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Abstract. In some applications of opinion mining in text, it is important to distinguish what an 

author is talking about from the subjective stance towards the topic. Therefore, it needs to find the 

relation between sentiment expression and target. This paper proposes a novel method based on 

dependency grammars to mine the relation. In this method, the process of mining the relations is 

turned into a procedure of searching in the dependency tree of a sentence. The result of our 

experiments shows that word dependency relation based methods is more flexible and effective than 

some previous surface patterns based methods.  
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1   Introduction 

Opinion mining is also called sentiment analysis. It is to analyze whether an author expresses a 
favorable or unfavorable sentiment for a specific target. Now, it has been extensively used in text 
filtering, public opinion tracking, customer relation management, etc. [8],[9],[12],[19]. For example, 
during mining the opinion about a product of customers, we need to find what the customers remark on. 
It means we should not only extract the sentiment expressions, but also find the targets. Therefore, it 
needs to mine the relation between sentiment expression and target [9]. This paper will focus on it.  
The rest of the paper is arranged as following. Section 2 introduces some previous work. Section 3 
provides how to gain subjective words. Section 4 introduces the dependency relation between words. 
Section 5 and section 6 put forward our method on mining the relation. Experiment and result are 
discussed in the last section. 

2 Previous Work  

There is some previous work about opinion mining. Some previous work usually depend on the position 
between words [8],[9],[12],[17].  
In some of the publications, n-gram was used [1],[15].  
Turney (2002) utilized some phrase patterns such as RB/RBR/RBS+JJ+NN/NNS; JJ+NN/NNS+ 
Anything; RB+VB+ Anything. These patterns are composed of subjective adjectives, nouns, adverbs, etc. 
Nasukawa (2003) uses some patterns as 

V+Obj: admire somebody, 
JJ+Obj: crude oil. 
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V is the subjective verbs, JJ represents subjective adjectives. Obj represents the target.  
Nasukawa further defined some transfer verbs in the patterns, such as get, feel, etc, which may help to 
expression sentiment.  
Yi et al. (2003) utilized some patterns based on BNP. 
Popescu and Etzioni (2005) defined 10 kinds of rules to extract opinion patterns. For example, 

If∃ (M, NP = f) po = M : (expensive) scanner, 
If∃ (S = f, P, O) po = O : lamp has (problems), 

po=potential opinion, M=modifier, NP=noun phrase, S=subject, P=predicate, O=object. 
These rules point out which component of the patterns is the feature (target) and which is the subjective 
word. They also mentioned that these patterns are based on some dependency relations, but they did not 
depict them in detail.  
As we can see, the above methods acquire relations based on fixed position of words. Some important 
relations may be missed. For example, 
(1) The characters and acting is nothing spectacular.  

 (2) The story is needlessly and pointlessly concluded with a violent sequence. 
 (3) This plot thread predictably leads to violence.  
In these samples, the words in bold are targets and subjective words. It is difficult to contain such 
instances using the patterns above.  

3 Collecting Subjective Words 

In most of the previous work, sentiment expressions mainly depend on some words, which can express 
subjective sentiment orientation. For example, good often expresses positive sentiment orientation, bad 
often expresses negative sentiment orientation. Such subjective words will also be used in our method. 
One of the subjective words set we used is from General Inquirer terms. In it, some words have the 
attribute of sentiment orientation as positive or negative.1 We will use nouns, adjectives, adverbs, and 
verbs that have such attribute. 
Considering the subjective words may be domain-restricted, we also gain another two subjective words 
set using bootstrapping method based on WorldNet [2],[14]. Seeds are collected manually from the 
corpus we used. Then we extend these seeds by their synonyms through WordNet2.1. We extend the 
seeds of their first sense to get the word set WE1st, and extend the seeds of all their senses to get word 
set WEAll. The results are shown in Table 2.  

4 Dependency of Words 

The dependency relation of words is based on dependency grammars [7], [19]. It refers to the binary 
relation between two words. Each relation has a word as parent (or head). The other is the child (or 
modifier). A word has one parent at most. Nevertheless, a word may have several children. The relations 
of a sentence will form a dependency tree. Parts of the relations are showed in Table 1. 

                                                        
1 http://www.wjh.havard.edu/~inquirer/spreadsheet_ guide.htm 
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Table 1.  Some dependency relations between words

Relation type Description Samples Parent Son 
subj subject He will go go He 
obj object tell him tell him 

a good book book good mod modifier (adj , 
adv , …) go there go there 

comp complement in the room in room 

Dependency relations defined by dependency grammars are useful to do sentiment analysis. They will 
help to find the relations between sentiment expression and target. Based on the transitivity of relations, 
different words in a sentence may be related. For example, 
(4) This film is genuinely funny. 
The dependency relations of this sentence are as Figure 1. 

 
 

Fig. 1. Dependency relations of example (4). 

In Figure 1, the head of an arrow direct to the child. The tail comes from the parent. The tag in an arrow 
is the type of the relation. We can see that the subjective word funny and the target film is the child of is. 
The word genuinely modifies funny directly. Then, based on the transitivity of the relations, we can find 
genuinely is related to the word film indirectly. The sentiment expression and the target pair {film, 
genuinely funny} can be extracted by our method at last. 

 5. Three Instances of Dependency Relations for Opinion Mining  

With these relations defined by the dependency grammars, we find there are three instances about the 
relation for opinion mining as Figure 2.  

target

S- words

same ancestor

S- words target target

S- words

  A B C
 

Fig. 2. Three instances of dependency sub-trees for opinion mining 

S-words = subjective words. The dashed means the nodes may not be related directly. 
i ) The subjective words are in the children of target as A in Figure 2. In such instance, the sentiment 
expressions are in the modifiers of targets, which include adjective, noun, participle phrase, and 
attributive clause, etc. For example, 
(5) There's a great movie!  

the genuinelyisfilm funny

spec subj mod comp
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Dependency relations: {(there, 's), ('s ,null), (a, movie), (great,movie), (movie,'s)}. 
(6) Lumumba is a story that deserves to be told. 
Dependency relations: {(Lumumba,is), (is, null), (a, story), (story, is), (that, story), (deserves, that), 
(to ,deserves), (be, to), (told, be)}. 
In the brackets, the second words are the parents. null means the word in the bracket is the root of the 
dependency tree. 
In (5), movie is the target and great is the modifier. In (6), story is the target and deserves is the related 
subjective word.  
ii ) The target and the subjective words are in the different children of the same ancestor as B in Figure 2. 
We will deal with the instance that the same ancestor is a verb. For example, 
(7) The movie is just plain lazy! 
Dependency relations: {(the, movie), (movie, is), (is, null), (just, is), (plain, lazy), (lazy, is)}. 
In (7), the target is movie and the subjective word is lazy. Their have the same ancestor is. In (3), the 
target is plot thread and the subjective word is violence, leads is their common ancestor.  
In such instance, subjective words may also be in an adverbial modifier, a predicative, or a complement 
of the verb. 
iii ) The subjective words are in ancestors of the target as C in Figure 2. We will deal with the instance 
that the subjective word is a verb, and the target is in the subject or object of the verbs. For example, 
(8) Avoid this film at all costs.  
(9) For folks like myself who love the first movie and enjoy the games. 
In (8), avoid is the subjective word and film is the target. In (9), love and enjoy are both subjective words. 
movie and game are the targets. 
Besides the relations between subject word and target, there are also dependency relations between 
subjective words and their modifiers. For example, 
(10) There are a number of completely meaningless story sidetracks. 
In (10), completely modifies meaningless. In (7), plain modifies lazy. These words enhance the strength 
of the sentiment. Such kinds of modifiers are in the children of the subjective word. They will affect the 
strength or orientation of the sentiment. We call them S-word in the following sections. Some of the 
words in General Inquirer terms, which are with the attribute of “Negate” or “Strong” and without the 
attribute of “Positiv” or “Negativ”, such as not, rarely, never, etc. are used as S-word in our method.  

6 Mining Dependency Relations  

When mining the relations, we first search for which sentences may express subjective opinion. It is to 
find whether it contains any subjective words. If a subjective word appears, we will search for the 
related targets and S-words. It is a procedure of searching in a multi-way tree.  

6.1 Mining Steps 

According to the analysis of section 5, we design the mining steps as following. 
Step 1: If a subjective adverb is found, go to the next step. If a subjective adjective or noun is found, go 
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to step 3. If a subjective verb appears, go to step 4. 
Step 2: Search in the ancestors of the adverb. If a subjective adjective is met, go to the next step. If a 
verb is met, go to step 4. Else, go to step 8. 
Step 3: Search in the ancestors of the subjective adjective or subjective noun. If a verb is met, go to the 
next step. If a target is met, go to step 6. Else, go to step 8. 
Step 4: Search in the children of the verb. If a target appears, go to next step, else go to step 8. 
Step 5: Search in the children of the verb and extract the S-words. 
Step 6: If subjective adjectives appear, search for the S-words in their children. 
Step 7: Search in the remainder of the sentence until it is finished. 
Step 8: Output the extracted targets, subjective words, and S-words. 
For example, in (2), the dependency of words is {(The, story), (story, is), (is, null), (needlessly, is), (and, 
is), (pointlessly, concluded), (concluded, is), (with, concluded), (a, sequence), (violent, sequence), 
(sequence, with)}. 
First, we find the subjective word needlessly, and then find its parent is. It is a verb. Next, the target 
story is found in the children of is. With the same way, we can find the subjective word pointlessly, 
violent and their target story. The dependency relation pair as {story, needlessly pointlessly violent} was 
extracted finally. It expresses the same sentiment orientation to the target as the sentence try to do.  

Table 2. Statistics of Subjective words 

Words Set adjective adverb noun verb total
Seeds 173 44 42 24 283
WE1st 414 94 170 27 705
WEAll 696 110 360 73 1239

GI-Terms 1571 70 1441 1108 4190

Table 3. Statistics of Sentences 

 SjWords FTerms Both Total
GI-Terms 50519 24841 

WE1st 33342 17656 

WEAll 41245 

29298 

21106 

64720

GI-Terms = General Inquirer terms 
SjWords = the number of sentences that contain subjective words. FTerms = number of sentences that 
contains the film terms. Both = the number of sentences that contain both the subjective words and the 
film terms. Total (table 3) = total number of sentences of the corpus. 

7 Experiment and Analysis 

7.1 Experiment 

We use the polarity dataset 2.0 in our experiment2. It includes 1000 positive and 1000 negative reviews 
on films. In our experiment, classification of the sentiment orientation will not be done. We will test the 
recall and the precision of the extracted pairs. 
Some of the English parsers, such as Stanford Parser and MiniPAR achieve a high precision to extract 
word dependency relations [7], [13]. We use the Stanford parser (Version of 2005.7) in our experiment.  

                                                        
2 http://www.cs.cornell.edu/people/pabo/movie-review-data 
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As all the characters in the corpus are in lowercase, which increases difficulty to do name entity 
extraction. Therefore, the proper nouns, such as titles of films are not included in the targets. Only some 
popular film terms, such as story, dialogue, plot, script, etc. are included. We totally collect 86 popular 
film terms from the corpus and online film glossary3. 
Table 3 shows the statistics of the sentences that contains subjective words and film terms4 of the 
corpus. 
Several patterns used by Nasukawa (2003), Yi et al. (2003), Popesecu et al. (2005), Liu et al. (2005) are 
adopted to compare with our method. These patterns are 

(RB)+JJ+(NN)+Target; ((RB)+JJ)+NN+ Target; 
Target+ VB+(RB)+JJ/NN; Target+(RB)+V; (RB)+V+Target. 

JJ, NN, RB, and V are all limited to subjective words. The bracket means the component in it is optional. 
The patterns used by Turney (2002) are not included in the baseline, as some of his patterns do not 
contain targets.  
Table 4 shows the number of sentences that the pairs of target and sentiment expression are extracted 
using different method from the corpus with GI-Terms. DR represents our dependency relation based 
method. The search depth of DR-4 is limited to 4 when search for the children or the ancestors. The 
search depth of DR-All is not limited.  
Table 5 shows some of the extracted pairs. 
To evaluate the method in detail, we randomly annotated 400 sentences that contain both subjective 
words of GI-terms and the film terms to analysis5. 
In our evaluation, if the subjective stance of the extracted sentiment expressions is the same as the 
subjective stance of the sentence to the same target, we say the sentiment expression and the target are 
coherent and the sentence is mined correctly. Therefore, the definitions of precision and recall are as 
following. 
A= number of sentences that mined correctly; 
B= number of sentences which sentiment expression and target pairs were extracted from; 
C= the number of sentences that contain coherent sentiment expression and target pairs.  

AP recision=  
B  

ARecall=
C  

In these 400 sentences, C is 262. The results are in Table 6. 

7.2 Analysis 

From Table 6, the F-value of dependency-based method is higher than the baselines. It shows that our 
method is superior to some patterns based method.  
Through the analysis, we find some reasons that affect the precision and recall.  
First, the precision is lower when testing with GI-terms. It is because many words without obvious 
sentiment orientation in film reviews, such as basic, mend, create, etc. are considered as the subjective 

                                                        
3 http://www.filmsite.org/filmterms.html 
4 The POS-tagger we used is Stanford Log-linear Model Tagger v1.0. 
5 http://www.cs.fudan.edu.cn/mcwil/~zcfei/sent/sent.htm 
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words in General Inquirer terms.  
There is also another main reason that affects the precision. It is due to some redundancy relations are 
extracted by our method. For example, 
(14) A movie for the teen generation that touches on a very cool idea, but presents it in a very bad 
package. 
(15) What adds depth to the story is a subplot in which the principal of Danny's school becomes 
obsessed with purging the hatred from Danny. 
In example (14), {movie, very cool bad} is extracted. In example (15), {story, hatred} is extracted. 
Their sentiments orientations are not the same as the sentences try to express.  
From Table 6, we can see that the precision is higher when the depth of search is limited to 4 than not 
limited. It is because redundant relations are reduced when the search depth is limited. In our experiment, 
the F-value is highest when the depth is limited to 4.  

Table 4. Statistics of extracted sentiment expression 

pairs(GI-Terms) 

Method Count 
Baseline1 6701
Baseline2 12545

DR-4 19556
DR-All 21257

Table 5. Samples of extracted pairs 

Target Sentiment Expression 
music cool 
movie no originality 
film avoid 
dialogue, editing shoddy 

Basline1: (RB)+JJ+(NN)+Target,((RB)+JJ)+NN+ Target. 
Basline2: baseline; Target+ VB+(RB)+JJ/NN; Target+(RB)+V; (RB)+V+Target. 

Table 6. Evaluation on 400 sSentences 

Method Baseline1 Baseline2 DR-4 DR-All DR-4 DR-All DR-4 DR-All

Word Set GI-Terms GI-Terms GI-Terms GI-Terms WE1st WE1st WEAll WEAll

Precision 69.6% 68.2% 67.3% 63.4% 77.2% 74.5% 74.9% 70.8% 

Recall 20.9% 44.3% 76.3% 79.4% 60.6% 62.2% 65.6% 68.3% 

F(ß=1) 32.1% 53.7% 71.5% 70.5% 67.9% 67.7% 69.9% 69.5% 

8. Conclusion and Future Work  

We present a dependency grammars based method to extract sentiment expression and target pairs in 
opinion mining. It shows advantage over the patterns-based method. By evaluation on a subset of the 
test corpus, we get promising result.  
However, in the dependency-based method, we find it difficult to avoid extracting redundancy relations. 
We find it a little arbitrary to limit the search depth. In the future, we would like to find more effective 
ways to reduce redundancy relations. In addition, the dependency relation instances in section 5.2 at 
present are not elaborate enough. We will also try to refine them. 
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