEK .,., 2121

 (2) 

 

where 
if  means the thi  event feature; function C returns 1 if the two feature values are identical, 

and returns 0 otherwise. In essence, 
EK  returns the number of common feature values of two 

event instances. 

3.2 Tree kernels 

In (Khayyamian et al., 2009), a generalized version of convolution tree kernel (Collins and 

Duffy, 2001) was proposed by associating generic weights to the nodes and sub-trees of the 

parse tree. In this paper, some customized versions of this kernel are used to capture syntactic 

features. 

Generalized Convolution Tree Kernel 

A generalized convolution tree kernel was proposed in (Khayyamian et al., 2009). In order to 

explain the kernel, first a feature vector over the parse tree is defined in equation (3). In this 

vector, the thi  feature equals to the sum of weighted number of occurrences of sub-tree type thi  

in the parse tree. 

Function ( )nI
isubtree

 is an indicator that returns 1 if 
isubtree  occurs at node n, and returns 0 

otherwise. ( )nsubtree i
 is the sub-tree instance of type thi  which is rooted in node n. As it is 

shown in equation (4), function tw(T) (which denotes "tree weight") assigns a weight to tree T, 

which is the product of all its node weights. in(T) and en(T) are respectively sets of internal and 

external nodes of T. 
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Because each node of the entire parse tree can either occur as an internal or as an external 

node of a specific sub-tree (provided that it exists in the sub-tree), two weighted types are 

respectively associated with the nodes by inw(n) and enw(n) functions (these stand for "internal 

node weight" and "external node weight"). For example, in Figure 1, while the node with label 

PP is an external node of sub-trees (1) and (7), it is regarded as an internal node of sub-trees (3) 

and (4). 

As shown in equation (5), a method similar to that of (Collins and Duffy, 2001) can be 

employed to devise a kernel function for the calculation of dot products of H(T) vectors. 

According to equation (5), the calculation of the kernel eventually leads to the sum of function 

( )21 , nnC  over all tree node pairs 
1T  and 

2T . Function ( )21 , nnC  is the weighted sum of common 

sub-trees 1n  and 2n , and can be recursively calculated (similar to function ( )21 , nnC  in (Collins 

and Duffy, 2001)). 

 

 
Figure 1: Samples of sub-trees used in convolution tree kernel calculation. 

Kernel Customization for Temporal Relation Classification 

In (Khayyamian et al., 2009), four sub-kernels of the generalized convolution tree kernel were 

proposed. It seems that these kernels can be applied to temporal relation classification. Using 

weighting functions of the generalized kernel, the customized kernels differentiate among sub-

trees based on how their nodes interact with the event arguments. 

Since the whole syntactic parse tree of the sentence that holds the event arguments contains 

plenty of misleading features, as in (Zhang et al., 2006), Path-enclosed Tree (PT) is chosen as 
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our tree portion for applying tree kernels. PT is a portion of parse tree that is enclosed by the 

shortest path between two event arguments. 

 

• The Original Collins and Duffy Kernel 

By setting λα ==)(ninw  and enw(n)=1 for all nodes, the generalized kernel can be 

converted to the kernel proposed in (Collins and Duffy, 2001). In their paper, parameter 

10 ≤< λ  is a decaying parameter used to retain the kernel values within a fairly small range. 

Without this parameter, the value of the kernel for identical trees becomes much larger than its 

value for different trees, which slows down SVM convergence. 

 

• Argument Ancestor Path Kernel (AAP) 

Definition of weighting functions is as follows. Parameter 10 ≤<α  is a decaying parameter 

analogous to λ . This weighting method is equivalent to applying original Collins and Duffy 

kernel on a portion of the parse tree that exclusively includes the arguments ancestor nodes and 

their direct children. 
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Figure 2: A syntactic parse tree with AAPDist and ArgDist example. There is a SIMULTAENOUS 

temporal relation between (move, resign) event pair in this parse tree. 

 

• Argument Ancestor Path Distance Kernel (AAPD) 

Weighting functions are defined in the following equations. Both functions have identical 

definitions for this kernel. 

 

( ) ( )
( ) ( )( )

MAXDIST

nAAPDistnAAPDist

nenwninw
21 arg,,arg,min

α==  
(8) 

 

Function AAPDist(n, arg) computes the distance of node n from ancestor path of event 

argument arg on the parse tree as depicted in Figure 2. MAXDIST is used for normalization, and 

is the maximum value of AAPDist in the whole tree. Using this weighting approach, the closer a 

node is to one of the arguments ancestor path, the less it is decayed by the weighting function. 
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• Argument Distance Kernel (AD) 

Weighting functions of this kernel, which have identical definitions, are shown as follows. 

Their definitions are similar to the previous kernel functions, though they use a different 

distance function which measures the distance of a node from an event argument rather than its 

ancestor path (see Figure 2). 

 

( ) ( )
( ) ( )( )

MAXDIST

nArgDistnArgDist

nenwninw
21 arg,,arg,min

α==  
(9) 

 

• Threshold Sensitive Argument Ancestor Path Distance Kernel (TSAAPD) 

This kernel is intuitively similar to AAPD kernel; except that instead of using a smooth 

decaying method, it employs a threshold based technique. Weighting functions are as follows: 

 

( ) ( ) ( )
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3.3 Composite Kernels for Temporal Relation Extraction 

In this section, two types of composition are proposed: linear composition and polynomial 

composition (Zhang et al., 2006). 

Linear Composite Kernel 

 

( ) ( ) ( ) ( )21221121 ,ˆ1,ˆ, TRTRKTRTRKTRTRK l αα −+=  (11) 

 

where 
1K̂ can be a normalized form of one of the mentioned convolution tree kernels. A kernel 

K(X, Y) can be normalized by dividing it by ( ) ( )YYKXXK ,., . 
2K̂  is the  normalized form of 

simple event kernel. α  is the composition coefficient. Based on five tree kernels that have been 

introduced, five linear composite kernels can be accordingly produced. 

Polynomial Composite Kernel 

 

( ) ( ) ( ) ( )21221121 ,ˆ1,ˆ, TRTRKTRTRKTRTRK
P

P αα −+=  (12) 

 

where 
1K̂ , 

2K̂  and α  have similar definition as in linear composite kernel. P
K 2
ˆ  is the 

polynomial expansion of 
2K̂  with degree d (in this work, we have assumed d=2) and is defined 

as follows: 

 

( )dP
KK 22
ˆ1ˆ +=  (13) 

 

Five different polynomial composite kernels can also be constructed in this case. 

4 Corpus Description 

We used Timebank (v 1.2) with 183 newswire documents and 64077 words, and for 

comparison with previous works, we added 73 documents of the Opinion Corpus (Mani et al., 

2006), which has 38709 words. These two datasets have been released based on TimeML 

(Pustejovsky et al, 2003). There are 14 temporal relations in TLink (Event-Event and Event-
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Time relations) class of TimeML. Similar to (Mani et al., 2006; Tatu and Srikanth, 2008; Mani 

et al., 2007), we used a normalized version of these 14 temporal relations that contains 6 

temporal relations RelTypes = {SIMULTANEOUS, IBEFORE, BEFORE, BEGINS, ENDS, 

INCLUDES}. For converting 14 relations to 6, the inverse relations were omitted, and 

SIMULTAENOUS and IDENTITY, as well as DURING and IS_INCLUDED, were collapsed. 

In our experiments, we merged two Timebank and Opinion datasets to generate a single 

corpus called OTC. Table 1 shows the normalized TLink class distribution over OTC. 
 

Table 1: The normalized Event-Event TLink distribution in the Timebank and OTC. 

Relation Timebank OTC 

IBEFORE 63 (1.8 %) 131 (2.13 %) 

BEGINGS 77 (2.21 %) 160 (2.60 %) 

ENDS 114 (3.27 %) 208 (3.38 %) 

SIMULTANEOUS 1304 (37.46 %) 1528 (24.86 %) 

INCLUDES 588 (16.89 %) 950 (15.45 %) 

BEFORE 1335 (38.35 %) 3170 (51.57 %) 

TOTAL 3481 (2387 intra-sentential) 6147 (4377 intra-sentential) 

 

As it is shown in table 1, relation "BEFORE" is the most frequent relation; thus it forms the 

majority class, and has been used as the baseline of experiments. 

5 Experiments 

We have used LIBSVM (Chang and Lin, 2001) java source for the SVM classification (one-

versus-one multi class strategy), Stanford NLP package (available at 

http://nlp.stanford.edu/software/index.shtml) for tokenization, sentence segmentation, and 

parsing. 

Since tree kernels can be more appropriately applied to the event pairs that reside on the 

same sentence, the corpus data have been accordingly split into two intra-sentential and inter-

sentential parts. The proposed kernels have been evaluated on the intra-sentential instances, 

while the simple event kernel has been exclusively used for the inter-sentential instances. The 

results reported for the whole corpus has been produced by combining those results. All the 

results are the outcome of a 5-fold cross validation. In order to find the appropriate value for 

parameters, 1000 event pairs have been randomly chosen as development set. 

Table 2 shows the accuracy results of employing different tree kernels. In our evaluation, 

baseline was the majority class (BEFORE relation) of the evaluated corpus. Mani is the state of 

the art method, which exclusively uses gold-standard features (Mani et al., 2006). The other 

methods were described in the subsection 3.2. 

The results show that using syntactic structure of sentences can be very effective. 

Comparing with other methods, AAPD kernel has achieved the best results. It showed 3% 

improvement over Mani's method on Timebank and 1% over OTC. The other tree kernels 

showed satisfactory results, too. 

Table 2: The accuracy of tree kernels on Timebank and OTC. 

Method Timebank Corpus OTC Corpus 

Baseline 38.35 51.57 

Mani 50.97 62.5 

CollinsDuffy 51.71 62.04 

AAP 53.41 62.52 

AAPD 54 63.44 

AD 53.3 62.38 

TSAAPD 53 62.53 
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As it is demonstrated in table 3, the effective exploitation of syntactic and simple event features 

in the linear composite kernels (subsection 3.3) resulted in a noticeable improvement of 

accuracy. Here, AAPD linear composite kernel was the most successful kernel, which gained 

over 6% improvement on Timebank, and 3% progress in accuracy on OTC. 
 

Table 3: The accuracy of linear composite kernels on Timebank and OTC. 

Method Timebank Corpus OTC Corpus 

CollinsDuffy Linear 56.67 65.27 

AAP Linear 56.12 64.88 

AAPD Linear 56.73 65.62 

AD Linear 56.6 65.34 

TSAAPD Linear 56.4 65.24 
 

Table 4 shows the accuracy results of applying five polynomial composite kernels (subsection 

3.3) to Timebank and OTC. 
 

Table 4: The accuracy of polynomial composite kernels on Timebank and OTC. 

Method Timebank Corpus OTC Corpus 

CollinsDuffy Polynomial 56.81 65.67 

AAP Polynomial 56.94 65.76 

AAPD Polynomial 57.02 65.95 

AD Polynomial 57.25 65.92 

TSAAPD Polynomial 56.43 65.32 
 

The results of applying polynomial composite kernels reveal that these methods work better 

than their linear counterparts. On Timebank, AD polynomial composite kernel achieved the 

best result (i.e., over 6.2% improvement). On the other hand, on OTC, AAPD gained the best 

results with 3.45% improvement. 

Unfortunately there are not a lot of researches on pattern based event-event relation 

classification, and we have to compare our work only with Mani algorithm. Regarding the 

hardness of the problem, it can be said, that the improvement is considerable. 

6 Conclusion 

In this paper, we have addressed the problem of extracting temporal relations between events, 

which has been a topic of interest since early days of natural language processing. Although 

syntactic features seem to be potentially useful in various text classification tasks, they have not 

yet been effectively exploited in temporal relation classification. We have tried to take 

advantage of such features to enhance classification performance. Support Vector Machines 

(SVM) has been chosen as our classification algorithm, due to its promising results in related 

works. Using SVM, two types of composite kernels have been proposed by combining 

convolution tree kernels and a simple event kernel. 

The results of applying the new method, without using any extra annotated data, show a 

noticeable improvement over related works in the area of pattern based methods (including the 

state of the art method) in terms of accuracy. 

It seems that using dependency structure of sentences or creating better kernels for SVM 

might be even further improve the accuracy of system. 
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