An Important Issue in Data Mining-Data Cleaning

Qi Xiao Yang Sung Sam Yuan, LuChun Jay Rajasekera
Institute of High Performance ~ School of Computing Graduate School of
of Computing Natlogal Umve;s1ty of Singapore International Management
89B Science Park Drive#01- 3 Science ??;;423, Singapore IntematlonJal University of
apan
05/_ 08 the Rutherford {ssung,luchun} @comp.nus.edu.sg _oPER
Singapore 118261 : Jrr@ivj.ac.jp
Smgap tel: (65)8746148 tel: (81) 257791531
qixy@ihpc.nus.edu.sg el: (81)

tel: (65)7709265

1. Introduction

Data mining techniques are well accepted for discovering potentially useful knowledge from the large
datasets. Our past research work on studying aspects of data mining includes improving the
performance of the rule generation [SS95, SWC96], extending the scope of association rule mining
[RSC99] and data generation [SLL96].

Prior to data mining process, data cleaning is essential in that the quality of rules derived from
the mining process is subject to the quality of data. Recently, significant attention is paid to record de-
duplication----an important branch of data cleaning. Various reasons are behind different
representations of identical record: typographical errors, purposeful entry of false names, inconsistent
data formats, incomplete information and registrant moving from one place to another.

[LL+99] is a milestone paper in the area of record de-duplication. Experiments on real-world
data demonstrate that the methods of de-duplicate records presented in [LL+99] are efficient. Further
study indicates that there is still room for improvement in the core part of its whole technology---- the
algorithm of the calculation of the Field Similarity. Our paper is to introduce a new algorithm to
calculate Field Similarity. Theoretical analysis, concrete examples and experimental result shows that
our algorithm can significantly improve the accuracy of the calculation of Field Similarity.

The rest of the paper is organized as follows. Section 2 gives a background description of the
algorithm of calculating Field Similarity presented in [LL+99]. Section 3 proposes our algorithm of
calculating Field Similarity and exhaustively compares the new algorithm with the previous one.
Section 4 provides an experiment to prove the performance improvement with the introduction of the
new algorithm.

2. Preliminary Background

This section gives a brief description of the algorithm to calculate Field Similarity presented in

[LL+99]. .
Let a field in record X have words Ox1, Ox2,....., Oxn and the corresponding field in record Y
have words Oyl1, Oy2,...... , Oym. Each word Oxi ,1 <i<n is compared with words Oyj, 1<j<n. let
DoSx1, DoSx2,....., DoSxn, DoSyl, DoSy2,....., DoSym be the maximum of the degree of
similarities for words Ox1, Ox2,....., Oxn, Oyl, Oy2,...... , Oym respectively. Then the Field

Similarity for record X and Y
Y. DoS, +3, DoS,

n+m
About the calculation of degree of similarity of words---DoS:
e If two words are exactly the same, the degree of similarity between these two words is 1.

SIMF(X,Y) = ¢y)

455

) 1 .
e If there is a total of x characters in the word, then we deduct — from the maximum degree of
x

similarity of 1 for each character that is not found in the other word. For example, if we compare "kit"

1-

quit =

1 . . .
and "quit", then DoS k,.,=1-§ =0.67 since the character k in "kit" is not found in "quit" and DoS

2 . . : N
2 =0.5 since the characters q and u in "quit" are not found in "kit".

Exercise: compute the Field Similarity of the field "address" of record 1and 2 in table 1.

Record | Name Address
1 Qi Xiao Yang 129 Industry Park
2 Qi Xiao Yang 129 Indisttry Park

Table 1 exercise for calculation of degree of similarity of words
1. The degree of similarity between "129" and "129" is 1, between "129" and "Indisttry" is O,

between "129" and "Park " is 0. So according to the above rule, DoS129 ,, =1. (DoS should be

the maximum)
2. The degree of similarity between "Industry" and "129" is 0, between "Industry" and "Indisttry" is

-é =0.875, between "Industry" and "Park " is 0. So according to the above rule, DoSIndustry g,

=0.875.
3. In the same way, we will obtain the following:

A 2
DoSPark ,, =1, DoS129 ;, =1, DoSIndisttry ., =1-§ =0.778, DoSPark ,, =1
4. When Formula 1 is employed, the address Field Similarity for R1 and R2 can be obtained as:

2. DoS, +277 D08, 140.875+1+1+0.778+1
n+m 6

SIMF(X,Y) = =0.942

3. Proposed New Algorithm of Calculation of Field Similarity

This section proposes a new algorithm----Moving Contracting Window Pattern Algorithm (MCWPA)
to calculate Field Similarity.

Firstly, we give the definition of window pattern. All characters as a whole within the window
constitute a window pattern. Take a string "abcde" as an example, when the window is sliding from
the left to the right with the window size being 3, the series of window patterns obtained are "abc",
"bed” and "cde". —/
abcde window pattern is "abc"

[
abcde window pattern is "bcd"

M ‘ '
abcde window pattern is "cde"

Let a field in record X have n characters (including blank space or comma, this applies to the
following) and the corresponding field in record Y have m characters. w represents window size, Fx
represents the field of record X and Fy represents the field of record Y. The Field Similarity for record
Xand Y is

456

SIMF(X,Y)= f—-% @
(n+m)

SSNC represents the Sum of the Square of the Number of the same Characters between Fx and Fy.
SIMF(X,Y) approximately reflects the ratio of the total number of the common characters in two
fields to the total number of characters in two fields.

The following algorithm (MCWPA) is to calculate SSNC.
w= the smaller of n and m; :

SSNC=0,

Fs=the smaller of Fx and Fy;

window is placed on the leftmost position;

BwN—

while ((window size is not 0) or (still some characters in Fs are accessible))

{ .
while (window right border does not exceed the right border of the Fs)
{

. if (the window pattern in Fx has the same pattern anywhere in Fy)
10. {

YA

11. SSNC= SSNC +(2w)* ;

12. mark the pattern characters in Fx and Fy as inaccessible characters to
avoid revisiting;

13. }

14. move window rightward by 1 (if the window left border is on an inaccessible character,
move window rightward by 2 and so on and so forth)

15. }

16. w=w-1;

17. window is placed on the leftmost position where the window left border is on an

accessible character;
18. }
19. return SSNC;

Figure 1 MCWPA algorithm

Several examples are provided to illustrate how to calculate the Field Similarity with MCWPA and
formula (2).
Example 1: calculate the following Field Similarity.
Field1 | abcd
Field 2 | abcd

In this example, n=4,m=4, Fx =Abcd, Fy=Abcd, the initial value for w is 4, that means, initially the
window is placed in the leftmost position with the window size 4 and the window pattern is "Abcd".
When line 9 is executed in the program (figure 1), it finds the same pattern "Abcd" in Fy. When line
11 is executed, SSNC changes to (2*4)* = (8) 2 'When line 12 is executed, "Abcd" in Fx and "Abcd"
in Fy are all marked as inaccessible characters. After lines 13, 14, 15,16, 17 are executed sequentially,
the program runs back to line 5. Because "Abcd" are all marked as inaccessible characters in Fs, the
condition "still some characters in Fs are accessible" is false. The program ends. According to formula

)

2
SIMF(X,Y)= S SNC2 = 8 —~ =100%
(n+m) 4+4)

So if two fields are exactly the same, SIMF(X,Y) is 100%.

Example 2: calculate the following Field Similarity.

457

Field 1 abc de

Field 2 abc k de

The process of calculating SSNC with MCWPA is shown as follows.

Round 1 for the loop in line 5:
Step 1:
1
abclide
abcllklLlide

Step 2:
abcllde
abclUlklLlIde
Round 2 for the loop in line 5:
Step1
abcl lde
abclIikl Ide
Step2
1
abcllde

abclLlkl Ide
Round 3 for the loop in line 5:

Step1

1
abcllde

abclUlklIde

]

de
klide

x
238

clLl
X X
cll
X X

—>

In this example, n=6, m=8, Fx = abcllde, Fy= abcl lklLlde, the initial value for w is 6,

by 1.

w =6 , the window pattern is "abclLide". In Fy, there

is not a string "abcLlde”, the condition for line 9 is
not true. So jump to line 14. Move window rightward

Since the window right border exceeds the right
border of the Fs, the condition of line 7 is false, the
program goes to line 16.

w =5 , in Fy, there are not strings "abclLid"” or

"belide”, so w continues to reduce.
w =4. The window pattern "abclI"” has
the same pattern in Fy. The condition
— for line 9 is true. SSNC=0 +(2%4) %,
abcllde Mark the window patterns as
XXX X inaccessible characters. Move the
abcllkllide window rightward to acccssible
XXX X characters.

Round 4 for the loop in line 5: w =3. (omitted)

Round 5 for the loop in line 5:
w =2. The window pattern "de¢"” has the

Step1 same pattern in Fy. The condition for

m m line 9 is true. SSNC=(8) 2+ @*2) ?,
g;’g %Jde — %Qg |)?]§<1§ Mark the window patterns as
inaccessible characters. Move the
abellkllde abelklide window rightward to accessible
characters. (no accessible characters any
Round 6 for the loop in line 5: more)
i
abcllde ; :
XXX X XX w =1. There is no accessible characters
abcllklLide available, so the condition in line 5 is not
XXX X XX true. The program ends.

According to formula 2,
SSNC _ (2*4)* +(2*2)°
_(n+m)2 (6+8)?

The introductory part mentions that SIMF(X,Y) approximately reflects the ratio of the total number of
the common characters in two fields to the total number of characters in two fields. For this example,

=63%

SIMF(X,Y) =

458

There are altogether 2*6=12 common characters ("abc ", "de") in 14 characters ("abc de" and
12
"abc k de"), so SIMF(X,Y) should be 1a ~85%, why is the result equal to 63%? Because these 6

characters are not continuous. Example 5 will give a detailed discussion about this issue.

3.1 Analysis and Comparison of Two Algorithms of Field Similarity

This section will give some examples to show that MCWPA can overcome some drawbacks that exist
in the previous algorithm of the Field Similarity. Also the logic behind the design of MCWPA is
presented.

Example 3: calculate the following Field Similarity with the above two algorithms.
Field1 | ex ex ex ex ex ex ex ex ex ex
Field2 | abab ab ab ab ab ab ab ab ex

With the previous algorithm,

" DoS, +Y " DoS,
SIMF(X,Y)=Z‘=‘ ’ ZF‘ £ =;—(1) >50%
n+m

With MCWPA,

% 2
SIMF(X,Y) = SSNC2 - 2% _ —3 40%
(m+m)? \(2%¥29) 29

Obviously, the two fields are quite different, only 10% common characters. However, the result
of the previous algorithm shows that these two fields have 50% similarity. In contrast, the result of
MCWPA is about 10%, which is quite close to the expectation.

Analysis: This example shows that there is a drawback for the previous algorithm. In it, DoSx1,
DoSx2,....., DoSxn, DoSy1, DoSy2,....., DoSym are the maximum of ‘the degree of similarities for
words Ox1, Ox2,....., Oxn, Oyl, Oy2,...... , Oym respectively. If quite a number of words in one field
are similar to only one word in the other field and dissimilar to other words, the previous algorithm
will give inaccurate result. MCWPA overcomes this problem by marking the same characters in two
fields as inaccessible so as to avoid revisiting.

Example 4: calculate the following Field Similarity for two cases with the above two algorithms.
Casel:

Field 1 de abc

Field 2 de abc

Case2:

Field 1 abc de

Field 2 de abc

With the previous algorithm for case 1: SIMF(X,Y) =1,
for case 2: SIMF(X,Y) =1

| —
With MCWPA for case 1: SIME(X,Y) = |-oonC__ [@*0))
(n+m) (6+6)
* Q)2 *)2
for case 2: SIMF(X,Y) = SSNC2 _|@2*3)"+ (22 2)
(n+m) (6 +6)

=0.6 =60%
Note: for casel, two algorithms produce the same result.

459

Analysis: Clearly, the similarity in case 1 should be higher than that in case 2. However, the same
results based on the previous algorithm suggest that the previous algorithm considers "abc de" and
"de abc" in case 2 the same. This disagrees with our common sense. In the following experiment
section, we will show that this is fatally erroneous in some dataset with Chinese names. Further study
of the previous algorithm shows that the adoption of word as basic unit results in its inability to
distinguish between two exactly the same fields and two fields with the same words in different
sequences. To improve the accuracy, MCWPA uses the character as the unit. In this example, if the
unit is word, both case 1 and case 2 have two same words. In contrast, if the unit is character, case 1
has 6 same characters and case 2 has 5 same characters. As expected, SIMF(X,Y) in case 1 is larger
than SIMF(X,Y) in case 2 when MCWPA is employed.

Example 5: calculate the following Field Similarity for two cases with the above two algorithms.
Casel:
Field1 | FuHui
Field 2 | Mr Fu Hui

Case2:
Field 1 Fu Hui
Field 2 Fu Mr Hui

With the previous algorithm for case 1: SIMF(X,Y) =80%,
for case 2: SIMF(X,Y) =80%,

% 2
With MCWPA for case 1: SIMF(X,Y) = SSNC2 = (2*6) 5 =80%,
(n+m) 6+9)

% 2 Py 2
for case 2: SIMF(X,Y) = SSNC2 = (2%2)" + (22 4) 260%
(n+m) (6+9)

Note: for casel, two algorithms produce the same result.

Analysis: Intuitively, in case 1, "Fu Hui" and "Mr Fu Hui" should be the same person. In case 2, the
likelihood exists that due to transposition error, originally "Fu Mr Hui" should be " Mr Fu Hui".
However, in more likelihood, due to typographical errors, originally "Fu Mr Hui" should be " Fu Mi
Hui" or "Fu Ma Hui", etc. Factually, the two common words "Fu Hui" in field 2 of case 1 are
continuous. In contrast, in field 2 of case 2, they are interpolated by another word "Mr", hence the
similarity between two fields is severely reduced. Thus intuitively and factually two fields in case 1
should be more similar than those in case 2. However, the previous algorithm gives the same results
for case 1 and case 2. In contrast, the results based on MCWPA show that the similarity for case 1 is
reasonably higher than that for case 2. With respect to characters, both case 1 and case 2 have 6
common characters ("Fu" " Hui"). According to example 4, even MCWPA can not distinguish casel
from case 2. Further examination of the two cases reveals that in field 2 of case 1, these 6 characters
are continuous while in field 2 of case 2, they are not. In order to reflect the difference in terms of
continuity despite the same number of common characters, MCWPA introduces the square to the
calculation of SIMF(X,Y). In the calculation of SIMF(X,Y) in example 5 with MCWPA, the

fundamental reason that the result of casel is larger than that of case2 is because 67> 2%+4%,
Mathematically, it is easily seen that the square of the sum of numbers is larger than the sum of the
square of numbers, that is, (atb+....4n)? >al+b’+...... +n?, (if a#b.....#n#0). In this way, the

introduction of square in the calculation of SIMF(X,Y) can overcome the continuity problem which
leads to the inaccurate result for the previous algorithm. Now, the answer to the remaining question in

12
example 2 is obvious, why is the result equal to 63% that is much lower than ﬁ? Because those 6

460

common characters in example 2 are not continuous. If the common characters in field 2 for the
example 2 are continuous like the following:

Field 1 abc de

Field 2 abc de k

12
The result will be ﬁ . So MCWPA correctly reflects the discontinuity by reducing reasonable amount

from the result.
3.2 The Comparison of Time Complexity between two Algorithms

For pedagogical reasons, suppose we have two fields with the same number of words (W) and same
number of characters (N).
For the previous algorithm:
Complexity of calculation of Field Similarity by the previous algorithm is O(W %), no matter it is
worst case or average case because every word in one field needs to be compared with every word in
the other field to find the maximum DoS.
For MCWPA:
Complexity for the worst case (no common characters exist between two fields):

When the window size is N, the complexity is O(1)

When the window size is N-1, the complexity is O(2)

When the window size is 1, the complexity is O(N).

The total is:

1242%...... +N2=%N(N+1)(2N+1)

So the complexity for the worst case of calculation of Field Similarity by MCWPA is: O(N %).

It is not true to say that time complexity is the disadvantage of MCWPA since O(N *) only applies to
the worst case. Through the following two examples, we prove that by some reasonable omission,
MCWPA can be more efficient than the previous algorithm.

Example 6: compare the number of operations involved in the calculation of Field Similarity by two
algorithms.
Field1 | abcdefghijklmnopqrstuvwxyz
Field2 | abcdefghijklmnopqrstuvwxyz

With the previous algorithm:
Since every word in field 1 needs to be compared with every word in field 2 to {ind the
maximum DoS and both fields have 13 words, the total number of operations is 13 2, (We omit the

operations irrelevant to the current discussion)

With MCWPA:
The whole program ends at the first loop when the window size is equal to the length of Field 1

or Field 2. So the number of operations is 1.

461

Analysis: this example shows that under some circumstances, MCWPA does take less time than the
previous one. The more the two fields are similar, the less time it takes.

Example 7: compare the number of operations involved in the calculation of Field Similarity by two
algorithms.

Field1 |{abcdefghinkl
Field2 |abcdefghimol

With the previous algorithm:

Like the example 6, the total number of operations is 8 2
With MCWPA:

The numbers of operations for the window size 19, 18, 17, 16, 15 are 1 2 02% 32 4%,
52 respectively. When the window size is 14, it finds the first matching pattern "ab cd ef gh iL".

After the strings "ab cd ef gh iLI" are marked as inaccessible in two fields, the window size becomes 5,
4, 3, 2, the corresponding numbers of operations are 1 2 02% 32 4%, respectively. When the
window size is 2, it finds another matching pattern "Li1". Likewise, the numbers of the remaining
operations are 1 2 2% 3% _So the total number of operations is:

(12 +22 +32 +42 +52)+(12 +22 +32 +42)+(12 +22 +32)

=55+30+14

=99 '

Analysis: It can be seen that to find all matching patterns, MCWPA uses 99 operations with
SIMF(X,Y) being 0.692 while the previous algorithm only uses 64 operations. However, to find the

first pattern "ab cd ef gh iLl", it uses only 1 2 +22 +3% +4?% + 57 =55 operations. Moreover, the
contribution of the first pattern to SSNC is quite substantial, (2*13)?=676. (The length of the string

"ab cd ef gh iL" is 13) In comparison, to find the second pattern "U1 " with the contribution of only
(2*2)*=16 to SSNC, it uses as many as 1 2 +27% +3?% +4?% =30 operations. The characteristic of
MCWPA is that it picks out the longer matching strings (with more contribution to SSNC) at earlier
stage. This gives rise to the possibility of improving the efficiency of MCWPA by introducing user-
specified execution-termination window size threshold. For example, in example 7, if the execution-

termination threshold is half of the window size, after the program executes 1 24+22 432447 +

52 =55 operations and finds the matching pattern "ab cd ef gh iL", it will end with SIMF(X,Y) being
0.684 because the window size in the next step is 5 which is less than the execution-termination
threshold. There are two reasons for the introduction of the execution-termination window size
threshold:

1) The contribution of short matching patterns is insignificant to the calculation of SSNC. For this
example, the difference in SIMF(X,Y) is only 0.692-0.684=0.008. In fact, even though two fields
have some short matching patterns, there is no reason to believe that the two fields are similar.
For example, although "ab cd ef" and "fa ce db" have 6 1-character-long matching patterns,
("a","b","c","d","e","f") intuitively, they are totally dissimilar.

2) Based on the above analysis of time complexity of MCWPA:

When the window size is N, the complexity is O(1).

When the window size is N-1, the complexity is O(2 2).
]
]
i
1

When the window size is 1, the complexity is O(N *).

462

It can be seen that the smaller the window size is, the higher the time complexity is. So the
introduction of the execution-termination threshold, that is, the omission of the calculation of
small window size, can reduce time complexity of MCWPA significantly.
Thus, with the introduction of the suitable execution-termination window size threshold, MCWPA
can be more efficient than the previous algorithm. Of course, there is a tradeoff between faster
execution time and more accurate result.

4 Experiment Result

The dataset used to compare two algorithms is a merger of two datasets that come from two surveys
conducted through an electronic form within a mass-sent email. The dataset has 782 records. Each
record contains seven fields, namely, Matric Number, Name, Address, Major, Grade, Race, Gender.
Manual inspection shows 50 duplicate records. Various problems include matching records with
different Matric number or mis-spelled names.

To detect duplicate records, computation of record similarity needs to be carried out which, in
turn, requires the knowledge of field weightage---the importance of each field. For example, the name
field should have higher weightage than sex field because name is more informative than sex. The
sum of all field weightage should be 1.

Let a database has data fields F1, F2,...., Fn with field weightages W1, W2,....., Wn respectively.
Given two records X and Y, let SIMF1(X,Y), SIMF2(X,Y),....., SIMFn(X,Y) be the field similarities
for F1, F2,...., Fn respectively, then the record similarity for record X and Y is

> SIMg(X,Y) *Wi

Among seven fields, the most distinguishing fields--- Name, Address and Matric number are
chosen for the calculation of Field Similarity. We compare two algorithms by two criteria: 1) Miss
Detection (duplicate records are not detected) and 2)False Detection (similar non-duplicate records
are treated as duplicate records) -

1) Miss Detection

e The previous algorithm failed to detect 5 pairs of duplicate records. That is, it has 5/50=10% Miss
Detection rate. _

e MCWPA also failed to detect 5 pairs of duplicate records. That is, it has 5/50=10% Miss
Detection rate.

2) False Detection

e The previous algorithm incorrectly matched 10 pairs of non-duplicate records.

e MCWPA incorrectly matched only 1 pair of non-duplicate records.

Analysis:

The results show that with respect to Miss Detection, two algorithms have roughly the same
performance. However, in terms of False Detection, MCWPA performs much better than the previous
algorithm. Further study of the testing dataset shows that in the name field, there are some similar

non-duplicate Chinese names such as B48 and P94 . These names are stored as English
characters in the dataset, namely, "Gao Hua Ming" and "Gao Ming Hua". As analyzed in the example
4, the previous algorithm treats two fields with the same words in different sequences as the matching
fields. Thus the high False Detection rate for the previous algorithm begins to make some sense. In
addition, there is also a case that the previous algorithm treats "zeng hong" and "zeng zeng" the same.
As analyzed in the example 3, MCWPA identifies a large difference in the calculation of Field
Similarity between these two fields.

Conclusion

463

This paper has presented a new algorithm (MCWPM) for the calculation of Field Similarity. After a

background description of the algorithm of calculating Field Similarity presented in [LL+99] is given,

our new algorithm (MCWPM) of calculating Field Similarity is proposed. In essence, MCWPM

improves the previous algorithm in the following aspects:

1) The introduction of marking the common characters as inaccessible to avoid revisiting, which is
presented in example 3.

2) The adoption of the character as unit for the calculation of Field Similarity instead of words to
improve accuracy, which is presented in example 4.

3) The introduction of square to the calculation of Field Similarity to reflect the difference in terms
of continuity despite the same number of common characters, which is presented in example S.

4) The introduction of execution-termination window size threshold to achieve higher efficiency,
which is presented in example 6 and 7.

Thorough comparison of these two algorithms through theoretical analysis, concrete examples and

experimental result leads to the conclusion that our new algorithm (MCWPM) can significantly

improve the accuracy of the calculation of Field Similarity.

References

[LL+99] Mong Li Lee, Hongjun Lu, Tok Wang Ling and Yee Teng Ko. "Cleansing data for mining and
warehousing”, In Proceedings of the 10" International Conference on Database and Expert Systems
Applications (DEXA99),pages 751-760,August 1999.

[RSC99] K. Rajamani, S. Y. Sung and A Cox, "Extending the Applicability of Association Rules", In Pacific
Asia Knowledge Discovery and Data Mining (PAKDD’99), Beijing, April, 1999, pp.64-73.

[SLL96] S. Y. Sung, H. Lu and Y.Lu, "On Generating Synthetic Database for Classification", 1996 IEEE
International Conference on Systems, Man, and Cybernetics, Oct. 14-17, Beijing, China.

[SS95] S. Y. Sung and V. Shaw, "Mining Association Rules using Minimal Covers", Proc. of the 1995 Inter.
Joint Conf. on Information Sciences, NC, USA, September 28-30, 1995.

[SWC96] S. Y. Sung, K Wang and B L Chua, "Data mining in a large database environment". In proceedings of
1996 IEEE International Conference on Systems, Man and Cybernetics (SMC'96), Beijing, China, pp. 988-
993.0ct. 1996.

464

	PACLIC16-1-474-455.pdf
	PACLIC16-1-474-456.pdf
	PACLIC16-1-474-457.pdf
	PACLIC16-1-474-458.pdf
	PACLIC16-1-474-459.pdf
	PACLIC16-1-474-460.pdf
	PACLIC16-1-474-461.pdf
	PACLIC16-1-474-462.pdf
	PACLIC16-1-474-463.pdf
	PACLIC16-1-474-464.pdf

