
Semi-Automatic Annotation Tool to Build Large Dependency Tree-
Tagged Corpus∗

Eun-Jin Parka, Jae-Hoon Kimb, Chang-Hyun Kima, and Young-Kill Kima

a1 Dongsam-Dong, Youngdo-gu, Busan, 606-791, KOREA,

 b161 Gajeong-Dong, Yuseong-gu, Daejeon. 305-700, KOREA
jhoon@mail.hhu.ac.kr, {ejpark,chkim,kimyk}@etri.re.kr

Abstract. Corpora annotated with lots of linguistic information are required to develop robust and
statistical natural language processing systems. Building such corpora, however, is an expensive,
labor-intensive, and time-consuming work. To help the work, we design and implement an annotation
tool for establishing a Korean dependency tree-tagged corpus. Compared with other annotation tools,
our tool is characterized by the following features: independence of applications, localization of
errors, powerful error checking, instant annotated information sharing, user-friendly. Using our tool,
we have annotated 100,904 Korean sentences with dependency structures. The number of annotators
is 33, the average annotation time is about 4 minutes per sentence, and the total period of the
annotation is 5 months. We are confident that we can have accurate and consistent annotations as
well as reduced labor and time.

Keywords: Annotation (tagging) tool, Workbench, Error Editor, Corpus construction.

1. Introduction
More recently, a large corpus annotated with linguistic information is used in natural language
processing. By using this corpus, natural language processing systems have learn some
linguistic phenomena automatically. Building such a corpus, however, is an expensive, labor-
intensive and time-consuming work. Furthermore, maintaining consistency of a constructed
corpus is difficult. Therefore, we need an annotation tool for improving annotation efficiency
and maintaining consistency. To help such work, some annotation tools (Atalay, 2003; Lim,
2002; Morton, 2003; Day, 1997; Brants T. and Plaehn, 2000) have already been used. In this
paper, we describe an annotation tool for building a Korean dependency tree-tagged corpus with
linguistic information about the segmentation of word phrases (called eojeols in Korean), part-
of-speech (POS) tags, boundaries of chunks, and dependency links and relations. We design an
annotation tool so that an annotator can carefully investigate them and edit errors on them
through a GUI. We also design it so that errors in low level processing like POS tagging might
not be propagated to higher level processing step like parsing. Moreover, the tool is
characterized by the following features; 1) It is independent of special applications like
information extraction. 2) It focuses on localizing errors to modules as far as possible, such as
morphological analyzers. It can make annotators find and pay attention to errors related to the
modules easily. 3) It has an error checking function to make possible that errors can not be
stored as it can be. 4) It promptly shares annotated information among annotators so that
annotators can keep consistency with others’ annotation within a working group. 5) It has a
user-friendly interface.

This paper is organized as follows: In Section 2, we introduce other annotation tools for
establishing corpora In Section 3, we describe the architecture of our annotation tool for

∗ Copyright 2007 by Eun-Jin Park, Jae-Hoon Kim, Chang-Hyun Kim, and Young-Kill Kim

 385

building a Korean dependency tree-tagged corpus. In Section 4 and 5, we explain the
implementation details of our tool and guide process of the annotation using our tool,
respectively. Finally, we draw conclusions, and discuss future works in Section 6.

2. Related Works
Several annotation tools (Atalay, 2003; Day, 1997; Lim, 2002; Morton, 2003; Day, 1997;
Brants T. and Plaehn, 2000; Carletta, 2002) have been developed and used in several projects
(KIBS, 2005; Marcus, 1994; SEJONG, 2005). In this section, we briefly introduce such
annotation tools for building a tagged corpus: Alembic workbench (Day, 1997), WorkFreak
(Morton, 2003) and a semi-automatic tree annotating workbench (Lim, 2002) developed in the
Sejong Project (SEJONG, 2005).

2.1.Alembic Workbench
Alembic Workbench (Day, 1997) developed at MITR1 is the system which annotates named-
entity for an effective information extraction system. It supports multi-languages and SGML
formats. Also it learns the user’s working pattern to construct the corpus semi-automatically. It
helps annotators by graphic user-interface. This system had been upgraded and released as
Callisto2 in 2004. In spite of such upgrade, this system is not yet for general purpose, only
information extraction. Furthermore, adapting it to Korean requires preprocessing like
morphological analysis and POS tagging.

2.2.WordFreak
WordFreak 3 (Morton, 2003) is a java-based linguistic annotation tool designed to support
automatically annotating linguistic data and it employs active-learning for the human correction
of automatically annotated data. It annotates several linguistic information like syntactic
structure, named-entity and anaphoric information, etc. It provides automatic taggers for
tokenization, POS tagging, chunking, full parsing, and name finding through OpenNLP4 project
and also automatically annotates linguistic information by learning the user pattern of work.
And it can extend its component to other languages like Korean easily, but also requires
preprocessing like morphological analysis and POS tagging for each language.

2.3.Korean semi-automatic tree annotation workbench
In this section, we will describe the workbench (Lim, 2002) which is building a Korean
dependency tree-tagged corpus. It extracts various syntactic patterns from the constructed
corpus based on the selected features, and automatically applies the extracted syntactic patterns
to the appropriate states. It provides an integrated environment for searching, converting and
editing Korean parsing tree corpus in the Sejong project (SEJONG, 2005). However, it is for a
stand-alone system, but not for a multi-user system, and then cannot share annotated
information instantly. It is improper for building a large-scale corpus.

3. Annotation Tool for Building a Korean Dependency Tree-Tagged Corpus
Our work annotates naturally-occurring text for linguistic structure. Most notably, we produce
skeletal dependency trees with links and relations showing rough syntactic and semantic
information called Korean dependency tree-tagged corpus. We also annotate text with

1 http://www.mitre.org/tech/alembic-workbench/
2 http://callisto.mitre.org/
3 http://wordfreak.sourceforge.net/
4 http://opennlp.sourceforge.net/

 386

segmentation of word phrases (eojeols in Korean), POS tags, and chunk annotation. In this
section, we describe the architecture of our annotation tool, called PPeditor, for establishing the
Korean dependency tree-tagged corpus. It is designed for editing dependency trees generated
from a Korean dependency parser (Kim, 1994), that is, our method for building a corpus is
semi-automatic. It also is designed for sharing annotated results through a database (DB)
promptly so that many annotators can work simultaneously to keep consistency of dependency
tree-tagged corpus.

3.1.Architecture of PPeditor
Figure 1 shows the overall architecture of PPeditor consisting of a sentence analyzer, an
annotation tool, and a DB. The sentence analyzer comprises four components: a morphological
analyzer, a POS tagger, a partial parser and a dependency parser. The morphological analyzer
segments a sentence into a sequence of morphemes and the POS tagger assigns POS tags to
morphemes reflecting their syntactic category. The partial parser called a chunker uses a
sequence of POS tags provided by a tagger and identify boundaries of syntactic groups like
noun and verb groups having linear structures. The chunker preserves all the previously added
information in the sentence and only creates the boundaries of constituents called chunks.
Finally the dependency parser generates explicit dependency links that show the head-
dependent relations between chunks.

Figure 1: Architecture of PPeditor

The annotation tool helps annotators with editing several kinds of errors (spelling errors,
spacing errors, segmentation errors, POS tagging errors, chunking errors, dependency structure
errors), and so it is called an error editor also. The DB saves several kind of information on
original sentences, annotations for the sentences, dictionaries, annotators, etc.

 387

The annotation flow is as follows;
1. select a sentence from the DB.
2. send it to the sentence analyzer.
3. analyze it by the sentence analyzer.
4. receive analysis results from the sentence analyzer.
5. display the results in GUI.
6. observe errors on the results.
7. edit the errors.
8. repeat 2 through 7 until all the errors are corrected.
9. save the annotation results to the DB.

Step 8 is very important because the errors are propagated to the higher levels. Namely, errors
of POS tagging is reflected into the partial parsing and syntactic parsing. The higher level
analysis of sentences must be processed again if errors in the low level analysis are corrected.
By doing this, the propagated errors are automatically disappeared and then the efficiency is
improved greatly.

3.2.Graphic user interface of the PPeditor

Figure 2: GUI of the error editor

GUI (Graphical User Interface) of the annotation tool is consisting of a main menu, a sentence
window, a morpheme window, a chunk window, a dependency structure window, and a
message window. Each window displays information on sentences, morphemes, chunks,
dependency structures, and messages, respectively. Table 1 shows relations between kinds of
errors and windows. On the sentence window, errors on spelling and spacing of words are
observed and corrected. On the morpheme window, errors on POS tags and segmentation of
eojeols are edited. On the chunk window and the dependency structure window, errors on
boundaries of chunks and on dependency structures, which comprise dependency links and
relations, are rectified.

Table 1: Relations between kinds of errors and windows

 388

Error Window
spelling
spacing sentence

segmentation morpheme
POS tag morpheme / chunk
boundary of chunks chunk
link with head
dependency
relation

dependency
structure

Basic functions of an editor are insertion, deletion, and substitution of objects, and these
functions are also basic in editing. For expert users, our system adopts hot keys for every
function to improve the efficiency, for example, CTRL-I for insertion of a morpheme or a chunk.
All mappings of hot keys and their functions are skipped due to limitation of space. To
minimize typing errors on each window, combo-boxes are employed for editing POS tags and
dependency relations.

3.3.Functions of PPeditor
Figure 3 shows the structure of PPeditor. The function of PPeditor is classified as the
communication function, error edit function, guideline function, and corpus release function. All
of the functions are connected with the user interface.

Figure 3: Functions of the PPeditor

The communication function is to communicate with the sentence analyzer and the data base.
The communication of the sentence analyzer, which uses the CGI (Common Gateway Interface),
is to send the sentence to the analyzer and receive the result of it. Therefore, it can freely set up
in the different operating system or the computer system. The MySQL, which is connected with
client by ODBC, was used as the data base which store sentences and the results of the
annotation.

It is the basic function of PPeditor to correct the errors. It provided the functions of general
editor which are insertion, deletion, and addition. But, it has some features which are not
provided in the general editor. First, it automatically modified the errors which are repetitively
caused by the sentence analyzer. Second, if the error of low step is removed, the result of
correction will be reflected to high step in this system. Because the errors of the low step (ex:
morphological analysis) are delivered to the high step (ex: syntax analysis). For example, the
spelling errors at the sentence affect the morphological analysis and the syntax analysis. Third,
it provides user to searching the similar language phenomenon or the similar contexts. There are
a lot of ambiguous expressions in natural language. The annotator is able to keep consistency
about them by using this function. Fourth, errors are not stored in the data base by checking the

 389

errors. The annotator may ignore simple error when he worked lots of time. Fifth, it helps the
annotator search the dictionary and examples which are annotated by other annotators. He needs
data such as a dictionary although he is familiar to his mother tongue. Sixth, there is focus
function which highlights the current position. There is a lot of information on the screen, so he
loses his position easily. Plate (i.e., photograph) captions appear underneath the figure, as can be
seen in Plate 1. The plates and photographs should be centered.

The guideline function is studying skills for annotating sentences. This includes function of
example search, web guideline, and dictionary search. Web guideline is online tutorial to help
annotator. The example search is searching examples which are annotated sentences by other
annotators. This function is very useful to keep constancy by searching the result of annotation.

The corpus release function is to exchange the results of annotation among annotation groups.
It includes the function of format conversion which converts from database to text, and the
function of synchronizing data among databases. And also it includes the function of error
display which had marked by gaugers who review the dependency tree-tagged corpus. This
helps annotator find error position easily.

4. Annotation of the Korean Dependency Tree-Tagged Corpus
Using our tool, we had annotated 100,904 Korean sentences of which all are over 20 words
with syntactic structures, which comprise segmentation of eojeols, POS tags of morphemes and
chunks, boundaries of chunks, dependency links and relations. 33 annotators, who are trained
over 1 month, had worked for 5 months. There are 3 annotation subgroups, which worked
20,000, 40,000, and 40,000 sentences, respectively. Each group has local database and
synchronizes their annotated sentences to central database server every 2 weeks. Figure 4
shows the organization of annotation subgroups and a central database server.

Figure 4: The organization of annotation subgroups

4.1.A scenario for annotating a corpus
The user level consists of gauger, advisers, annotators, and administrators. Most important
users for annotating a corpus are annotators and advisers. In the normal case of annotation, an
annotator works according to the workflow as mentioned in Section 3.1. In the case, some
sentences extracted from running text are very difficult to annotate linguistic information; the
annotator asks helps to advisers who are experts on annotations or well-educated corpus
linguists. The advisers should hold profound knowledge in linguistics and could explain
complex linguistic phenomena. Mostly one among senior annotators is in charges of the advice.
Figure 5 shows this flow.

 390

Figure 5: The scenario for annotating a sentence

Several annotators can access one record of the DB simultaneously. This causes problems when
one sentence is annotated by two or more annotators. To avoid this problem, we use the ‘status’
field of the ‘sent’ table. If one annotator holds a sentence to work, the status of the sentence
must be changed into ‘reserved’. If the work is done, the status is recovered to the original status
or is changed into other statuses.

4.2.The scenario for gauging a corpus
There is one gauger in the project, and each group has one adviser. The adviser examines
annotated sentences so that errors can be reduced. If the adviser finds any errors on annotations,
they explain the errors, give a guideline for removing the errors, and then ask the annotator of
the annotations to remove the errors. We randomly selected the samples of annotated sentences
every two weeks at the ratio of 1% and examine the quality of them. If an annotator cannot
satisfy the accuracy rates of 99.9%, the adviser commands him to review all his sentences.
Otherwise the adviser sends them to the gauger who gauges the sentences once more. This cross
validation keeps the high reliability of the corpus. Figure 6 shows the scenario for gauging a
corpus.

Advisor

Gauger

Annotator

Group #1 Group #2 Group #3
Figure 6: The scenario for gauging a corpus

4.3.Annotating the sentences

 391

Table 2 shows the statistics on our annotated corpus, which consists of 100,904 Korean
sentences with dependency structures. The average number of eojeols, morphemes, and chunks
per sentence is 22, 43, and 36, respectively. A sentence has 22 eojeols on average and each
eojeol has 1.9 parts-of-speech and 1.6 chunks on average. We commit 33 annotators to this
work, which has taken 5 months. Each annotator has annotated 3,317 sentences on average and
the average working time is 4 minutes and 32 sec on average (see Table 3). As we consider the
length of the sentence, over 22 eojeols, the result is remarkable.

Table 2: Statistics on our annotated corpus

 Total Average
eojeols 2,186,060 22

morphemes 4,344,200 43
chunks 3,644,790 36

Table 3: The Working Time & Num. Of sentence

Annotator
No. Num. Average

Time
Annotator

No. Num. Average
Time

Annotator
No. Num. Average

Time
#1 3,791 3:11 #12 2,018 3:14 #23 1,833 4:23
#2 6,780 3:36 #13 950 3:59 #24 2,364 3:40
#3 3,831 4:56 #14 4,565 4:16 #25 5,189 3:56
#4 3,193 4:25 #15 4,179 3:01 #26 2,757 4:28
#5 2,067 2:38 #16 5,131 3:28 #27 3,116 3:58
#6 3,082 4:43 #17 2,719 3:06 #28 2,100 3:46
#7 1,082 7:38 #18 1,770 4:36 #29 1,997 3:53
#8 2,415 4:10 #19 5,762 3:36 #30 4,567 3:48
#9 2,574 4:52 #20 1,548 4:47 #31 3,157 4:39

#10 7,017 4:30 #21 2,516 4:36 #32 1,131 3:11
#11 6,534 4:57 #22 6,454 3:02 #33 1,280 5:10

5. Conclusions and Future works
In this paper, we describe PPeditor which is the annotation tool for building Korean
dependency tree-tagged corpus. The tree-tagged corpus contains many kind of linguistic
information about segmentation of eojeols, POS tags of morphemes, boundaries of chunks, and
dependency structures with heads and relations. Annotation of linguistic information using
PPeditor means correcting the errors occurred in the sentence analyzer. Compared with other
annotation tools, the tool is characterized by the following features: independence of
applications, localization of errors, powerful error checking, instant annotated information
sharing, and user-friendly.

Using our tool, we have annotated 100,904 Korean sentences with dependency structures.
The number of annotators is 33, the average annotation time is 4 minutes per sentence, and the
total period of the annotation is 5 months. We are confident that we can have accurate and
consistent annotations as well as reduced labor and time.
In the near future, we will improve the function of automatic error-correction using machine
learning techniques like transformation-based learning (Brill, 1995) and also add the function
of detecting error-prone context automatically. We expect that these functions will not only
reduce repetitive works, but also improve efficiency and effectiveness of annotations.

References

 392

Atalay, N. B., Oflazer, K. and Say, B.: The Annotation Process in the Turkish Treebank.
Proceedings of the EACL Workshop on Linguistically Interpreted Corpora, Budapest,
Hungary .2003.

Brants T, and Plaehn, O.: Interactive corpus annotation. Proceedings of the Second
International Conference on Language Resources and Engineering (LREC 2000) .2000.
453-459

Brill, E.: Transformation-Based Error-Driven Learning and Natural Language Processing: A
Case Study in Part-of-Speech Tagging. Computation Linguistics Vol. 21(4): .1995. 543-
565

Carletta, J., McKelvie, D., Isard, A., Mengel, A., Klein, M. and Mller, M. B.: A generic
approach to software support for linguistic annotation using XML. G. Sampson & D.
McCarth Eds., Readings in Corpus Linguistics, Continuum International .2002.

Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P. and Vilain, M.: Mixed-
Initiative Development of Language Processing Systems. Proceedings of the ANLP .1997.
348-355

Day, D., Aberdeen, J., Hirschman, L., Kozierok, R., Robinson, P., and Vilain, M.: Mixed-
Initiative Development of Language Processing Systems. Proceedings of the Applied
Natural Language Processing .1997. 348-355

KIBS, http://kibs.kaist.ac.kr/, Korea Information Base System .2005.
Kim, C.-H., Kim, J.-H., Seo, J. and Kim, G. C.: A Right-to-Left Chart Parsing for Dependency

Grammar using Headable Path. Proceeding of the 1994 International Conference on
Computer Processing of Oriental Languages .1994. 175-180

Lim, J.-H., Park, S.-Y., Kwak, Y.-J., Rim, H.-C., Kim, U.-S. and Kang, B.-M.: Semi-Automatic
Tree Annotators Using Statistical Syntactic Patterns. Proceedings of the 14th Conference
of Hangul and Korean Information Processing .2002. 343-350

Marcus, M., Kim, G., Marcinkiewicz, M., MacIntyre, R., Bies, A., Ferguson, M., Katz, K. and
Schasberger, B.: The Penn Treebank: Annotating Predicate Argument Structure.
Proceedings of ARPA Human Language Technology Workshop .1994.

Morton, T. and LaCivita, J.: WordFreak: An Open Tool for Linguistic Annotation. Proceedings.
of the NAACL (2003) 17-18

Ngai, G., and Florian, R.: Transformation-Based Learning in the Fast Lane. Proceedings of the
NAACL (2001) 40-47

SEJONG, http://sejong.or.kr/english/, The 21st Century Sejong Project .2005.

 393

	1. Introduction
	2. Related Works
	2.1. Alembic Workbench
	2.2. WordFreak
	2.3. Korean semi-automatic tree annotation workbench

	3. Annotation Tool for Building a Korean Dependency Tree-Tagged Corpus
	3.1. Architecture of PPeditor
	3.2. Graphic user interface of the PPeditor
	3.3. Functions of PPeditor

	4. Annotation of the Korean Dependency Tree-Tagged Corpus
	4.1. A scenario for annotating a corpus
	4.2. The scenario for gauging a corpus
	4.3. Annotating the sentences

	5. Conclusions and Future works
	References

