
Implementation of Long-distance Reflexives in Korean
A Categorial Grammar Approach

Yong-hun Lee
Dept. of Linguistics, UIUC

707 S. Mathews Ave. Rm. 4088
Urban, IL 61801, USA

ylee@uiuc.edu

Abstract

This paper provides computational algorithms for a Korean reflexive caki, for which both
sentence-bound and long-distance readings are possible. Its analyses are based on Chierichia's
theory in Categorial Grammar, and a CCG-like system is introduced for the implementation. In
this system, we can get both readings of caki with the same resolution mechanisms, while the
difference is where the reflexive is resolved. These algorithms enable us to account for the
distributions and characteristics of a long-distance reflexive caki with a more unified way.

1	 Introduction

Anaphora has been one of the hottest topics in Linguistics. Various theories have been developed
under the name of Binding. There have been roughly two types of Binding Theories. The first group uses
tree-theoretic notions to search an antecedent for the anaphora. Chomskyan traditions, especially GB
framework, belong to this type of approach. The other utilizes argument-functor relations, instead of
structural configurations, for anaphora resolution. This strategy is taken by GPSG (Generalized Phrase
Structural Grammar), PLG (Phrase Linking Grammar), and CG (Categorial Grammar). Chierchia
(1988)'s theory in Categorial Grammar is a good example.

There have been lots of observations that the distributions of reflexives are different from those of
pronominals. That is, reflexives have some more restrictions that pronominals do not obey. In order to
implement this intuition, many theories adopted two kinds of different mechanisms, one for reflexives
and the other for pronominals. The conditions by which reflexives are licensed are different from those
for pronominals.

Korean reflexives have characteristics that English counterparts do not exhibit. In Korean,
long-distance reflexives are possible in addition to ordinary sentence-bound ones. The distributions of
caki in (1), (2), and (3) illuminate this fact"2.

	

(1) Chelsoo 1 -ka	 caki1 -lul	 salangha-n-ta.
	Chelsoo.NOM self.ACC	 love.PRES.DECL

Thelsoo loves himself.'

1 Korean has another kind of reflexive that permits only sentence-bound reading. Cakicasin in (i) is an example.

	

(i) Chelsoo1-nun	 [Younghee2-ka cakicasin. 112-ul salangha-n-ta-ko 	 sayngkakha-n-ta.
	Chelsoo.TOP	 Younghee.NOMself.ACC 	 love.PRES.DECL.COMP think.PRES.DECL

a. *Chelsoo thinks that Younghee loves him.
b. Chelsoo thinks that Younghee loves herself.

In (i), cakicasin can refer to only Younghee, not Chelsoo. This paper does not deal with this sentence-bound
reflexive cakicasin. Instead, it focuses on two readings of a long-distance reflexive caki. But we can provide
resolution algorithms for cakicasin by slight modifying those for caki. For the different distributions and resolution
algorithm for cakicasin, see Lee (2001b).
2 According to Moon (1996) and others, long-distance reading (3a) is superior to sentence-bound interpretation in
(3b) for the sentence.

296

(2) Chelsoornun [cakii-ka	 ttokttokha-ta-ko]	 sayngkakha-n-ta.
Chelsoo.TOP self.NOM	 be smart.DECL.COMP think.PRES.DECL
Thelsoo thinks that he is smart.'

(3) Chelsoornun [Younghee2-ka	 salangha-n-ta-ko]
Chelsoo.TOP Younghee.NOM	 self.ACC love.PRES.DECL.COMP
sayngkakha-n-ta.
think.PRES.DECL
a. Chelsoo thinks that Younghee loves him.
b. Chelsoo thinks that Younghee loves herself.

In (1), caki is sentence-bound, i.e., the antecedent of caki is within the sentence boundary. In (2),
Chelsoo, an antecedent, is outside of the sentence boundary; and it shows a case of long-distance
reflexive. In (3), both sentence-bound reading and long-distance interpretation are possible for caki.
Sentences in (4) and (5) correspond to English counterparts of (2) and (3), where long-distance
interpretations are impossible.

(4) a. *Chelsoo thinks that himself is smart.
b. Chelsoo thinks that he is smart.

(5) a. *Chelsoo thinks that Younghee loves himself.
b. Chelsoo thinks that Younghee loves herself.

The goal of this paper is to provide computational algorithms for the interpretations of Korean
reflexives, for which both sentence-bound and long-distance readings are possible. For the analyses, a
CCG-like system will be introduced, which is slightly modified from Steedman (1996, 2000)'s
Combinatory Categorial Grammar (CCG). Through the analyses, this paper will show how two different
interpretations of Korean reflexives are calculated and how they are implemented.

2 Binding Theory in Categorial Grammar

Categorial Grammar was first introduced by Ajdukiewicz (1935) and later modified and advanced
by Bar-Hillel, Curry, and Lambek. In this framework, we have two basic categories n and s, and other
categories come from the combinations of these two categories. All the syntactic phenomena are
described and analyzed by the functor-argument relations of categories.

Steedman (1996, 2000) extended previous studies in Categorial Grammar and developed
Combinatorial Categorial Grammar (CCG). The most important characteristic of his system is that
predicates-argument relations are projected by the combinatory rules of syntax, and other operations are
based on these relations (Steedman, 2000:38). Two basic combinatory rules are functional application
and functional composition, which are delineated in (1).

(6) Two Basic Combinatory Rules
a. Functional Application

(i) X / Y Y	 X
(ii) Y	 X / Y	 X

b. Functional Composition
(i) X/Y Y/Z	 X/Z

(ii) X/Y Y/Z	 X/Z
(iii) Y/Z X/Y	 X/Z
(iv) Y/Z X/Z	 X/Z

Chierchia took Categorial Grammar to explain Binding phenomena in English, and he described
syntactic constraints of reflexives and pronominals as follows.

297

(7) Binding Theory in Categorial Grammar (Chierichia, 1988:134)
a. A reflexive must be bound to an F-commanding argument in its minimal NP or S domain.
b. A non-reflexive pronoun must not be co-indexed with anything in its minimal NP or S

domain.
where F-command is simply c-command at function-argument structure.3

Agreement in number and gender must hold between pronouns and their antecedents, in order to
pronouns can refer to their antecedents. The constraint for checking agreement is stated in (8a). FT(n) in
(8b) has three information: n is the index of the given NP, gndr is gender, and nmbr is number.

(8) Agreement between Antecedent and Pronouns (Chierchia, 1988:132)
a. FT(nKT(m): The features associated with n are non-distinct from those associated with m.
b.

nFT(n) = [gndr
nmbr

For example, the FTs of three different NPs John, himself, and her can be stated as follows4.

(9)

FT(/) =

John	 himself2	 her3
[/	 2	 3all

FT(2) = male	 FT(3) = [female]
3 J	 3	 3

Chierchia developed resolution algorithms for pronouns based on the combinatory rules of
categories, and it can be stated as in (10).

(10)Chierchia's Algorithms (1988:138-9)
a. TV + NP IV	 (here and throughout integers will be used as names

0	 1	 2	 for the categories mentioned in the rules)
conditions: (i) LPS(0) n LPS(1) = 05	non-coreference

(ii) SLASH(2) n (LPS(1) u LPS(2)) = QS	 crossover
(iii) SLASH(2) = SLASH(0) v SLASH(1) 	 slash-percolation
(iv) LPS(2) = LPS(0) v LPS(1)	 LPS-percolation

b. S/NPn + NP„ S
0	 1	 2

conditions: (i) LPS(2) = QS	 A-opacity boundary
(ii) SLASH(2) n (LPS(1) v LPS(2)) = QS	 crossover

(iii) SLASH(2) = SLASH(0) v SLASH(1) 	 slash-percolation
(iv) ±n e LPS(0) LPS(1)	 reflexivefl

3 This condition has different prediction for the sentences in (i) and (ii). It rules in (i), but rules out (ii) (Chierchia,
1988:135).

(i) Mary showed the men each other.
(ii) *Mary showed each other the men.

Binding Theory in GB says that both sentences are grammatical because each other and the men c-command each
other, which is wrong.
4 Note that John, himself, and her stand for an R-expression, a reflexive, and a pronominal respectively.
5 LPS (Local Pronoun Store) stores indices for pronouns and their antecedents. See Section 4.1.

298

c. IV/IV + IV IV

	

0	 1	 2

conditions: (i) LPS(2) = LPS(0)	 A-opacity boundary
(ii) SLASH(2) n (LPS(1) u LPS(2)) = QS 	 crossover

(iii) SLASH(2) = SLASH(0) v SLASH(1)	 slash-percolation
(iv) n	 LPS(1)	 reflexive

+refl

d. Reflexives
(i) A	 A

n [+refl] E LPS	 n LPS

(ii) conditions: (a) A = IV, TV, (b) FT(A) N FT(n)
(iii) translation: Xxn [A' (xn)]

According to these algorithms, two pronouns himself and him are resolved as in (11) and (12). Here note
that the translations of two sentences are love'(x2)(x2) and love '(x1)(x2).

(11)He loves himself.
<he loves himself, S, love'(x2)(x2), LPS:0>	 (ignoring SLASH)

<he, NP2, x2, LPS:2> <love himself, S/NP 2, Ax3 [love'(x3)(x3)], LPS:2>

<love himself, S/NP 2, love'(x3), LPS:2, 3+ref>

<love, (S/NP2)/NP6, love', LPS:2><himself, NP3 , x3, LPS:3+ref>

(12)He loves him.
<he loves him, 5, lov e' (x 1)(x 2) , LPS:0>	 (ignoring SLASH)

<he, NP2, x2, LPS:2> <love him, S/NP 2, love'(x/), LPS:1, 2>

<love, (S/NP2)/NP, love', LPS:2><he, NP 1 , xi , LPS:1>

Because himself is a reflexive, (10d) is applied in the analysis in (11), and changes love '(x3) into Ax3
[love '(x3)(x3)]. This operation does not occur in (12) because him is a pronominal, which results in
different translations between reflexives and pronominals.

3	 Resolving Long-distance Reflexives in Korean

Chierichia's algorithms are designed to handle English data. But, in order to explain the distributions
of long-distance reflexives in Korean, some conditions must be modified. First, According to the
condition (10bi), LPS value of every S node must be 0. To get the long-distance readings in (2) and (3),
however, this condition must not be applied, because it prevents (2) and (3) have only sentence-bound
interpretations. Then, (2) is ruled out and caki in (3) refers to only Younghee, which are counterintuitive.
Second, as the sentence in (3) illustrates, caki can refer to not only male entity but also female entity. As
Hong (1985) and Kang (1988b) have already pointed out, gender information is not crucial for reflexive
resolution in Korean. Therefore we have to make the algorithms insensitive to gender information of the
specification in (8b). The agreement information that (8b) contains are index of the NPs, person, and
number. After the modifications of these two conditions, we can analyze (1) and (3) as in (13) and (14)
respectively. Here, note that the translation of a complementizer -ko is specified as A,Ø[^0].

6 Here 2 in (S/NP 2)/NP means the index of subject NP must be 2. It is a tool for subject-predicate agreement.

299

(13)a. Chelsoorka	 cakirlul	 salangha-n-ta.
	Chelsoo.NOM	 self.ACC	 love.PRES.DECL

Thelsoo loves himself.'
b.	 <Chelsoo-ka caki-lul salangha-n-ta, S, love'(x2)(x2), LPS:0>

<Chelsoo-ka,NP2,x2,LPS:2><caki-lul salangha-n-ta,S/NP 2,2x3 [1ove' (x 3)(x 3)] ,LP S:2>

<caki-lul salangha-n-ta, S/NP 2, love'(x3), .LPS:2, 3+ref>

<caki-lul, NP3 , x3, LPS:3,f <salangha-n-ta, (S/NP2)/NP, love', LPS:2>

	

(14)a. illChelsoorka	 r1Younghee2-ka 131caki1/2-lul 141salangha-n-ta-151ko]

	

ChelsooNOM	 [YoungheeNOM self.ACC love.PRESDECL].COMP
[6]sayngkakha-n-ta.

think.PRES.DECL
b. (i) Thelsoo thinks that Younghee loves him.'

(ii) Thelsoo thinks that Younghee loves herself.'
c. <[1]+[2]+[3]+[4]+[5]+[6], S, think'(c, Alove'(y,c), LPS:0>

<[1],NP 1 ,c,LPS: 1><[2]+[3]+[4]+[5]+[6],S/NP1,2x3[think' (x3,Alove'(y,x3))],LPS: 1>

<[2]+[3]+[4]+[5]+[6], S/NP I , think'Clove'(y,x3)), LPS:1, 3+ref>

<[2]+[3]+[4]+[5],S', love' (y,x3),LPS :3+ref><[6],(S/N131)/S ' ,think' ,LPS: 1>

<[2]+[3]-1-[4],S,love'(y,x3),LPS:3+ref> <[5],SVS,24^0],LPS:0>

<[2], NP2, y, LPS:2>	 <[3]+[4], S/NP2, love'(x3), LPS:2, 3+ref>

<[3], NP3, x3, LPS:3 +„f> <[4], (S/NP2)/NP, love', LPS:2>
d. <[1]+[2]+[3]+[4]+[5]+[6], S, think'(c, Alove'(yy)), LPS:0>

<[1], NP R , c, LPS:1><[2]+[3]+[4]+[5]+[6], S/NP i , think'("love'(y,y)), LPS:1>

<[2]+[3]+[4]+[5],S',Alove'(y,y),LPS:0><[6],(S/NPI)/S',think',LPS:1>

<[2]+[3]+[4], S, love'(y,y), LPS:0> 	 <[5], S'/S, 2,0[^01, LPS:0>

<[2], NP2, y, LPS:2>	 <[3]+[4], S/NP2, Ax3 ove'(x3,x3)], LPS:2>

<[3]+[4], S/NP2, love'(x3), LPS:2, 3+ref>

<[3], NP3, x3, LPS:3+ref> <[4], (S/NP2)/NP, love', LPS:2>

In (13), the reflexive caki is resolved within the S node, where it finds the antecedent Chelsoo. (14) has
two S nodes, and both Chelsoo and Younghee can be an antecedent for caki. In (14c), the reflexive rule
(10d) is applied in the higher S/NP node, whereas it is applied to lower S/NP node in (14d). Likewise,
the reflexive caki is resolved in the higher S nodes in (14c), while it finds an antecedent in the lower S
node in (14d). As the translations illustrate, (14c) corresponds to long-distance reading in (14bi) and
(14d) to sentence-bound reading of (14bii) respectively. With some modifications of Chierchia's idea,
we can correctly get the both interpretations for caki as above.

300

4	 Computational Implementation

4.1 A CCG-like System

There are three possible ways of implementing the analyses in (13) and (14). One is to use
translation, which is represented by predicate logic. Another method is to utilize LPS and SLASH values,
where the indexes of NP are stored. Lee (2001a) employed this technique. The other option is to
combine the operations on translations and LPS & SLASH values. This paper chooses the last one. That
is, reflexives are resolved by the combined operations of translation and LPS value of each node. But
SLASH will be ignored as above, because this paper does not handle crossover phenomena.

The system that this paper develops is a CCG-like system 7 . It is the combination of Chierchia's ideas
into Steedman's Combinatory Categorial Grammar. This system is similar to Steedman's system in that
surface combinatorics triggers other operations, especially reflexive resolution algorithms. It is different
from Steedman's in the following two points. First, PS rules are also important in this system, while
Steedman did not utilize it. Second, it has five attributes to describe syntactic dependencies, which
resembles those in HPSG.

In the implementation, we will have five attributes, PHON, CAT, AGR, TRANS and LPS. PHON
concatenated a word to a stream of words. CAT has categorial information, such as S, N, S/N, and so on.
AGR is for agreement information, person and number. TRANS has the translation of the node. LPS
(Local Pronoun Store) is something like a Cooper-storage, but it stores indices for each NP. The
functional application on the CAT value triggers operations on TRANS and LPS values, and all the
reflexives, whether they have sentence-bound or long-distance reading, are resolved by these
operations.

4.2 Syntactic Process

In this paper, we will use a Korean fragment, and the PS rules for them are enumerated in (15).

(15)PS Rules for a Korean Fragment
1. S ---> NP VP
2. NP ---> N
3. NP --> PRON
4. VP ---> V
5. VP --> NP V
6. VP --> S' V
7. S' --> S C

Syntactic processes have two important roles in the system. First, they decide which constituent and
which one, among the stream of strings, go into the predicate-argument relations. Second, they filter out
ungrammatical sentences when a Case mismatch occurs. For example, they exclude the sentences like
followings.

(16)a. *Her loves himself.
b. *He loves she.

While Park (2001a, 2001b) and Lee & Park (2001) rule out them by category combinations themselves,
these sentences cannot be an input to the following operations because they are filtered out in the
syntactic process in this system.

7 A different, but related, version of CCG-like system is developed by Park (2001a, 2001b) and Lee & Park (2001).
Their focus is how Korean Case markers can be handled in Categorial Grammar. Because this paper concernes
only long-distance reflexives, it will not illustrate how Case markers can be dealt with in Categorial Grammar. For
a theoretical approach and its importance, see Park (2001a, 2001b). For its computational implementation, see Lee &
Park (2001).

301

4.3 Operations on Categorys

Before we start to develop algorithms for reflexive resolution in Korean, we need two more
mechanisms for handling categories. One is recognizing and separating categories, and the other is to
provide implementation for functional application.

A category has a form A or A / B. When we have an atomic category N or S, what we have to do is
just returning the categories. When we meet a complex category such as ((S/N)/N)/N, we need to
separate this one into two categories, (S/N)/N and N. The important clues for separating categories are
the nested structure of parentheses and a slash (`r) between two categories. That is, our example
category can be analyzed as in (17).

(17)Nested Structure of Parentheses
((S/N)/N)/N

In its computational implementation, a stack meets our purpose. A stack is a LIFO-style storage, where
LIFO means Last In First Out. We have two operations PUSH and POP for the stack. PUSH stores
something into the stack, whereas POP removes the top-most element from the stack. In its
computational implementation, we PUSH a left parenthesis C(') into the stack when we meets it, and
POP a left parenthesis when we meets a right.parenthesis (`)'). But we don't need to use a real stack,
rather we can use a virtual stack. A virtual stack can be implemented just by increasing or decreasing the
pointer of the stack, because all the contents of the stack are identical. The concrete algorithm is
illustrated in (18).

(18) Algorithm for Separating a Category
function string separate_category (string s)
var

string A, B;
begin

if there is no I in s then return s;
else if there is one / and no (in s then

begin
put the string before / into A;
put the string after / into B;
return(A, B);

end
else

begin
while read through s do

begin
if there is a (then PUSH(`(');
else if there is a) then POP('(');

end;
if the stack is empty then put the string up to now into A;
if the next string is not / then return error;
while read through s do

begin
if there is a (then PUSH('(');
else if there is a) then POP(`(');

end;
if the stack is empty then put the string up to now into B;
if the stack is empty then return(A, B) else return error;

end;
end;

8 This part comes from Lee (2001a) and Lee & Park (2001). Because the operations themselves are the same,
whether it is Korean or English, this paper uses the same algorithms.

302

The algorithm for functional application is as in (19). In func_application(s i , s2), s 1 is a functor and s2
is an argument. This function checks if s2 is the argument of s i . If it is, the function returns the result of
functional application. If not, it returns an error message.

(19)Algorithm for Functional Application
function string func_application (string is], string 52)
var

string A, B;
begin

A, B = separate_category(s1);
if s2 = B then return A else return error;

end;

When s l is an argument of s2, the position of s l and s2 is interchanged outside of this function and
functional application is tried again.

4.4 Reflexive Resolution Algorithms

To develop algorithms for long-distance reflexives, let's scrutinize the analyses in (14) again.

	

(14)a. iliChelsoorka	 r1Younghee2-ka 131caki112-1u1 141salangha-n-ta-151ko]

	

CheLsooNOM	 [YoungheeNOM selfACC lovePRESDECL].COMP
[6]sayngkakha-n-ta.

think.PRES.DECL
b. (i) Thelsoo thinks that Younghee loves him.'

(ii) `Chelsoo thinks that Younghee loves herself.'
c. <[1]+[2]+[3]+[4]+[5]+[6], S, think'(c, Alove'(y,c), LPS:0>

<[1],NP bc,LPS:1><[2]+[3]+[4]+[5]+[6],S/NP 1 ,Axilthink' (x3 , A love'(y,x3))],LPS : 1>

<[2]+[3]+[4]+[5]+[6], S/NP i , think'(''love'(y,,c3)), LPS:1, 3+ref>

<[2]+[3]+[4]+[5], S ' ;love ' (y,x3),LPS :3 +ref <[6],(S/NPYS ' ,think' ,LPS :1>

<[2]-1-[3]+[4],S,love'(y,x3),LPS:3+ref> <[5],SVS,20[^0],LPS:0>

<[2], NP2, y, LPS:2>	 <[3]+[4], S/NP2, love' (x3), LPS:2, 3+ref>

<[3], NP3 , x3 , LPS:3+„f> <[4], (S/NP2)/NP, love', LPS:2>
d. <[1]+[2]+[3]+[4]+[5]+[6], S, think'(c, "love'(y,y)), LPS:0>

<[1], NP 1 , c, LPS:1><[2]+[3]+[4]+[5]+[6], S/NP I , think'(Alove'(y,y)), LPS:1>

<[2]+[3]±[4]+[5],S',Alove'(y,y),LPS:0><[6],(SNPYS',think',LPS:1

<[2]+[3]+[4], S, love'(y,y), LPS:0> 	 <[5], S'/S, /WA, LPS:0>

<[2], NP2, y, LPS:2> <[3]+[4], S/NP2 , Ax3 ove'(x3 ,x3)], LPS:2>

<[3]+[4], S/NP2, love'(x3), LPS:2, 3+ref>

<[3], NP3 , x3 , LPS:3+ref> <[4], (SNP2)/NP, love', LPS:2>

303

As we can find from the analyses, the resolution of reflexives takes two steps. The first step is the
reflexive rules in (10d) is applied to the S/NP nodes, whose operations are (i) to delete the index for the
reflexive NP from LPS and (ii) to change the translation into a X-expression. The second step is, which is
occurs in the S nodes, (i) to find a possible antecedent for the reflexive, (ii) to check the agreement
between the reflexive and the antecedent, (iii) to resolve the reflexive, and (iv) to update the result by
X-conversion of the translation. But we need one more operation in addition to those two. We need to
decide when we resolve the reflexive. That is, caki in (14c) is resolved with Chelsoo while it is paired
with Younghee in (14d). An algorithm is necessary for deciding the point where the reflexive is resolved.
These three mechanisms are the crux of resolution algorithms.

The first step can be easily implemented, because its mechanisms are straightforward. The algorithm
for them is as follows.

(20)Algorithms for Reflexive Rule
function avop reflexiverule(avop i, int j)9
var

string iTRANS, iVAR, rTRANS;
set iLPS, rLPS;

begin
iLPS := LPS(i);
iLPS := iLPS –j;
iTRANS := TRANS(i);
iVAR := xi,
rTRANS := X + iVAR + [' + iTRANS + `(' + iVAR + `)' + ;
update i with rTRANS and rLPS;

end;

Here, j is the index of the reflexive NP,. The first two lines find the index for reflexive and delete it from
LPS. The next three lines take the TRANS value, find the variable xi, and turn the TRANS into a
k-expression. Then the algorithm updates the attribute-value ordered pair with the new values.

The second step is to find a possible antecedent, and resolve the reflexives if agreement information •
between the pronoun and the antecedent matches. The algorithm for this mechanism can be described as
follows.

(21)Algorithms for Reflexive Resolution
function avop reflexive_resolution(avop avop j, avop k)
var

string fPHON, sPHON, iTRANS, rTRANS;
begin

fPHON := PHON(j);
sPHON :=PHON(k);
iTRANS := TRANS(i);
rTRANS := lamda_conversion(iTRANS);
print(fPHON + " refers to " + sPHON + ".");
update i with rTRANS;

end;

Here, i is the ordered pair of S node, j is the index of the reflexive NPR, and k is the index of the
antecedent NPk whose person and number matches with those of NPR. iTRANS is the translation of S
node, and it has a form X xi [(xj)	 (TRANS(k)), where Xxi[...(xj)...] comes from VP, and
TRANS(k) from subject NPk. Lamda conversion changes iTRANS into [(TRANS(k))]. The
agreement between NI"; and NPk is checked outside of reflexive_resolution0, and this function is called
when two NPs match in their person and number, where NPk is the antecedent of NPR.

9 Here, avop means an attribute-value ordered pair, which is <PHON,CAT,AGR,TRANS,LPS>.

304

The last algorithm for reflexive resolution is the one who decides when the reflexive is resolved. The
algorithm can be stated as follows. Before the system begins to analyze the sentence, the attribute-value
ordered pairs of each lexical item are loaded into the main memory. For example, the lexical items for
(14a) are stored in the main memory as follows.

(22) Ordered Pairs of Each Lexical Items in (14a)10
1: <Chelsoo-ka,n,M3S,c,LPS: {0[-Fname] } >
2: <Younghee-ka,n,F3S,y,LPS: {1[+name]}>
3: <caki-lul,n,3 S,x2,LPS: {2[+refi]l>
4: <salangha-n-ta,(s/n)/n,N/A,love',LPS: {1}>
5: <ko,sYs,N/A,2,0[A O],LPS: {}>
6: <sayngkakha-n-ta,(s/n)/n,N/A,think',LPS: {0}>

These ordered pairs are used during the syntactic process and the analyses. Before the algorithms start to
analyze the sentences, a variable n is set to point the first position, i.e. 01, in these ordered pairs.

The algorithm goes as follows. When the analysis starts, the current position of n is 01. That is, n is
pointing Chelsoo-ka right now. When we meets a reflexive NPR caki, the algorithm checks if the person
and number information of two NPs, NI; and NPn, agree. If they agree the index of caki is percolated up
until it meets Chelsoo-ka. When the reflexive meets with a S node whose subject is NP n Chelsoo-ka, the
algorithms call the function reflexive_rule() in the VP node, then call reflexive_resolution() in the S
node, where the reflexive is resolved. If the agreement value of n does not match with that of the
reflexives, n is increased by 1 and the agreement attribute is checked again. After the reflexive is
resolved, the algorithm prints out the result, i.e. caki refers to Chelsoo', and deletes all the result except
those in (22). Then, n is increased, and the same procedures are performed again. All the procedures end
when n becomes equal to the index for the reflexive, for example, n = 3 for (22).

By those mechanisms, we can correctly get the results, caki refers to Chelsoo' and caki refers to
Younghee' .

4.5 Overall Flowchart

Now that we have all the algorithms for each subpart, it's time to view the whole picture. The overall
flowchart is as in (23).

1 ° In fact, two more attributes, POS and CASE, must be added to these ordered pairs. POS (Part Of Speech) is for the syntactic
process that is described in Section 4.2, and CASE is used to rule out the sentences in (16). Because this paper is not focused on
such syntactic processes, those attributes are omitted in the representations.

305

(23) Overall Flowchart for Reflexive Resolution in Korean
read a sentence

load avop for each lexical item

set n to point the first lexical item
1-	 N

	 find an available syntactic rule 	 error
• Y

	

check Case 	 > rule out this sentence
Y

check functional application works 	 > error 	
• Y

calculate avop for the current node
N
	 is this node the reflexive node r

• Y
check the agreement between n and r	 increase n

YY
END 4- n = r	 	 n = r

	

N	 Y
	 is this node a S whose subject is NP,, 	 END

• Y
reflexive_rule() for VP

reflexiveresolution0 for S

delete the results 	 increase n
.'	 Y

n = r 	> END

When the reflexive is resolved, the algorithm delete all the results and goes to the point where it finds the
next available syntactic rule. Because everything else except attribute-value ordered pairs for lexical
items is deleted, the procedure starts from the nearly first stages, just except that n is updated. With this
technique, we can get the right results for Korean reflexives.

5 Advantages of a CCG-like System

As mentioned in Section 1, there are roughly two kinds of Binding Theories. One uses structural
configurations and the other utilizes functor-argument relations. As Kang (1988a, 1988b, 2001) have
already pointed out, the second approaches are better than the first ones in explaining distributions and
characteristics long-distance reflexives. To enumerate the advantages of the latter methods deserves
another paper. As an example, Kang (1988b) investigated long-distance reflexives in Korean, Japanese,
Swedish, and Icelandic, and illustrated that the latter strategies can efficiently account for the examples
that are problematic for configuration-based explanations. Among the advantages that he pointed out,
the most important one for this CCG-like system is that we don't need to have two separate domains for
reflexive resolution. As the analyses in (13) and (14) demonstrate, whether the reflexives are resolved
within the minimal S node or outside of the S node, the resolution mechanisms themselves are the same,
i.e., by the reflexive rule and lamda conversion. If we try to implement reflexive resolution by
configuration, such as in Hong & Lee (1994), we must set different Binding Domains under which the
reflexives find their antecedents, one for sentence-bound reading the other for long-distance
interpretation.

From the implementational point of view, the advantage of a CCG-like system is that we don't need
a parse tree for the resolution of reflexives. The systems that depend on structural configurations
presuppose the existence of a parse tree, such as that of Lee (1996a, 1996b). In this system, however, PS
rules and functional applications take the roles of a parser, and all the operations depend on
argument-functor relations. The PS rules in (15) and syntactic processes in Section 4.2 DO NOT make
any parse tree. Their functions are (i) to decide which constituent and which one go into
functor-argument relations, and (ii) to filter out ungrammatical sentences in (16). Therefore, we have no
parse tree in this CCG-like system. In a nutshell, we achieve the same effect of a parser without it, and

306

this characteristic speeds up the system because we don't need to spend time for constructing a parse
tree.

6	 Conclusion

This paper developed resolution algorithms for Korean reflexives within Categorial Grammar
framework. Those algorithms are based on the functor-argument relations of the constituents, rather
than depend on structural configurations. A CCG-like system is introduced where surface combinatorics
plays an important role. Each reflexive is resolved by the operations on the TRANS and LPS values,
where each operation is triggered by the functional application of CAT values. We found that
long-distance reflexives in Korean are efficiently accounted for with those mechanisms. We also saw
that resolution algorithms using functor-argument relations are better than configuration-based accounts.
Theoretically, we can explain two readings of long-distance reflexives by the same resolution
algorithms, while the difference of two interpretations is captured with different resolution points. In
implementation, we said that the algorithms speed up the processing time, because we don't need a
parser.

In sum, this paper provides a faster and succinct computational implementation for the
interpretations of long-distance reflexives in Korean, within Categorial Grammar. I hope this study can
give us an opportunity to understand characteristics of long-distance reflexives in Korean.

References

Chierchia, G. 1988. Aspects of a Categorial Theory of Binding. In R. Oehrle et al. eds., Categorial Grammars and
Natural Language Structures. 125-51. Dordrecht : R. Reidel.

Hong, Sungshim. 1985. A and A' Binding in Korean and English : Government-Binding Parameters. Ph.D.
Dissertation. University of Connecticut.

Hong, Sungshim and Yong-hun Lee. 1994. On the Implementation of Pronominal Readings Using Binding
Condition B. Proceedings of the Korean Society for Cognitive Science. 443-459.

Kang, Beom-Mo. 1988a. Functional Inheritance, Anaphora, and Semantic Interpretation in a Generalized
Categorial Grammar. Ph.D. Dissertation. Brown University.

	 . 1988b. Unbounded Reflexives. Linguistics and Philosophy 11:415-456.

	 . 2001. Categorial Grammar : Korean Morphology, Syntax, and Type-theoretic Semantics.
Written in Korea. Seoul : Korea University.

Lee, Yong-hun. 1996a. On Efficient Parsing Method Using X-bar Theory. Proceedings of the Korean Society of
Cognitive Science. 33-51.

	 . 1996b. On the Implementation of English Anaphor and Pronominal Interpretation Using Binding
Conditions and Conceptual Structures. MA Thesis. Taejon : Chungnam National University.

	 . 2001a. Implementation of Pronoun Readings in English : A Categorial Grammar Approach. A
Paper Presented at the Seoul International Conference on English Linguistics. Yonsei University, Seoul, Korea.

	 . 2001b. Sentence-bound vs. Long-distance Reflexives in Korean : A Categorial Grammar
Approach. Manuscript. UIUC.

Lee, Yong-hun and Chongwon Park. 2001. An Analysis of Korean Multiple Accusative Constructions and Its
Computational Implementation. A Paper Presented at the Annual Conference of Linguistic Society of Korea,
Kyung-Joo, Korea.

Moon, Seung-Chul. 1996. An Optimality Approach to Long Distance Anaphors. Seoul : Thaehaksa.

Park, Chongwon. 2001a. Semantic and Combinational Valences for Korean Case Markers and COMPs: A
Bi-directional Analysis and Two Types of Functor-Argument Relations. to appear in Japanese-Korean
Linguistics xi.

	 . 2001b. Two Types of Valence and Tow Types of Functor-Argument Relations. to appear in
Harvard Studies in Korean Linguistics IX.

Steedman, M. 1996. Surface Structure and Interpretation. Cambridge, MA : MIT Press.

	 . 2000. The Syntactic Process. Cambridge, MA : MIT Press.

307

	PACLIC16-1-474-296.pdf
	PACLIC16-1-474-297.pdf
	PACLIC16-1-474-298.pdf
	PACLIC16-1-474-299.pdf
	PACLIC16-1-474-300.pdf
	PACLIC16-1-474-301.pdf
	PACLIC16-1-474-302.pdf
	PACLIC16-1-474-303.pdf
	PACLIC16-1-474-304.pdf
	PACLIC16-1-474-305.pdf
	PACLIC16-1-474-306.pdf
	PACLIC16-1-474-307.pdf

