
A Frame-based Approach to Text Generation*

Huong Thanh Le

Faculty of Information Technology, Hanoi University of Technology

1 Dai Co Viet street, Hanoi, Vietnam
huonglt@it-hut.edu.vn

Abstract. This paper is a study on constructing a natural language interface to database,
concentrating on generating textual answers. TGEN, a system that generates textual answer
from query result tables is presented. The TGEN architecture guarantees its portability
across domains. A combination of a frame-based approach and natural language generation
techniques in the TGEN provides text fluency and text flexibility. The implementation
result shows that this approach is feasible while a deep NLG approach is still far to be
reached.

Keywords: natural language interface, text generation, frame-based approach.

1. Introduction
Database management systems (DBMSs) have been widely used thanks to their efficiency in
storing and retrieving data. However, retrieving information from database requires users to
compose queries in a query language (e.g., QBE or SQL) or to fill some search criteria in the
interface (Liu, 1995; Catarci et al., 1997). In addition, traditional DBMSs are still limited by its
capability to generate outputs. They normally dump query results in a table or a pre-defined
form without any understanding of the meaning of data.

The research on natural language interface to databases has recently received attention from
the research communities (Wang et al., 1999; ELF Software Co., 2001; Torgersson and
Falkman, 2002; Hallett et al., 2005; Bertomeu, 2006). The purpose of such a natural language
interface is to allow users to compose queries in natural language and to receive responses under
the form of short answers. The natural language interface is thus preferred than the traditional
interface.

A typical natural language interface has to solve two main tasks: (i) translating a natural
language query to a query language; and (ii) generating a natural language answer by using
information from a query result table. In this paper, we focus on solving the second task. A
frame-based approach, which bases on predefined elementary frames and text generation rules
to generate new frames and to produce flexible text, is introduced. The implemented system is
called Text Generator or TGEN for short.

The remaining sections of this paper are organized as follows: Section 2 introduces the
architecture of our proposed Natural Language Interface for Querying Database and
Automatically Generating Reports (NLI4DB), in order to get an overview of the TGEN role in
the interface. Section 3 describes the rule set used by the TGEN to generate text. Section 4

* The author gratefully acknowledges the receipt of a grant from the Flemish Interuniversity Council for
University Development Cooperation (VLIR UOS) which enabled the research team to carry out this
work.

 Copyright 2007 by Huong Thanh Le

 192

presents the major components and the data flow in the TGEN. In Section 5, two examples are
given to illustrate the working process of the TGEN. Our implementation discussion and some
experimental results are given in Section 6. Finally, Section 7 concludes the paper and proposes
possible future work on this approach.

2. The NLI4DB Architecture
The NLI4DB is a system that is integrated with a traditional database management system to
provide a natural language interface for querying database and automatically generating answers.
An overview of the NLI4DB architecture is shown in Figure 1.

Natural Language Query

Query Translator

Knowledge
Sources

Text Generator

SQL query
Result Table

Outputs

Natural Language
Interface

A Database Management System

The NLI4DB consists of two main modules:
Figure 1: Architecture of the NLI4DB

- A Query Translator (QTRAN) to translate natural language questions to SQL queries.
- A Text Generator (TGEN) to generate query responses under the form of short answers

or summary reports in Vietnamese language.
A natural language question composed by a user is translated into an SQL query by the Query
Translator. After that, the Database Management System processes the SQL query and returns
the query result in the form of a table. The Text Generator then transforms this result table into a
textual answer.

To test the feasibility of the NLI4DB, a specific Database Management System - a student
management database – is used. The entity relationship of the database is shown in Figure 2.

Knowledge sources (e.g., syntactic rules and thesaurus) are needed in the working processes of
the QTRAN and the TGEN.

The remaining sections present our main focus of this paper - the implementation of the TGEN.
The rule set used in generating answers is introduced first.

3. The Grammar used in the TGEN
The TGEN does not generate free texts, but the texts that are based on predefined frames. These
frames are typical structures of answers. For example, the frame for an answer of the List type
is:

 193

Figure 2 – The entity relationship of the student management database

[Noun phrase] [Verb phrase]:
1. [Item_1]
2.
3. [Item_n]

A List answer can also be represented by another frame:

[Noun phrase] [Verb phrase] [Item_1], …, [Item_n].
Each label [. . .] in the frame is a slot that needs to be filled. The [Noun phrase] and the [Verb
phrase] are generated by using the syntactic structure of the user’s question. This problem is
analyzed in detail in Section 5. The slots [Item_1], …, [Item_n] are filled in by values from the
result table.

In order to create the frame set that is used in generating text, we first identify and categorize
question types, then we define frames for each question type. The question types that have been
considered by us are:

1. Questions that return a single value (e.g., Who is the leader of the class BK20 in the
academic year 2004-2005?1). This question type is called a Single_value question.

2. List questions (e.g., Which subjects did the class BK20 study in Semester 1 last year?)
3. Statistical questions (e.g., Show us the quality of students in the academic year 2005 –

2006.)
4. Comparison questions (e.g., Compare the percentage of excellent students of the classes

BK20 and BK21.)
5. Description questions (e.g., Give us information about the student Pham Thanh of the

class BK20.)
6. Evaluation questions (e.g., Evaluate the study progress of the student Nguyen Van

Minh.)
The name of a frame is called by its corresponding question type. For example, the frame of a
List question is a List frame.

1 For the convenient, all examples are translated from Vietnamese to English in Sections 3,4 and 5. In
Section 6 (Implementation Discussion and Experiments), we present our original examples in Vietnamese
and translate them into English.

 194

The TGEN uses a context-free grammar (CFG) to organize generation rules. Each frame in the
TGEN is stored in the right hand side (RHS) of a rule, whose left hand side (LHS) is the frame
type (e.g., List frame, Comparison frame). The set of generation rules used in the TGEN is
called a rule set.

The LHS of a generation rule can be any non-terminal symbol, whereas the RHS is a
combination of non-terminal symbols and terminal symbols. A terminal symbol is a word or a
string that appears in the output text. A non-terminal symbol do not appears in the output.
Instead, it has to be expanded by other generation rules or to be replaced by a value in the query
result. In order to produce flexible output texts, a non-terminal symbol in the RHS of a rule can
also be a frame. Only basic frames are manually designed and stored in the system. New frames
can be automatically created by connecting or integrating the basic ones. We analyze the
Description frame to illustrate the organization of our rule set.

The answer for a Description question is a text that describes relations among attribute values
of one or several entities. In order to keep the generality of the frame set, we design frames for
each entity of the database. Each frame consists of all attributes of an entity. During the
generation process, if some slots in the frame do not have values to fill in, these slots will be
removed from the frame. The following rules are applied to relations among attributes of the
tbl_student entity.

(1) [frame_student] [studname] ([sex]) [vp_studId]. [studname] [vp_DOB], [vp_cityborn].
[studname] [vp_classId].

(2) [frame_student] [studname] ([sex]) [vp_studId]. [studname] [vp_classId]. [studname]
[vp_DOB], [vp_cityborn].

(3) [vp_studId] has the student code [studId]
(4) [vp_DOB] was born on [DOB]
(5) [vp_cityborn] in [cityborn]
(6) [vp_classId] is a student of the class [classId]
(7) [vp_classId] studies in the class [classId]

In the above rule set, the strings in the square brackets ([]) are considered as non-terminal
symbols; whereas the string that are not in the square brackets are terminal ones.

The rules whose LHS starts with [frame_ define the structure of a frame. Rules (1) and (2) in
the rule set above define two possible structures of the Description frame. The non-terminal
symbols starting with [vp_ or [np_ represent for verb phrases or noun phrases, respectively. The
rule set also has an [s_ symbol, which represents for sentence. The symbols that are in the
square bracket and do not start with [frame_, [vp_, [np_ and [s_ are pre-terminal symbols.
They represent for entity’s attributes and will be replaced by attribute values during the next
generating step.

If a Description answer describes relations among attribute values of several entities, the
system will automatically create a new frame by connecting the frames of these entities through
entities’ keys.

4. The Text Generator system
The major components and the data flow in the TGEN are shown in Figure 3. The Text
Generator is divided into four main components: a Frame Selector, a Slot Filler, a Syntactic
Refiner, and an Answer Generator.

 195

4.1.A Frame Selector
This component is used to select frames for the answer. Four factors being considered in
selecting frames are: keywords in the user’s question, the SQL query2, the shape of the result
table, and values in the result table. Each factor will be analyzed in detail below.

Frame SelectorResult table

User’s question

Slot Filler

Syntactic
Refiner

Answer Generator

Answers

Rule Set

Functional word
dictionary

Syntactic Parser User’s question

SQL query

SQL query

Thesaurus

Figure 3: Data flow in the Text Generator

Syntactic
Rules

Word
Dictionary

Some user’s questions contain keywords that signal their question types. Examples of the
keywords are Compare, List, and Evaluate. If these keywords are found in the user’s question,
the frames corresponding to the detected question type will be chosen.

The shape of the result table can decide the frame type as well.
- If the result table has only one value, the Single_value frame is selected.
- If the result table has several columns and one row, the Description frame is chosen. If

the result table is a join among several entities, a join of the corresponding Description
frames will be established.

- If the result table has one column and several rows, the List frame is chosen.
- If the result table has multiple rows and columns, the Statistical frame or the Evaluation

frame is the most appropriate.
If the user’s question and the shape of the result table do not provide enough information for
selecting frames, values in the result table will be used to fill in slots of all candidate frames.
The frames whose required slots3 cannot be filled will be eliminated.

4.2.A Slot Filler
After frames have been selected, the Slot Filler has to generate text using the rule set mentioned
in Section 3. This is a top-down generating algorithm.

Our target is to create a variety of output texts, but to keep the algorithm complexity low.
Therefore, when selecting rules from the rule set, if two or more rules are satisfied, the rules will
be chosen by the following policy:

2 The SQL query is generated by the Query Translator.
3 A required slot is the slot that must be filled in by text or values. Otherwise, the frame that contains this slot cannot
be used.

 196

- All rules whose LHS starts with [frame_ are chosen. This policy is used to guarantee
the flexibility of the output texts

- If the LHS of the rule does not start with [frame_, the system will randomly choose one
rule among the satisfied rules that have not been used in expanding the chosen frame. If
all satisfied rules have been used, they are reselected another round by the same method.
This strategy is used to prevent the combination explosion and to make sure that a rule
is not repeatedly used all the time.

The Slot Filler needs a functional word dictionary 4 to map values in the result table with
frame’s slots. For example, the table column Full name is mapped with the attribute studname
of the entity tbl_student. Therefore, values in this columns are filled in slots [studname] of the
considering frames.

Several frame types (e.g., the List frame) reuse some parts of the user’s question in their
content. Therefore, a syntactic parser is integrated with the TGEN to get the syntactic structure
of sentences.

The slots that do not have values to fill in will be removed from the frame. This action may
cause sentential fragments (e.g., a sentence without a verb phrase) in the output texts. For that
reason, the TGEN needs a Syntactic Refiner to solve this problem. The Syntactic Refiner will be
introduced next.

4.3.A Syntactic Refiner
The purpose of the Syntactic Refiner is to produce grammatical sentences from the outputs of
the Slot Filler. It first parses the outputs of the Slot Filler to detect ungrammatical sentences. In
order to do that, the Syntactic Refiner locates positions of NPs and VPs in the Slot Filler’s
outputs by tracing the applied generation rules. Then, it checks the syntax of sentences given
their NPs and VPs.

If a sentence lacks a major part such as an NP or a VP, the Syntactic Refiner will combine it
with its adjacent sentences. If it does not succeed, the ungrammatical sentence will be removed
from the output texts.

4.4.An Answer Generator
Although the output texts of the Syntactic Refiner are grammatically correct, it may not be
fluent. There are some reasons for this problem: the sentences can be too short or too long; some
words are repeated several times; etc. The Answer Generator has to refine the texts so that it can
be as natural as possible. We only deal with repeated words in this research. The Answer
Generator replaces repeated words by its synonym or reference words. A thesaurus, which
stores semantic relations among words, is used in this process.

We will illustrate the working process of the TGEN by examples given in Section 5.

5. Examples of the Generating Process
In this section, we consider two examples corresponding to two typical frame types. One frame
type does not need syntactic information from user’s questions (e.g., the Description frame –
Example 1), and another frame type does (e.g., the List frame – Example 2).

5.1.Example 1
User’s question:

(1) Give us information about student Pham Thanh of the class BK20.

The result table returned by the SQL query is shown in Table 1 below:

4 The functional word dictionary is used to store relations between a word/phrase and its role in the database. For
example, the word student corresponds to the entity tbl_student in the student management database.

 197

Table 1: The result table returned by the SQL query of Example 1.

Full name Class Date of Birth Sex Place of birth
Pham Thanh BK20 24/10/1984 male Ha Bac

The following steps are carried out by the TGEN:

Step 1: Selecting frames

In this example, the system cannot detect the question type from the user’s question. It then
looks at the SQL query and finds that all data are attribute values of the entity tbl_student.
Therefore, it chooses the frame [frame_student_description].

Step 2: Filling in frames’ slots

The system finds two frame rules, whose LHS is [frame_student_description]. Both of these
rules are applied to generate text. The column title Full name is mapped with the attribute
fullname of the entity tbl_student. Therefore, the value Pham Thanh in the Full name column is
filled in the slot [fullname] of the frames.

The non-terminal symbol [vp_birthdate] is expanded by the rule

[vp_birthdate] was born on [birthdate].

The non-terminal symbol [birthdate] is replaced by the value 24/10/1984 in the Date of Birth
column. The same processes are carried out with other slots of the frames.

Step 3: Refining the syntax of sentences

After filling in frames’ slots, the system checks the syntax of sentences in these frames. When
checking the sentence [fullname] ([sex]) [vp_studentcode], it finds that the slots [fullname] and
[sex] can be filled, but the slot [vp_studentcode] cannot. It means that this sentence has a noun
phrase, but it does not have a verb phrase. The next sentence in the frame is a grammatical one,
and it has the same subject with the ungrammatical sentence. Therefore, the system merges
these two sentences into one.

Two output texts are generated after this step:

(1a) Pham Thanh (male) was born on 24/10/1984 in Ha Bac. Pham Thanh is a student of
the class BK20.

(1b) Pham Thanh (male) studies in the class BK20. Pham Thanh was born on 24/10/1984 in
Ha Bac.

Step 4: Refining the output texts

The system finds a full name is repeated at the second sentence of both output texts. This
situation is not preferred by the system. Therefore, the system replaces the repeated name by a
reference string, which is this student, he/she, or by the last name of the student.

After being refined by Step 4, the two outputs now becomes:

(1c) Pham Thanh (male) was born on 24/10/1984 in Ha Bac. He is a student of the class
BK20.

(1d) Pham Thanh (male) studies in the class BK20. He was born on 24/10/1984 in Ha Bac.

5.2. Example 2

User’s question:

(2) Who got the mark 10 in the Database subject?

 198

The syntactic parser integrated in the TGEN determines that the interrogative pronoun Who is
the noun phrase of the question, and got the mark 10 in the Database subject is the verb phrase
of the question.

Let us consider the case when the query returns only one value, as shown in Table 2 below:

Table 2: A result table returned by the SQL query of Example 2.

Full name
Nguyen Thuy Linh

In this case, the system chooses the Single_value frame (Step 1). To produce an answer, the
interrogative pronoun of the question is replaced by the value Nguyen Thuy Linh (Step 2). The
output of Step 2 is:

(2a) Nguyen Thuy Linh got the mark 10 in the Database subject.

Steps 3 and 4 do not modify the above output. Therefore, Sentence (2a) is the final answer.

Consider the case when the result table has several values, as shown in Table 3 below:

Table 3: A result table returned by the SQL query of Example 2.

Full name
Nguyen Thuy Linh

Dinh Thu Van

The four steps being carried out by the TGEN are:

Step 1: Selecting frames

The answer applies the List frame.

Step 2: Filling in frames’ slots

The VP of the answer is are. The NP of the answer will be constructed by the following
formula:

[NP1 in plural] [relative pronoun] [VP of the question]

in which the NP1 is generated as follow:
The system determines where values in the columns Full name come from by looking at the

SQL query. It returns a pair (entity, attribute), which is (tbl_student, name) in this case. The
system then interprets the code tbl_student to student by searching in the functional word
dictionary. NP1 now is student. Since the query returns several values, the word student is put
in the plural form.

Who is chosen to be the [relative pronoun] in this example. Therefore, the output of Step 2 is:

(2b) Students who got the mark 10 in the Database subject are
1. Nguyen Thuy Linh
2. Dinh Thu Van

Sentence (2b) is the final answer since Steps 3 and 4 do not modify the above output.

6. Implementation Discussion and Experiments
A prototype of the TGEN has been implemented for Vietnamese language. Since text generation
is our focus in this research, we assume that the Query Translator has already translated the
user’s question into an SQL query. A Vietnamese syntactic parser (Le et al., 2000) is integrated
into the system in order to get the syntactic structure of sentences. The program is written in
Java and the database management system is implemented in SQL Server 2000.

 199

The TGEN produces one or several textual answers for a user’s question, depending on the
number of answer frames a question has. The current version of the system has not evaluated
the quality of the answers yet. Instead, all possible answers are displayed in an editable interface
so that the user can select, modify, save to file, and print the textual answers.

The word dictionary, the syntactic rules and the thesaurus in the TGEN are domain
independent, whereas the rule set and the functional word dictionary are strictly related to the
student management domain. To increase the portability of the system, all knowledge sources
are stored in separate data files. If the TGEN is applied to other domains, we only need to
modify the content of the files corresponding to the generation rule set and the functional word
dictionary.

The TGEN architecture can be applied to a variety of other languages. When changing to
another language, we only need to change the knowledge sources of the system. These
knowledge sources include the syntactic rules, the thesaurus, the generation rule set and the
functional word dictionary.

Some experiments with our prototype system are shown below.

Question 1:

(3) Điểm thi cao nhất trong kỳ thi Tin học học kỳ 1 năm 2006-2007 là bao nhiêu? Ai đạt
điểm cao nhất?

What is the highest mark in the Informatics examination in Semester 1 of the academic year
2006-2007? Who got the highest mark?

The answer for Question 1 is:

(3a) Điểm thi cao nhất trong kỳ thi Tin học học kỳ 1 năm 2006-2007 là 9. Bành Quỳnh Mai
đạt điểm cao nhất.

The highest mark in the Informatics examination in Semester 1 of the academic year 2006-
2007 is 9. Bành Quỳnh Mai got the highest mark.

Question 2:

(4) So sánh tỷ lệ sinh viên giỏi của lớp BK20 và BK21.

Compare the percentage of excellent students of the classes BK20 and BK21.

The answer for Question 2 is:

(4a) Tỷ lệ sinh viên giỏi của lớp BK20 là 20%. Với lớp BK21, tỷ lệ này là 25%. Ta có thể
thấy tỷ lệ sinh viên giỏi của lớp BK21 cao hơn lớp BK20.

The percentage of excellent students of the class BK20 is 20%. With the class BK21, this
percentage is 25%. We can see that the percentage of excellent students of the class BK21 is
higher than that of the class BK20.

(4b) Tỷ lệ sinh viên giỏi của lớp BK20 là 20%. Với lớp BK21, tỷ lệ này là 25%, cao hơn so
với lớp BK20.

The percentage of excellent students of the class BK20 is 20%. With the class BK21, this
percentage is 25%, higher than that of the class BK20.

7. Conclusions
We described in this paper the TGEN architecture that allows the implementation of a text
generator for generating answers from query result tables of a DBMS. The TGEN is not based
on a deep natural language generation approach. Instead, it uses a hybrid one. It combines a set

 200

of predefined structures with deeper NLG techniques, including (i) using generation rules to
generate text; (ii) checking the syntax of sentences; (iii) replacing repeated words by their
synonyms or reference words.

The current prototype of the TGEN can produce flexible and grammatical outputs. It proves
that a hybrid approach is feasible for this kind of applications while a deep NLG approach is
still far to be reached.

To improve the system performance, future work includes: (i) expanding the rule set to deal
with a variety of question types; (ii) researching methods to improve the coherence and the
fluency of output texts; and (iii) defining criteria to automatically evaluate the outputs.

References
Bertomeu, N., H. Uszkoreit, A. Frank, H-U. Krieger and B. Jörg. 2006. Contextual Phenomena

and Thematic Relations in Database QA Dialogues: Results from a Wizard-of-Oz
Experiment. Proceedings of the HLT-NAACL 2006 Workshop on Interactive Question
Answering, New York.

Catarci, T., M. F. Costabile, S. Levialdi and C. Batini. 1997. Visual Query Systems for
Databases: A Survey. Journal of Visual Languages and Computing, 8(2), 215–260.

ELF Software Co. 2001. Access ELF: the Amazing Software that Lets you Communicate with
Microsoft Access in Plain English. http://www.elfsoft.com/ns/prodserv.htm (Last
Updated: Nov., 2001). ELF Software Co. 210 W 101 St. NYC NY 10025

Hallett, C., R. Power and D. Scott. 2005. Intuitive Querying of E-Health Data Repositories.
Proceedings of the 4th UK e-Science All Hands Meeting, Nottingham, UK.

Le, H. T., Q.H. Pham and T.T. Nguyen. 2000. An Approach to Automatically Analyze Syntax
of Vietnamese Text. Journal of Informatics and Cybernetics, 15(4).

Liu, H. 1995. A Visual Interface For Querying a CASE Repository. Proceedings of 11th
International IEEE Symposium on Visual Languages, Darmstadt, Germany.

Torgersson, O. and G. Falkman. 2002. Using Text Generation to Access Clinical Data in a
Variety of Contexts. Proceedings of MIE2002, pp. 460-465. IOS Press, 2002.

Wang, S., X. Meng and X. Liu. 1999. Nchiql: A Chinese Natural Language Query System to
Databases. Proceedings of the International Symposium on Database Applications in
Non-Traditional Environments (DANTE'99).

 201

http://www.elfsoft.com/ns/prodserv.htm

	1. Introduction
	2. The NLI4DB Architecture
	3. The Grammar used in the TGEN
	4. The Text Generator system
	4.1. A Frame Selector
	4.2. A Slot Filler
	4.3. A Syntactic Refiner
	4.4. An Answer Generator

	5. Examples of the Generating Process
	5.1. Example 1
	5.2. Example 2

	6. Implementation Discussion and Experiments
	7. Conclusions
	References

