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Abstract. The statistical models used for dialogue systems need annotated data (dialogues)
to infer their statistical parameters. Dialogues are usually annotated in terms of Dialogue Acts
(DA). The annotation problem can be attacked with statistical models, that avoid annotating
the dialogues from scratch. Most previous works on automatic statistical annotation assume
that the dialogue turns are segmented into the corresponding meaningful units. However, this
segmentation is not usually available. Most recent works tried the annotation with unseg-
mented turns using an extension of the models used in the segmented case, but they showed
a dramatical decrease in their performance. In this work we propose an enhanced annota-
tion technique based on N-gram transducers that outperforms the accuracy of the classical
HMM-based model for annotation and segmentation of unsegmented turns.
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1 Introduction

A dialogue system is usually defined as a computer system that interacts with a human user to fulfil
a task (Dybkjeer and Minker, 2008). These systems are of particular interest in many applications,
like information systems that are accessed by telephone (Seneff and Polifroni, 2000; Aust et al.,
1995) or assistant systems for people with special necessities (Wilks, 2006). All the systems
define the way they react to user inputs with the so-called dialogue strategy. This strategy can be
rule-based (Gorin et al., 1997) or data-based (Young, 2000).

In any case, the strategies are based on the interpretation of the user input in terms of dialogue
semantic units. These semantic units are usually coded in terms of Dialogue Acts (DA) (Bunt,
1994), which model the intention of the current user interaction along with its associated infor-
mation. This concept can be extended to system responses. In an interaction, several dialogue
meaningful units can be distinguished. These units are called segments (or utterances according
to authors such as (Stolcke et al., 2000)), and each segment has associated only one DA label.

The annotation of a dialogue corpus in terms of DA is an interesting problem for both the devel-
opment of data-based dialogue systems and the study of discourse and dialogue structure. In the
first case, the statistical models that implement the dialogue manager (Williams and Young, 2007,
Meng et al., 2003; Stolcke et al., 2000) rely on annotated dialogues to estimate their parameters.
This annotation process is developed by human experts and it is a hard and time-consuming task.
The use of probabilistic models can provide a draft annotation of the corpus (Stolcke et al., 2000)
that can make the manual annotation process faster.

Most of the previous works on the use of probabilistic models for DA annotation use segmented
dialogue turns (Stolcke et al., 2000; Webb and Wilks, 2005; Rangarajan et al., 2007). However,
this segmentation is not usually available in the initial transcription of a dialogue corpus. Other
works propose a decouple segmentation-annotation scheme (Ang et al., 2005), but the ideal option
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is the use of models that can annotate unsegmented dialogue turns, giving the correct segments
and labels. This option has been explored in a few previous works (Zimmermann et al., 2005;
Martinez-Hinarejos et al., 2008), giving in any case (as could be expected) poorer results than
when the segmentation is available.

The classical model for this task is based on Hidden Markov Models (HMM) (Stolcke et al.,
2000). In this work we present an enhanced version of an alternative model, the N-Gram Trans-
ducer (NGT) model. This enhancement provides competitive results with respect to the classical
HMM approach in the annotation and segmentation accuracy for unsegmented dialogues, even in
two dialogue corpora of very different nature.

This paper is organised as follows: in Section 2 we present the two statistical models that are
compared, in Section 3 we detail the corpora for the experiments, in Section 4 we describe the
experiments and show their results, in Section 5 we draw conclusions and future lines of work.

2 Statistical annotation models

In this section we present the statistical annotation models that we are going to compare: a classical
HMM-based model and the enhanced NGT model. Both models are oriented to solve the optimi-
sation problem of, given a word sequendéthat represents a dialogue, obtaining the sequence

of DA labelsi/ that maximises the posterior probabiliy(Z/|)V). We can express the complete
sequences of words and DA in terms of the different turns in the dialogue: given a dialogde with
turns, we express its associated word sequence and DA sequdr\t&aH/IT =WiWy---Wrp

andi{ = Ul = U U, - - - Ur, respectively. Thus, we can express the optimisation problem as:

U =argmaxPr(U|W) =argmaxbr (U] W) 1)
u U1T

From Equation 1, we can develop a model based on the application of the rule of Bayes on
the formula (HMM-based model) or a model based on the direct implementation of the posterior
probability (NGT model).

2.1 The HMM-based model

Using the rule of Bayes, Equation 1 can be expressed as:

argmaxPr (U |Wi) = argmaxPr (UL ) Pr(W{ |UL) =
Uy Uy
T
argmax] [ Pr(U:| U7 1) Pr(Wy Wi, UT) 2)
uf =1

Previous works such as that presented in (Stolcke et al., 2000) have proposed similar ap-
proaches to DA annotation. However, these previous approximations assume the availability of
the segmentation of the turn to perform the DA assignation (Stolcke et al., 2000; Webb and Wilks,
2005), when segmentation of the turns is not usual in transcribed dialogues. In our case, we try to
generalise the DA assignation problem in the case of unavailable segmentation.

We can develop the formulation to use the model in the unsegmented éagives the current
word sequenc®; = w} = wywy - - - w;, we describe it in terms of all the possible segmentations
asW; = wj) wi?yy .. wy_ .y, wherer is the number of segments angl is the index of
the k-th segment. Moreover, we can express the DA sequence of tasU; = uj and the
previous DA sequences éﬁ‘l = U1Uy - - - U;_1. Furthermore, anT is the sequence of given
events, we can neglect the dependency between word sequences. We can reasonably assume that

! Notice thatw andu represent single words and DA, respectively, whifeandU represent turns and DA sequences.
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Figure 1: General scheme for the GIATI techniquE, A andI are the input, output, and extended set
of symbols, respectivelyd and S are the initial sets of aligned and re-labelled samplgs4) andT'(T)
represent the languages derived frghand 7, respectively. The Gl algorithm is usually the inference of a
smoothed n-gram, and is the automaton equivalent to the inferred n-grahandA are the labelling and
inverse labelling functions.

DA sequences until turnonly affect the first turns in the dialogue (i.el?r(Wt|W1t*1, Ul) ~
Pr(Wt\Wf_l, U?)). Consequently, the terms in the product in Equation 2 are rewritten as:

Pr(U UL ) Pr(Wi Wi~ UF) = > [ Prlwlel ™, U ) Pr(wst 4 uf,U7Y) (3)

r,s] k=1

This model in Equation 3 can be simplified with some assumptions: the current DA depends
only on the previous — 1 DA and the sequence of words of the current segment depends only on
the current DA. The search problem given by this model (the search for the segmentation and DA
sequence with maximum probability) is solved using the Viterbi process, which implies that the
summation is changed by a maximisation. Therefore, the final model is:

T T

U = argmax P k=1 \Pr(ws* 4
gu g@?ixg (u |y 1) Priwg, g fur) (4)

Following the work of other authors (Stolcke et al., 2000; Young, 2000), the terms in Equa-
tion 4 are modelled as followsPr(ux|uf”} . |) is usually represented by a statistical model of
DA sequences (DA language model), generally an n-gram model?ta(m&g:_l+1\uk) is usually
modelled by a HMM. This formulation searches, using a Viterbi process, for the DA sequence
of a complete dialogue and gives as by-product a segmentation for each turn. In case there is an
available segmentation, the maximisation step is overridden and the vaduness| are fixed to
that provided by the segmentation. In any case, the influence of the models (specially the DA
language model) can be tuned by using scaling factors, similar to the Grammar Scale Factor used

in speech recognition.
2.2 The NGT model

The alternative model is the NGT model, which directly estimates the posterior probability
Pr(U|W) by means of an n-gram model which acts as a transducer. The definition of this
model is based on a Stochastic Finite-State Transducer (SFST) inference technique known as
GIATI? (Casacuberta et al., 2005). GIATI is a general technique to infer SFST whose first appli-
cation was in Machine Translation. GIATI starts from a corpus of aligned pairs of input-output
sequences. These alignments are used in a re-labelling process that produces a corpus of extended
words as a result of a combination of the words of the input and output sentences. This corpus is
used to infer a grammatical model (usually a smoothed n-gram). The inversion of the re-labelling
process on the grammatical model results in the final SFST, although the use of smoothing tech-
niques makes difficult the conversion of the n-gram to an equivalent SFST. The general GIATI
process is presented in Figure 1.

2 GIATI is the acronym for Grammatical Inference and Alignments for Transducer Inference.
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Yes, uh, Ildon'twork,though, butlused toworkand, when I had two children .

) ) )
% sd sd

Yes , uh ,@% | don't work , though ,@sd but | used to work and , when | had two children . @sd

Figure 2: An alignment between a dialogue turn and its corresponding DA labels (from the SWBD-DAMSL
scheme, %: uninterpretable, sd: statement-non-opinion), and the result of the re-labelling process, where
@ is the attaching metasymbol.

In the case of dialogues, the input language is the sequence of words of the dialogue
wiws ... w;, the output language is the sequence of DA of the dialogue . .. u,, and the
alignment is between the last word of the segment and the corresponding DA. The re-labelling
step attaches the DA label to the last word of the segment using a metasymbol (@), providing
the extended word sequeneges . .. ¢;, wheree; = w; whenw; is not aligned to any DA and
e; = w;Qui whenw; is aligned to the DAuy. Figure 2 presents an example of alignment for
a dialogue turn and the corresponding extended word sequence. After the re-labelling process, a
grammatical model is inferred. The usual option is a smoothed n-gram.

In the case of dialogues, we can avoid the conversion to SFST. The alignments between the
words in the turn and the corresponding DA labels are monotonic (no cross-inverted alignments
are possible), and consequently no conversion to SFST is necessary to efficiently apply a search
algorithm on the n-gram. Therefore, this n-gram acts as a transducer and gives the name to the
technique (NGT: N-Gram Transducers) (Magz-Hinarejos et al., 2008).

The decoding in the NGT model is a Viterbi search in which each input word is expanded
for all the possible outputs it has associated in the alignments in the training corpus. Therefore,
the tree search is expanded in each node in several branches according to the number of outputs
associated to the word. Each new branch represents a possible output (DA), including the empty
output (the word is not attached to any DA).

The probability of each branch is updated according to the corresponding n-gram probability.
We start from a parent node associated to the sequence of extended werds. . . e;_; and with
an associated probabilify-. If the new word to process; has associated in the training corpus
o outputs and the empty output, we expand frBrthe children nodes) = w;, e} = w;@Qul, ...,

e? = w;@Qu°. The probability of the child node associated to the extended w{dsﬂcomputed as
pp - Pr(e{\ei_n ce€im1), WherePr(ef|ei_n ...€;—1) is given by the n-gram of the NGT model.

An example of tree expansion is presented in the top tree of Figure 3. This expansion on
complete dialogues produces a high temporal and spatial complexity, which is admissible in the
off-line dialogue annotation framework. The search process can be applied to dialogues with
unsegmented turns giving, as in the case of the HMM-based model, a segmentation as by-product.
NGT can be applied on segmented turns by restricting the outputs to the end words of the segments.

The main drawback of this initial approach is its high locality: only the taektended words
are really taken into account to assign the DA labels. This makes the current DA independent from
most of the previous DA in the dialogue history, and loses an important source of information. In
the top tree of Figure 3 we can see that the last node of the best hypothesis (in boldface and marked
by an arrow) calculates its probability based only on the two previous nodes values (“don’t work”),
ignoring previous DA. We propose a modification of the basic search algorithm in which the prob-
ability of the different branches is not only computed from the n-gram transducer itself, but from
an n-gram of DA as well (which acts as DA language model). Therefore, when expanding a branch
of a wordw; with a DA u;, the new probability is computed using both the n-gram transducer and
the DA language model (a n-gram of degre Consequently, the probability for the child node
associated te; = w;Qu; is given bypp - Pr(e;le;—y, ... ei—1) - Pr(uj|uj—m, ... uj—1). No change
in the computation of the probability of the child node is produced when the output is empty (i.e.,
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Figure 3: An example of the Viterbi tree search for the basic NGT model (top) and for the enhanced NGT
model (bottom). In the basic model only the NGT probabilities are taken into account. In contrast, in
the enhanced model both the NGT probabilities and the DA language model probabilities are used in the
transitions where outputs are produced. In these nodes, the new probability is the result of multiplying
the probabilities of the parent node, the NGT probability and the DA language model probability. Best

hypothesis (in boldface and marked by the dark arrow) changes from (b % sd) to (b % ng). In this example,
trigrams are used in all models.
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e; = w;). The expansion process in this new version can be seen in the bottom tree of Figure 3.
We can see that the probability of the last node of the best hypothesis is calculated using the values
of the two previous nodes (“don’t work”) and the two previous DA (“b %").

With this enhancement, the NGT model keeps information on the DA history and is competitive
with respect to the HMM-based model, as the results in Section 4 will show.

3 Corpora

In this section we present the corpora on which we carried out the experiments to compare the
HMM-based model and the NGT model. These two corpora are of very different nature, allowing
us to generalise the conclusions obtained from the results of the experiments.

3.1 SwitchBoard corpus

The SwitchBoard corpus (Godfrey et al., 1992) is a well-known corpus of human-to-human tele-
phonic conversations in English. The conversations are about general topics, with no clear task
to accomplish. This corpus recorded spontaneous speech, with frequent interruptions between the
speakers, hesitations, non-linguistic sounds (laugh, cough) and background noises. The transcrip-
tion of the corpus takes these phenomena into account, and it includes special notation for the
overlaps and different noises produced in the recording.

The corpus consists of 1,155 conversations, with approximately 115,000 different turns. The
vocabulary size is about 42,000 words. The dialogue annotation was performed using the SWBD-
DAMSL scheme (Jurafsky et al., 1997), a simplified version of the standard DAMSL annotation
set (Core and Allen, 1997). In the process, the dialogue turns were split into segments and each
segment was annotated with one of the 42 different labels of the SWBD-DAMSL scheme. These
labels represent several dialogue communicative categories such as statement, question, backchan-
nels, etc., and the corresponding subcategories (e.g., statement opinion/non-opinion, yes-no/open
guestion, etc.). The manual labelling was performed by 8 different human labellers, with a Kappa
value of 0.80 (Stolcke et al., 2000).

To simplify the experimental framework, we preprocessed the SwitchBoard corpus to remove
certain phenomena: interruptions and overlaps were erased (by joining the interrupted turns), all
the words were transcribed to lowercase and punctuation marks were separated from the words.
This preprocess is reasonable for the annotation of transcribed dialogues, but for speech dialogues
it should be changed (as punctuation marks are not usually part of speech recognisers outputs).

3.2 Dihana corpus

The Dihana corpus (Beneet al., 2006) is a set of 900 task-oriented human-computer dialogues in
Spanish. The task is about railway information for timetables, fares and services for long-distance
trains in the Spanish territory. The corpus was acquired from conversations with 225 voluntary
speakers, with small Spanish dialectal variants. The acquisition was performed using the Wizard
of Oz technique (Fraser and Gilbert, 1991), and it only had semantic restrictions (the objective of
the interaction was defined by mean of scenarios), but not lexical or syntactical restrictions.

The acquisition process resulted in 6,280 user turns and 9,133 system turns, with a vocabulary
of approximately 900 words and a final amount of speech signal of about five and a half hours.
On average, there are 15 words and 1.5 segments per turn. The dialogue annotation scheme was
defined based on the Interchange Format (IF) (Fukada et al., 1998), which defines labels with
three different levels, called respectively speech act, concept and argument. The adaptation for the
Dihana corpus resulted in a set of 248 different 3-level labels (153 for user turns and 95 for system
turns) (Alcacer et al., 2005). Due to the high specificity of the third level (which takes into account
the specific data used or provided in the segment), an alternative labelling using only the first two
levels is also considered in the experiments. In this 2-level case, there are 72 different labels (45
for user and 27 for system).
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To simplify the experimental framework, the Dihana corpus was preprocessed to reduce its
complexity. In this case, as in the case of the SwitchBoard corpus, all the words were transcribed
to lowercase and punctuation marks were separated from the words. Additionally, a categorisation
of sequences such as town names, dates, hours, etc. was performed, and the words were speaker-
labelled (U for user and S for system).

4 Experiments and results

We propose a set of experiments to compare the performance of the two models introduced in Sec-
tion 2. The models were proved with the two corpora described in Section 3, and the experiments
were made using a cross-validation approach. For both corpora, we present results for the anno-
tation using the segmented and unsegmented version of the dialogues. In both cases the weight
parameter of the HMM-based model (which scales the influence of the DA language model) was
optimised for the whole cross-validation process. We only show the results for the best weight pa-
rameter. The Viterbi search in the NGT model was a beam-search with a dynamic beam parameter.
We used the following evaluation metrics:

e Segmented version: CER (Classification Error Rate), i.e., percent of segments with incorrect
DA assignation; it is the lower bound of error, as no insertion/deletions are possible.

¢ Unsegmented versions: different types of Error Rates (ER) based on average edit distance
between the reference and the annotation result; the different measures are DAER (Dialogue
Act ER) for DA sequences, SegER (Segmentation ER) for segmentation (end positions of
the segments) and SegDAER, where the symbols that are compared in the edit distance join
both the DA label and its position (segmentation), giving a joining measure of the precision
of both the DA assignation and the segmentation.

Although other evaluation metrics can be used (see (Ang et al., 2005)), we consider these metrics
a good choice to evaluate the quality of the techniques in the annotation and segmentation task. In
all the experiments, confidence intervals of 90% were calculated using bootstrapping with 1000
repetitions using the method described in (Bisani and Ney, 2004).

4.1 SwitchBoard experiments

To obtain more reliable results, we performed a partition on the corpus to carry out experiments
with a cross-validation approach. In our case, the 1,155 different dialogues were divided into 11
partitions with 105 dialogues each one.

Table 1 shows the results of the annotation with the HMM-based and NGT models with trans-
ducer n-grams of degrees 3 and 4 (which were those that offered best results in the overall test
experiments). We included the error measures for different estimations of the DA language model
(Pr(uﬂuﬁj}lﬂ)) using the segmented and unsegmented version of the corpus. The results in
the segmented case are similar to those reported by other authors (Stolcke et al., 2000; Webb
and Wilks, 2005; Rangarajan et al., 2007), although not directly comparable due to the different
experimental framework.

As was expected, the availability of the segmentation allows a better annotation of the dialogues
(for the two techniques, see top left subtable of Table 1). The HMM-based method produces
the best results in the annotation of the segmented version. However, in the more realistic and
complex unsegmented case, the NGT model is significantly better than the HMM-based model
in pure annotation (8% less absolute DAER, including confidence intervals, bottom left subtable
of Table 1) and specially when segmentation is included in the evaluation (10% less SegDAER,
bottom right subtable of Table 1). This could be caused by the nature of the HMM models, which
are one-state models as they have to model the shortest segments (one word) and, consequently,
cannot discriminate appropriately words that mark the end of a segment.

3 (ins + del + sub)/(ok + del + sub), with ins insertionsdel deletions sublok wrong/correct substitutions.
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Table 1: Annotation and segmentation errors of the SwitchBoard corpus with different n-grams to estimate
the DA language model. The first line for each subtable corresponds to the HMM method and the next ones
stand for the NGT method with different degrees of the transducer n-gram. CER (top left) corresponds to
the segmented case, and the rest of measures to the unsegmented case. 90% confidence inteévals are

in all cases. In boldface, the best result for each method.

DA language model DA language model
| Method]| 2 | 3 | 4 | 5 [ Method] 2 | 3 | 4 | 5

HMM 34.4 | 34.5 | 35.0 | 36.1 HMM 41.2 | 41.8 | 41.7 | 42.3

CER [ NGT 3g|| 40.6 | 38.9 | 38.8 | 39.2|| SegER [ NGT3g| 229|229 | 229 | 22.9
NGT 4g || 41.8 | 40.3 | 39.8 | 40.3 NGT 4qg | 24.0 | 24.0 | 23.9 | 24.0

HMM 54.6 | 55.5 | 55.8 | 57.0 HMM 60.4 | 61.8 | 62.0 | 63.6

DAER| NGT 3g || 46.7 | 46.6 | 46.7 | 47.0| | SegDAER NGT 3g || 50.4 | 50.4 | 50.5 | 50.8
NGT 4qg || 48.3 | 48.0 | 48.1 | 48.3 NGT4g | 52.6 | 52.4 | 52.5 | 52.7

Table 2: Annotation and segmentation errors of the Dihana corpus using the 2-level labelling. Different
n-grams to estimate the DA language model are proved. The first line of each subtable corresponds to the
HMM method and the next ones stand for the NGT method with different degrees of the transducer n-gram.
CER (top left) corresponds to the segmented case, and the rest of measures to the unsegmented case. 90%
confidence intervals are in all cas€9).5. In boldface, the best result for each method.

DA language model DA language model

| Method]| 2 | 3 [ 4] 5 | Method]| 2 | 3 | 4 | 5
HMM 6.2 | 5.8 | 5.8 | 6.3 HMM 23.1 | 22.9 | 23.0 | 23.0
CER [NGT3g| 9.7 | 7.9 | 7.8 | 81 SegER [ NGT3g|| 1.2 | 1.3 | 1.3 | 12
NGT4g| 85 |73 [73 |74 NGT4g| 1.1 [ 1.1 | 1.1 | 11
HMM 9.0 | 79 | 81 | 85 HMM 30.4 | 29.2 | 29.4 | 29.7
DAER| NGT 3g || 10.6 | 8.6 | 8.6 | 8.7 SegDAER NGT 3g | 11.1 | 9.1 9.0 9.2
NGT4g| 92 [7.9 80|81 NGT4g| 95 | 83 | 83 | 85

In the segmented version, the annotation error is slightly affected by the DA language model
degree, but these differences are not significant in the unsegmented case. This can be caused by
the nature of the SwitchBoard corpus, as the dialogues are not task-oriented. Consequently, the
DA sequences do not follow regular patterns that can be captured by the DA language models.

4.2 Dihana experiments

The experiments were also performed with the Dihana corpus. The corpus was divided into 5
partitions to carry out a cross-validation approach. Each partition contains 180 dialogues. We
applied the models to annotate the corpus with the 2-level and the 3-level labels.

Table 2 shows a comparison of the two annotation methods using the 2-level labels. The tests
were made using the segmented and unsegmented versions of the corpus. With the 2-level annota-
tion, the HMM-based model is the best annotation method for the segmented and the unsegmented
versions. However, the segmentation is significantly worse than that produced by NGT (see SegER
and SegDAER results, left subtables of Table 2), with an error difference higher than 20%. Thus,
NGT seems more convenient in the annotation task, where the correct boundaries are as important
as correct DA labels.

The experiments with the 3-level labels are shown in Table 3. The HMM-based model is, with
this set of labels, significantly better in pure annotation in both versions of the corpus. This may
be due to the number of 3-level labels, that produces a DA language model with higher perplexity.
This affects specially to the NGT model because this model only uses thevwasts of the seg-
ment to obtain the label hypothesis, while the HMM-based model uses the whole word sequence
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Table 3: Annotation and segmentation errors of the Dihana corpus using the 3-level labelling. Different
n-grams to estimate the DA language model are tested. The first line in each subtable corresponds to the
HMM method and the next ones stand for the NGT method with different degrees of the transducer n-gram.
CER (top left) corresponds to the segmented case, and the rest of measures to the unsegmented case. 90%
confidence intervals are in all cas€9).6. In boldface, the best result for each method.

DA language model DA language model

| Method]| 2 | 3 | 4 | 5 [ Method] 2 | 3 | 4 | 5
HMM 10.8 | 10.3 | 10.5 | 11.0 HMM 25.6 | 26.2 | 26.2 | 264
CER | NGT3g | 182 | 16.9 | 17.2 | 17.9 SegER | NGT 3g | 4.2 4.1 4.3 4.4
NGT4g | 17.1 | 16.0 | 16.2 | 16.7 NGT4g | 4.1 4.0 4.0 4.1
HMM 15.3 | 15.6 | 15.9 | 16.7 HMM 33.6 | 345 | 34.7 | 354
DAER| NGT 3g || 19.5 | 18.2 | 18.9 | 19.5 ||SegDAER NGT 3g || 20.0 | 18.7 | 19.4 | 20.0
NGT4g || 184 | 174 | 17.5 | 18.1 NGT 4g || 19.0 | 17.9 | 18.1 | 18.7

of the segment. However, when segmentation is included in the evaluation, the performance of the
HMM-based model dramatically decreases (more than 15%) with respect to the NGT model.

The low accuracy on the segmentation of the HMM-based model is caused by the same reasons
that were pointed out for the SwitchBoard corpus (one-state HMM models that cannot correctly
capture the boundary words). The influence of the DA language model is slightly more important
in the Dihana corpus than in the SwitchBoard corpus. This difference is due to the nature of the
corpus: Dihana is a task-oriented corpus with a limited number of scenarios; this causes depen-
dencies between the DA sequences that are captured by the DA language model. Consequently,
the DA language model degree has a higher influence in the annotation and segmentation.

5 Conclusions and future work

In this work, we presented the enhanced NGT model for dialogue annotation. This model was
compared with the classical HMM-based model for dialogue annotation and segmentation using
two corpora. The experiments showed that the NGT model produces better error rates in segmen-
tation and annotation with respect to the HMM-based model for two different dialogue corpora.

In pure annotation, the HMM-based model showed a better performance in the segmented di-
alogues. This could be explained by the use of whole sequence of words and the unambiguity of
the segmentation, whereas the NGT model only takes into account the final words of the segment.
However, the HMM-based model seems to be more sensitive to the lack of the correct segmenta-
tion than the NGT model. Moreover, segmentation results of the HMM-based model are poorer
than those of the NGT model. Consequently, the NGT model seems more appropriate for the
annotation of unsegmented dialogue corpora.

The NGT model is based on an n-gram inferred from a previously annotated corpus. This
n-gram can be used directly in a speech recognition system as language model, producing a DA
annotated recognition. Consequently, future work is directed to include this annotation model
into a speech recognition system. This needs the development of an NGT model for turn-by-turn
annotation, instead of the whole dialogue annotation model presented in this paper.

In the NGT model the search process can be modified with a scale factor that affects the fre-
guency of outputs, or even the DA language model (similar to the scale factor of the HMM-based
model). Therefore, another interesting work is the implementation of the search algorithm for the
NGT model with these factors and a study of their influence in the annotation results. Finally, we
plan to study the efficiency of the HMM-based and NGT models and improve the time complexity
of the search process (e.g., using beam-search or N-best expansion).
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