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Abstract. This paper proposes a networked data mining method for relations discovery from large 
corpus. The key idea is representing the named entities pairs and their contexts as the network 
structure and detecting the communities from the network. Then each community relates to a 
relation the named entities pairs in the same community have the same relation. Finally, we labeled 
the relations. Our experiment using the corpus of People's Daily reveals not only that the relations 
among named entities could be detected with high precision, but also that appropriate labels could 
be automatically provided for the relations.  
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1   Introduction 

Relation extraction among named entities (NR) is one of major tasks in information extraction (IE).The 
goal of relation extraction is to find out the relations among named entities(NE) in documents. In recent 
years, such technology has been widely used in many fields, such as: information retrieval, question-
answering systems, biology technology, construction of ontology, etc. 

Many methods have been proposed for relation extraction, including supervised learning methods 
(Zelenko et al., 2002) [8], weakly supervised learning methods (Brin 1998; Agichtein 2000; Sudo 2003) 
[9][10][11] and unsupervised learning methods (Hasegawa 2004; Chen Jinxiu 2005) [1][2]. In this paper, 
we propose an unsupervised method for relation extraction.  

Currently, unsupervised learning methods for relation extraction have some difficulties. For example, 
in Hasegawa et al.'s method, they eliminated less frequent NE pairs, collected the contexts of NE pairs, 
clustered the contexts using complete linkage method, and finally selected the most frequent word in a 
cluster to label the relation in this cluster. However, the less frequent NE pairs might have relations, and 
it is difficult for complete linkage method to select the threshold. 

In Chen Jinxiu et al.'s method, they firstly got the NE pairs labeled with relation in ACE corpus and 
collected their contexts, clustered the contexts using stability-based method, and finally used DCM 
method to label the clusters. However, we can't select NE pairs with relation in the unannotated corpus. 
And the relations of NE pairs might be in hierarchical structure; but the stability-based method can not 
discover the hierarchical structure. 

Based on the issues mentioned above, this paper proposes a method to discover relations among NEs 
based on networked data mining. The advantages of this method is that there is no need to eliminate less 
frequent NE pairs and select the NE pairs which have relations. In addition, our method can 
automatically present the relations of NE pairs in the hierarchical structure.  

The rest of this paper is organized as follows. Section 2 talks about the construction for networked 
structure. Section 3 explores the procedure of relation discovering and labeling. Section 4 describes 
experiments and evaluation of experiment results. Section 5 gives a discussion of the problems in 
existing methods. Finally, Section 6 gives a summary and talks about future prospect. 
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2   Network constructing 

Many systems take the form of networks. Sets of nodes or vertices joined together in pairs by links or 
edges. Researches show that the distribution of these network vertices forms many communities, which 
means vertices are classified into different groups; there are many edges connecting the vertices inside a 
same group and few connections between groups. However, vertices in a same group could be divided 
into smaller, tighter structured groups. We call this group community [3] [13]. So we construct a 
network by NE pairs and their contexts for relations discovery. 

2.1   NE pairs and their contexts 

We define NE pair as bellow: In the corpus, if there is a sentence si which contain 2 named entities ex,ey; 
and the number of words between ex,ey is no more than N, then ex,ey make a NE pair. 

Firstly, we have to define a window of context (WINpre-WINmid-WINpost). For a random selected 
NE pair (ex,ey), we get all the sentences which includes this entities pair; then in each sentence, retrieve 
WINpre words in front of ex, WINpost words after ey, and all words between ex and ey; use them as the 
context of the sentence; Finally, add all the contexts of the sentence to a group, the group will be the 
context of NE pair (ex,ey). 

2.2   Construction for network 

We present NE pair as weighted network structure: NE pairs are vertices; if the corresponding contexts 
of 2 NE pairs have common words, we connect the corresponding network vertices with an edge, the 
weight of the edge is defined as the similarity of the corresponding contexts of connected NE pairs [14], 
as in equation (1): 
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Where Weightij is the similarity between contexts of NE pair i and j, m is the number of words in 
contexti and contextj. nwki is the times that word k appears in the contexti. 

3   Relations discovery and labeling 

3.1   Betweenness clustering 

Researches show that the edges between communities have great betweenness. Thus, we just cut the 
edges with great betweenness to get expected communities [7]. In general, the betweenness of edge is 
defined as the accumulated times for shortest path to pass such edge between network vertices. In terms 
of the weight network in this paper, we modify the betweenness of edge e as below (2): 
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Where ∑ ),( 21 vvbetween is the accumulated times for shortest path to pass edge e between network 
vertices; e.W is the weight of edge e. 

In order to find expected communities in network N, we should know when to stop dividing network 
N. So when N has been divided into g communities, we need to evaluate the modularity in divided result 
[4], as below (3): 

∑ ∑ −=−=
i
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Let us define a g×g matrix e whose element eij is the fraction of all edges in the network that link 
vertices in community i to vertices in community j. We modify eij because of weighted network, as in 
equation (4); Tr(e)=∑ieii gives the fraction of edges in the network that connect vertices in the same 
community; ‖e‖indicates the sum of the ele ents of the matrix e. m
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Where e is an edge connectin

∑ We. (4) 

ion. 
matically discovering the communities from network. 
e by repeatedly executing the algorithm [12][15].  

Table 1.  Auto

2 

 

5 if exist the network which is never divided in SN, then to step 2;else to step 6; 
N; 

g community i and j; e’ is an edge of network N. We have to notice that: 
the edges connecting community i and j are defined as all the edges in community i(j), if community i 
and j are the same community. 

When we get the best part evaluation result, we recognize that each community relates to a relat
Table 1 is the algorithm implementation of auto
We can discover hierarchical community structur

matically discovering communities  

Input:  N( initial network); 
Output:  SN(the community set belong N ); 

1 initialize SN={N}; 
initialize SN modularity Q=0; 

t3 choose a ne work Ni which is never divided in SN, calculate the betweenness of 
each edge in Ni, ceaselessly cut the edge with greatest betweenness until divide 
Ni to community Ni1and Ni2; 

4 calculate S  modularity Q’, if Q’>Q or Q=Q’, move out NN i from SN, and add
Ni1 and Ni2 to SN;  

6 end and return S

3.2   Relation description 

In the hierarchical structure relations of NE pairs, the relations in the bottom level are detailed; it could 
be described by a word in context. This paper uses the method of DCM (Chen Jinxiu, 2005) [2] to set 
the weight of every word, considering the importance of the word in a certain community and all 
communities. Then we label the NE pairs’ relations with the word with the highest weight. Furthermore, 
we find that many communities just contain 1 NE pair in clustering result. And we find out a majority of 
these NE pairs without relation. So we collect these to be a set of NE pairs without relation. 

44



4   Experiment and evaluation  

4.1   Manual annotation  

We quote 2 types of NE pair in annotated corpus of People's Daily (7 million characters) (Location-
Person, Organization-Organization) as the research objects to verify the method in this paper. We get 
1112 NE pairs (Loc-Per, Org-Org) from corpus and annotate relations to these NE pairs manually. Table 
2 is the 2 leveled hierarchical relations.  

Table 2.   Manual annotation 

Type of NE pair 
# Number of relations 

Relation in 1st layer 
# Number of relations

Relation in 2nd layer 
# Number of instances 

国家-领导人 

12 
总统 总理 首相 … 

47   29   14 
地方-行政官员 

22 
市长 省长 书记 … 

36   21   44 
地方-记者 

国家-运动员 

 
None relation in second layer 

 

 
Loc- Per 

18 

… 
291 NE pairs without relation in all 845 NE pairs 
机构-合作机构 

11 
联合 合作 合资 … 

45    20   14 

球队-球队 

6 
战胜 比赛 平局 … 

38    21   19 

 
Org-Org 

7 

… 
43 NE pairs without relation in all 267 NE pairs 

4.2   Experiment parameters and experiment result 

During the process of the experiment, we select 2-6-2 sized window to get the contexts of NE pairs. In 
order to make evaluation simpler, we select 2 levels to be the highest deepness of hierarchical structure 
in the experiment, we make it the same deepness as manual work. Finally, we describe relations with 
words in context for 2nd level. And we manually summarize appropriate relations description for 1st level. 
Table 3 gives the number of communities in 2 levels in hierarchical structure from experiment. 

Table 3.  Compare of manual result and experimental result 

Number of relations in 1st layer Number of relations in 2nd layer Type of NE 
pair Manual work Experiment Manual work Experiment  

Loc-Per 18 19 49 43 
Org-Org 7 9 27 31 

4.3   Analysis and improvement 

To analyze the result, we find out that there are some relations’ descriptions in 2nd level with almost 
the same meaning. E.g.总统-总书记, 外交部长-外相, etc. So we apply the method and software 
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package from<Word Similarity Computing Based on How-net>（Qun Liu, 2002）1 [16] to calculate 
the similarity between relations descriptive words in 2nd level. According to the result, groups like {总统, 
总书记},{外交部长,外相},{战胜,击败,赢} have 1.0 point of similarity between internal words, which 
means semantically the same. So we think the relations these words described are the same. Thus we 
combine these relations, and use the aggregation of these words to describe 2nd level relations after 
combination. Finally we find out improved relation description is more reasonable, and more logical in 
real life application. Improved relation description is in Table 4. 

Table 4.  The result of the improvement  

Type of NE pair Relations in 1st 
layer 

Relations in 2nd layer 

国家-领导人 {总统,总书记},{外交部长,外相},总理,首相 ... 
地方-行政官员 市长,省长,书记,镇长 ... 
地方-记者 

国家-运动员

None relation in second layer 

 
 

Loc-Pre 

… … 
机构-合作机构 联合,合作,合资,兼并 ... 
球队-球队 {战胜,击败,赢},比赛,平局 ... 

 
Org-Org 

… … 

4.4   Evaluation of the result 

In order to quantify the consistency level between experimental result and manual result, we adopted a 
permutation procedure to assign different relation type tags to only min(|EC|,|TC|) clusters, where |EC| is 
the estimated number of clusters, and |TC| is the number of ground truth classes (relation types). This 
procedure aims to find a one-to-one mapping function Ω from the TC to EC which is based on the 
assumption that for any two clusters, they do not share the same class labels. Under this assumption, 
there are at most |TC| clusters which are assigned relation type tags. If the number of the estimated 
clusters is less than the number of the ground truth clusters, empty clusters should be added so that |EC| 
= |TC| and the one-to-one mapping can be performed [2]; it is shown in equation (5). And the mapping 
procedure can be formulated as the equation (6). We also use our data and our evaluated method to 
evaluate Hasegawa’s method and Chen Jinxiu’s method. Final compare is in Table 5. 
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In equation (5), represent a NE pair community from experiment, it relates to No. j NEs relation 
group of manual work. 
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Equation (6) shows the accuracy ratio between NE pair in experiment. 

Table 4.  Evaluation result  

Precision in 1st layer Precision in 2nd layer Precision in NE pairs 
without relation 

Method 

Loc-Pre Org-Org Loc-Pre Org-Org Loc-Pre Org-Org 

                                                           
1.Download of the tool to calculate the similarity between two words：http://www.keenage.com/html/e_index.html 
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Hasegawa none none 76.62% 62.40% none none 
Chen  none none 80.37% 68.39% none none 

Our 81.33% 72.22% 91.15% 70.63% 77.25% 60.92% 

  There are 34.4% NE pairs in Loc-Pre and 16.1% NE pairs in Org-Org without relation. And we can 
recognize a majority of NE pairs without relation in our method. So our method has more advances in Loc-Pre. 

5   Discussion  

The automatically discovering method of NE pair relation in this paper has achieved good experiment 
result. We still hope to discuss some problems and related solutions from following aspects.  
• Context window 
• Size of corpus  

Too big a window will bring much noise, which makes the edge among communities ambiguous and 
cannot get the good result. Too small a window will lose a lot useful information, which makes internal 
relation of community not tight enough, and will lose many important relations of NE pairs. This paper 
uses experience value when setup the size of context window. How to achieve best window size still 
need further research. 

This experiment uses the corpus of People's Daily as research object. But the corpus is limited, so we 
can carry out the experiment based on Girvan and Newman（2003）’s method [4]. However, if the 
corpus is larger and the amount of retrieved NE pairs increase, we should apply A. Clauset（2004）’s 
method [6], in order to quickly find communities in larger scope network. 

6   Conclusion and future work 

This paper presents a method of automatically discovering relations among NEs based on networked 
data mining. This method contains the advantages in Hasegawa and Chen Jinxiu's methods. As compare 
with their two methods, our method has the following features: it can retrieve the hierarchical structure 
relations in NE pairs with higher accuracy; it needn’t eliminate less frequent NE pairs; it can find out the 
NE pairs without relation; and it can combine the relation with the same semantic meaning. But this 
method has some space to improve in future work. Firstly we will try to verify such method based on 
bigger scope and specialized corpus. Secondly, we need to find out a better method to evaluate the 
hierarchical structure result and a better method to evaluate relation labeling.  
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