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1 I n t r o d u c t i o n  

Analysts face a daunting task: they must accurately 
analyze, categorize, and assimilate a large body of 
information from a variety of sources and for a va- 
riety of domains of interest. The complexity of the 
task necessitates a variety of information access and 
extraction tools which technology up to this point 
has not been able to provide. SRI's TIPSTER Phase 
III project has focused on two major obstacles to the 
development of such tools: inadequate degrees of ac- 
curacy and portability. We begin by providing an 
overview of SRI's information extraction (IE) sys- 
tem, FASTUS, and then describe our efforts in these 
two areas in turn. We then conclude with some 
thoughts concerning future directions. 

2 O v e r v i e w  o f  F A S T U S  

FASTUS processes natural language and produces 
representations of the information relevant to a par- 
ticular application, typically in the form of database 
templates. As an example, we consider the task 
specified for the Sixth Message Understanding Con- 
ference (MUC-6), which was, roughly speaking, to 
identify information in business news that describes 
executives moving in and out of high-level positions 
within companies (Appelt et al., 1995). When FAS- 
TUS encounters a passage such as example (1), 

(1) John Smith, 47, was named president of ABC 
Corp. He replaces Mike Jones. 

it should extract the information that Mike Jones is 
'out' and John Smith is 'in' at the position of presi- 
dent of company ABC Corp. 

FASTUS consists of three major components. The 
first is the pattern recognition module, which consists 
of a series of finite state transducers that recognize 
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patterns in the text and create templates represent- 
ing event and entity descriptions. Pattern recogni- 
tion relies on a second component, the coreference 
module, which identifies the referents of a variety 
of types of referential expressions (e.g., pronouns, 
definite noun phrases). Finally, the merger unifies 
templates created from different phrases in the text 
that describe the same events. 

We illustrate by walking through an analysis of 
passage (1). The input is initially processed by us- 
ing the finite state transducers to recognize relevant 
patterns and annotate the text accordingly. First, 
one or more preprocessing phases recognize low-level 
patterns such as person names, organization names, 
and parts of speech. 

[John Smith]pERS--NAME [47]gUM [was]AUX 
[named]v [president]g [of JR [ABC 
Corp]ORG-NAME 

The parsing phase identifies very local syntactic con- 
stituents, such as noun groups and verb groups; no 
attachment of ambiguous modifiers is attempted. 

[John Smith]pEIRS-NAMIZ [47]NUM [was named]vG 
[president]NG [of]p [ABC Corp]oRG--NAME 

The combiner phase pieces together slightly larger 
constituents when it can be done reliably. 

[John Smith, 47]PERS--NG [was named]vc [presi- 
dent of ABC Corp.]POS--NG 

Finally, the domain phase applies domain-dependent 
patterns to the sentence to identify clause-level 
states and events. In this case, the entire sentence 
will match such a pattern. 

[John Smith, 47, was named president of ABC 
Corp]DOMAIN--EV ENT 

Recognizing a pattern in the domain phase typi- 
cally causes one or more template objects to be cre- 
ated. In light of the MUC-6 task specification, we 
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defined transition templates that track movements 
in and out of positions at companies; a person's 
leaving a job is represented by the start  state of a 
transition, whereas a person's taking a job is rep- 
resented by the end state. Therefore, the person, 
company, and position in the first sentence of (1) 
are represented in an end state since Smith is taking 
the described position. To facilitate certain types of 
inferencing during the merging phase, we also posit 
that someone, at this time unknown, is most likely 
leaving the position, this being represented in the 
transition's start  state as shown in Figure 1. 

in Figure 1 to produce the template shown in Fig- 
ure 3, which will lead to the correct output.  

START 

END 

PERSON MIKE JONES ] 
POSITION PRESIDENT 
ORGANIZATION ABC CORP. 

PERSON JOHN SMITH 
POSITION PRESIDENT 
ORGANIZATION ABC CORP. 

Figure 3: A Successful Merge 

START 

END 

PERSON 
POSITION PRESIDENT 
ORGANIZATION ABC CORP. 

] POSITION PRESIDENT 
ORCANIZATION ABC CORP. 

Figure h Template Generated from John Smith was 
named president of ABC Corp. 

The second sentence in the passage, He replaces 
Mike Jones, is then analyzed by the pattern match- 
ing phases, the details of which we omit. During 
this analysis, the coreference module identifies John 
Smith as the referent of "he". Having recognized a 
domain-level pattern, all that  is known is that  there 
is a start  state involving the person Mike Jones and 
an end state involving the person John Smith, rep- 
resented by the template shown in Figure 2. 

[ PERSON MIKE JONES ] 
START / POSITION - - -  

L ORGANIZATION 

END POSITION 
ORGANIZATION 

Figure 2: Template Generated from He replaces 
Mike Jones. 

As they stand, of course, these two templates do 
not appropriately summarize the information in the 
text; there is a discourse-level relationship between 
the two that  must be captured. This is the job of the 
merging component.  When a new template is cre- 
ated, the merger a t tempts  to unify it with templates 
that  precede it. In this case, the template shown in 
Figure 2 should be unified with the template shown 

3 F o c u s  o n  A c c u r a c y  

The first major  obstacle to the broad deployment 
of IE technology we address is the inadequate level 
of accuracy of existing systems. We have sought to 
push the accuracy of each of the three major  modules 
of FASTUS in our T I P S T E R  effort. 

3.1 A Latt ice-Based System for Pat tern  
Recogni t ion  

One of the main reasons for the success of FASTUS is 
that  it bypasses much of the complex linguistic pro- 
cessing characteristic of previous systems. Process- 
ing decisions are made using local rather than global 
evidence, minimizing the risk that  correct analyses 
get lost in a sea of incorrect ones. For instance, at 
each phase in the pattern recognition component,  
only the analysis deemed to be the best is passed to 
the next phase. Unfortunately, while this strategy 
has proved advantageous in general, in many cases 
it leads to premature processing decisions based on 
too little information. 

For instance, for the following example, 

(2) The committee heads announced the appoint- 
ment of John Smith as CEO. 

the parser phase of FASTUS will correctly mark "the 
committee heads" as a noun group. This decision is 
made because the noun usage of "head" is more com- 
mon than the verb usage in this domain, and because 
of a "greedy" preference for longer constituents. Us- 
ing the same heuristics for example (3), 

(3) The committee heads Viacom's CEO recruit- 
ment efforts. 

the system will generate the same analysis for "the 
committee heads". Since "heads" is actually used as 
a main verb in this example (with "the committee" 
as its subject), the parser's incorrect choice will re- 
sult in there being no domain-phase analysis for the 
sentence. 
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The trick, then, is to try to improve the scope (and 
thus, the accuracy) of the current mechanisms, with- 
out adopting the inadequacies of previous frame- 
works that  FASTUS was designed to improve upon. 
To do this, we implemented a lattice-based version of 
FASTUS. In keeping with the finite state paradigm, 
the pattern recognition phases perform transduc- 
tions over compact lattice representations of the in- 
put, passing such representations between phases. 
With a lattice representation, there are as many 
analyses for a string as there are paths through it, 
yet processing remains efficient. The processing of 
examples (2) and (3) will result in a lattice with 
both possible analyses for "the committee heads". 
In example (2), the successful match will result from 
matching a path in which "the committee heads" is 
analyzed as a noun group, whereas in (3), the suc- 
cessful domain-phase match will result from a path 
in which "the committee" is analyzed as a noun 
group and "heads" is analyzed as a verb group. 

Although compactly represented, the numerous 
analyses that can result from lattice-based process- 
ing still require some methods for pruning and path 
selection. To date, we have implemented and eval- 
uated a variety of strategies. Thus far, the results 
of these experiments, as measured by F-score on the 
MUC-6 task, have been somewhat mixed. A typi- 
cal experiment will yield about one point of gain in 
F-score; as expected, recall generally climbs with a 
smaller sacrifice in precision. We plan to do further 
experimentation in the future. 

3.2 Improvements  to Coreferenee 
Resolut ion 

We have implemented various high-precision and 
largely domain-independent incremental extensions 
to the coreference resolution module. 

Delayed Resolut ion in the Lattice System 
The implementation of the lattice-based system 
opened up the possibility of addressing several coref- 
erence issues that  could not be cleanly addressed 
within the nonlattice system. The first is a catch- 
22 which results from a need to perform coreference 
resolution both before and after the domain phase 
level of analysis. (Recall that coreference resolution 
comes before the domain phase.) We illustrate with 
example (4). 

(4) Analysts have been expecting IBM to announce 
some changes. In fact, today they named John 
Smith as president. 

Let us assume, plausibly enough, that the domain 
phase contains a pattern of the following sort, which 

will match the second sentence if the referent of 
"they" is a company (in this case IBM). 

Event := Company named Person as Position 

Coreference resolution must necessarily apply be- 
fore the domain phase, since the pattern interpreter 
needs to know whether the denotation of the sub- 
ject (the referent of "they") is a company. Unfortu- 
nately, in this particular case the coreference module 
is likely to choose "analysts" as the referent, since it 
occupies the subject position of the preceding clause, 
which usually indicates a higher degree of salience 
than the object position that "IBM" occupies. In- 
tuitively, however, just the fact that  the system has 
the aforementioned pattern suggests that one would 
expect a company to be situated at that  point in 
the context of the clause. Thus, there is reason to 
want coreference to apply after it has access to that 
pattern, that is, after domain-phase processing. 

A similar problem occurs with respect to intrasen- 
tential coreference constraints. Consider the sen- 
tence 

(5) John Smith removed him from the CEO post. 

Intrasentential constraints, dictated by the syntac- 
tic structure of the sentence, tell us that  "him" can- 
not refer to John Smith. However, only the domain 
phase has a notion of sentence-level syntax, so the 
system has no way of knowing of the applicability 
of this constraint given that the coreference module 
operates before this phase. 

The lattice-based system provides a way to in- 
corporate and preserve ambiguities through the do- 
main phase, and thus offers an opportunity to ad- 
dress these problems. Instead of selecting only the 
most preferred referent for a referential expression, 
the coreference module takes the set of alternatives 
and writes arcs for each onto the lattice in place 
of the referential phrase, including relative levels of 
preference. This lattice then serves as input to the 
domain phase, as before, at which point the above 
constraints can be enforced. In the case of exam- 
ple (4), for instance, the path in which "they" is 
rewritten as "analysts" will not result in a success- 
ful match, whereas the path in which it is rewritten 
as "IBM" will. Alternatively, if both potential ref- 
erents were company names, then the one that the 
coreference module considers to be most preferred 
will be selected. 

Contributions of the coreference and lattice com- 
ponents were independently measured on an earlier 
baseline system. We observed that  both components 
increase the recall and precision independently, with 
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the recall (error reduction of 8% to 10%) much more 
affected than the precision (error reduction of 1% to 
2%). The coreference-lattice combination leads to 
an even greater increase in the recall (13% error re- 
duction) but less impact on the precision (less than 
1% error reduction). After this evaluation, we real- 
ized that  the logic of the coreference-lattice integra- 
tion was incomplete, because of certain destructive 
operations that  should not be maintained in a strat- 
egy in which alternatives are preserved. We expect 
an even greater performance impact when integra- 
tion is completed. 

E x t e n s i o n s  to  C o v e r a g e  We also implemented 
extensions to the coverage of the coreference module. 

First, we implemented a module for resolving im- 
plicit arguments for certain relational nouns. Re- 
lational nouns are those whose denotations are de- 
termined in association to a possessor entity. In 
the business-political domain, position nouns such 
as CEO and vice president are relational, associated 
with (sometimes implicit) organizations at which 
these positions exist. As a first step, we added a 
mechanism for resolving implicit organizations for 
position expressions similar to those for pronoun res- 
olution. This addition increased the IE recall by al- 
most a point (0.85%), a nontrivial gain for a change 
of relatively limited scope. 

We also added a resolution routine for definite 
temporal  expressions. Indexicals such as "today",  
"next week", "last Monday", and "10 years ago" are 
resolved with respect to the document date. Par- 
tial temporal expressions such as "Friday" and "the 
23rd" are resolved with respect to the combination 
of the closest verb tense and the salient date in the 
global or local context. The globally salient date is 
the document date, whereas the locally salient date 
is the most recent date mentioned in the text. The 
performance of the date resolution routine was eval- 
uated with eight training articles containing a total 
of 53 definite date expressions. Among the currently 
intended coverage of 43 expressions, 37 were cor- 
rectly resolved. We can interpret it as having 69.8% 
recall (37/53) and 86.0% precision (37/43). 

F r a g m e n t  Ana ly s i s  After we observed the ef- 
fectiveness of implicit argument resolution as de- 
scribed above, we added a domain-specific t reatment  
of what we call fragment analysis. FASTUS often 
finds fragments of domain patterns in texts because 
of insufficient domain coverage--an inevitable limi- 
tation, given the ability for natural language to ex- 
press the same content in many different, often un- 
predictable surface realizations. Consider the follow- 
ing example. 

(6) John Doe, who is known for his "my way or the 
highway" management style, but who nonethe- 
less receives rave reviews from industry insiders, 
even his enemies, was named president of IBM. 

In this case, FASTUS is likely to match the fragment 
"was named president of IBM," outputt ing a tran- 
sition with a position and organization. Unfortu- 
nately, given the intervening material between this 
fragment and the subject, it will also most likely fail 
to link the transition to the incoming person, John 
Doe. The fragment analysis code corrects this by in- 
specting each transition created for a sentence, and, 
assuming that  a substantial but incomplete template 
is found, a t tempts  to locate candidates from the 
surrounding discourse context to replace the empty 
slots. The overall effect, specifically of making par- 
tial domain event templates more complete, is sim- 
ilar to that  of the merging phase. The difference is 
that  while merging combines two or more partially 
filled domain events, missing argument resolution 
fills empty slots of each domain event with recently 
mentioned entities even if they are not associated 
with extracted events. We compared the effects of 
fragment analysis and merging on the overall score 
using the 100 message MUC-6 training set. The re- 
sult is shown in Table 1; fragment analysis alone 
performed better  than merging alone, with the two 
together performing the best. 

A n  A n a l y s i s  o f  W o r d N e t  Sanda Harabagiu, a 
former post-doctoral fellow at SRI, performed an 
analysis of how WordNet might be used to improve 
coreference resolution, particularly by exploiting hy- 
pernym and synonym information. Using the MUC- 
6 coreference training messages as her corpus, she 
found that  60% of the coreferenee examples fall 
into categories in which WordNet is of no poten- 
tial use: Cases of identity between strings (e.g., "a 
company.. . the company")  comprised 42.3% of the 
examples, and cases in which coreference is indi- 
cated by syntactic configuration (e.g., appositives, as 
in "John Smith, president of Acme Widgets") com- 
prised 18.27% of the examples. 

Reference involving a synonym relation made up 
8.33% of the examples. Of these, 3.1% were syn- 
onyms in WordNet, such as "bill" and "measure". 
However, 5.23% were not in WordNet. Some of these 
cases one could imagine being in such a knowledge 
source, such as "business" and "company"; it just 
so happens that  they are not. On the other hand, 
there are also more difficult cases, such as "IBM" 
and "wounded computer  giant", for which no knowl- 
edge base is likely to contain a relation. 

Reference involving a hypernym relation made up 
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Merging Fragment Analysis 

Off Off 
Off On 
On ! Off 
On ! On 

Precision [ Recall [ F-score 

71 42 52.60 
68 48 56.10 
65 52 57.67 
64 55 59.17 

Table 1: Contributions of Fragment Analysis and Merging 

11.0% of the cases. Of these, 3.7% were in Word- 
Net, such as "quarter" and "period", and "chair- 
man" and "officer". The other 7.3% were not in 
WordNet. Again, there were cases which one could 
imagine being there, such as "automaker" and "com- 
pany". Others, however, such as "Clinton officials" 
and "Clinton camp",  are not likely to be found in 
any such knowledge base. 

The remaining cases were often more difficult; 
many involving metonymy. 

3.3 Learning Merging Strategies 
Early in the project, we performed an analysis of the 
errors FASTUS made on a subset of the MUC-6 devel- 
opment corpus. The majori ty of the errors indicted 
merging at least in part, suggesting that  merging 
improvements had a potential for high payoff. 

The existing FASTUS merging algorithm is quite 
simple - it a t tempts  to merge newly created tem- 
plates with previous ones, starting with the most 
recent. Templates are merged when they are unifi- 
able in accordance with any prespecified constraints. 
Despite its simplicity, the algorithm has proven to 
be fairly successful. Nonetheless, it is quite possi- 
ble that other merging strategies could yield better 
results. 

There are two ways in which one might a t tempt  
to identify such strategies. First, one could perform 
data analyses to identify good merging principles, 
handcode them, and test the results. Alternatively, 
one could a t tempt  to have merging strategies be 
acquired by the system automatically, using some 
training mechanism. We at tempted both of these, 
which we discuss in turn. 

D a t a  A n a l y s e s  a n d  E x p e r i m e n t a t i o n  The 
first action we took was to perform an extensive 
analysis of merging results. We developed detailed 
mechanisms for tracing merging behavior and dis- 
tributed transcripts among several project partici- 
pants. In analyzing these, we identified a variety of 
constraints which appeared to be extremely reliable, 
in particular, characteristics of templates that were 
almost always correlated with incorrect merges. 

One by one, these constraints were implemented 

and tested. In each case, end-to-end performance 
on the scenario template task either remained the 
same or decreased slightly. In no case did we get a 
nontrivial increase in performance. 

This was rather puzzling and frustrating, and 
highlighted some of the problems with handcoding 
system improvements. For one, the processes of data  
analysis, system coding, and testing are labor inten- 
sive. One cannot try all possible alternative sets of 
constraints one might consider, so one can never be 
sure that  other, unat tempted constraints would not 
have fared better. Second, it could be that  we were 
being misguided by the relatively small data  sets 
that  we were analyzing by hand. Thus, we began 
considering other paradigms for identifying better 
merging strategies. 

There were also other, longer-term considerations 
for moving away from handcoding merging improve- 
ments. For one, the optimal merging strategy is 
highly dependent on the quality of the input it re- 
ceives, which is constantly evolving in any realis- 
tic development setting, thus requiring continual re- 
experimentation. Thus, changes that  improve per- 
formance at one point in system development could 
potentially decrease performance at another time, or 
vice versa. Second, a general goal of IE research is 
to have systems that can be trained for new applica- 
tions long after the system developers are involved, 
which precludes experimentation by hand. 

These considerations mot ivate  research to deter- 
mine if merging strategies can be learned automat-  
ically. There are several different types of learning, 
including supervised, unsupervised, and an area in 
between which one might call indirectly supervised. 
We have performed experiments using all three types 
of technique, which we describe below. 1 

x The work reported on here, also discussed in Kehler 
(1998), concerns learning merging strategies in support 
of the scenario template task of MUC-6 as described in 
Section 2. While we are unaware of any other reported 
research on this task, other work has addressed other 
MUC-style tasks. For instance, Kehler (1997) describes 
a probabilistic approach to entity-level merging that out- 
performs several baseline metrics. Also, researchers at 
BBN (Ralph Weischedel, TIPSTER 18-month meeting) 
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S u p e r v i s e d  M e t h o d s  In our first set of experi- 
ments,  we took the approach most  commonly pur- 
sued in the computat ional  linguistics literature, 
namely supervised learning. Supervised methods re- 
quire a set of training da ta  tha t  the learning algo- 
r i thm can consult in constructing its model. For our 
initial experiments, we ran the 100 MUC-6 train- 
ing messages through FASTUS and wrote out feature 
signatures for the 534 merges tha t  the system per- 
formed. The feature signatures were created by ask- 
ing a set of 50 questions about  the context in which 
the proposed merge is taking place, referencing the 
content of the two templates  and /o r  the distance 
between the phrases from which each templa te  was 
created. Some example questions are: 

• SUBSUMED?: true if the contents of one tem- 
plate completely subsume the contents of the 
other. 

* UNNAMED-REFERENCES?:  true if either 
transition has a slot filled with an object lack- 
ing a proper name, e.g., "an employee" in the 
person slot. While these objects can merge 
with other (perhaps named) entities of the same 
type, in general they should not. 

* LESS-THAN-700-CHARS?: true if the phrases 
from which the templates  are created are less 
than 700 characters apar t  in the text. 

After the feature signatures were written, we exam- 
ined the texts and manual ly encoded a key for each. 

We a t t empted  two approaches to classifying 
merges using this corpus as training data.  The 
first was to grow a classification tree in the style of 
Breiman et al. (1984). At each node, the algori thm 
asks each question and selects the one resulting in 
the purest split of the data.  Entropy was used as the 
measure of node purity. In the second set of exper- 
iments, we used the approach to m a x i m u m  entropy 
modeling described by Berger et al. (1996). The two 
possible values for each of the same 50 questions (i.e., 
yes or no) were paired with each of the two possi- 
ble outcomes for merging (i.e., correct merge or not) 
to create a set of feature functions, or features for 
short, which were used in turn to define constraints 
on a probabilistic model. We used the learned max- 
imum entropy model as a classifier by considering 
any merge with a probabil i ty strictly greater than 
0.5 to be correct, and otherwise incorrect. 

report on learned merging strategies achieving good per- 
formance on the less complex template entity and tem- 
plate relation tasks in MUC-7, although no comparison 
with a similar hand-coded system was provided. 

Out of the available set of questions, each ap- 
proach selects only those that  are most  informative 
for the classifier being developed. In the case of the 
decision tree, questions are selected based on how 
well they split the data.  In the case of m a x i m u m  
entropy, the algori thm approximates  the gain in the 
model 's  predictiveness that  would result f rom im- 
posing the constraints corresponding to each of the 
existing inactive features, and selects the one with 
the highest anticipated payoff. One potential  advan- 
tage of m a x i m u m  entropy is that  it does not split 
da ta  like a decision tree does, which may  prove im- 
por tant  as training sets will necessarily be limited in 
their size. 

In our prel iminary evaluations, we used two-thirds 
of our annota ted  corpus as a training set (356 exam- 
ples), and the remaining one-third as a test set (178 
examples).  We ran experiments using three different 
such divisions, using each example twice in a train- 
ing set and once in a test set. In each case the maxi-  
m u m  entropy classifier chose features corresponding 
to either 6 or 7 of the available questions, whereas 
the decision tree classifier asked anywhere from 7 to 
14 questions to get to the deepest leaf node. In each 
case there was considerable, but not total, overlap in 
the questions utilized. Adding the errors from the 
three evaluations together, the decision tree made 
34 errors (out of a possible 534), in which 13 correct 
merges were classified as incorrect and 21 incorrect 
merges were classified as correct. The m a x i m u m  en- 
tropy classifier made a total  of 31 errors, in which 
14 correct merges were classified as incorrect and 
17 incorrect merges were classified as correct. This 
is compared to a total  of 139 errors out of the 534 
merges that  the current merger made according to 
the annotat ions.  

These results may appear  to be positive, as it 
would seem tha t  both  methods found some reliable 
information on which to make classifications. How- 
ever, our goal here was to improve end-to-end per- 
formance on the scenario templa te  task, and thus we 
wanted to know how much of an impact  these im- 
proved merging strategies have on that  performance.  
Therefore, we replaced the existing FASTUS merg- 
ing algori thm with two more discriminating mergers, 
each directed by one of our learned classifiers. The 
first version consulted the decision tree and merged 
only when the example was classified as correct. The 
second version did the same using the m a x i m u m  en- 
tropy classifier. For these experiments,  the two mod- 
els were trained using the entire set of 534 examples.  

As we were still experimenting at this point, we 
were not ready to perform an evaluation using our 
set of blind test messages. As an information gath- 
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ering experiment, we applied FASTUS using the new 
mergers to the corpus of messages that  produced 
the training data. We would of course expect these 
experiments to yield better results than when ap- 
plied to unseen messages. Nonetheless, the results 
were humbling - both experiments failed to improve 
the performance of the overall system, and in fact 
degraded it slightly. Generally, a point of precision 
was gained at the expense of a point or two of recall. 

Clearly, there is a rift between what one might 
consider to be good performance at discriminating 
correct and incorrect merges based on human judg- 
ments, and the effect these decisions have on over- 
all performance. Because the baseline FASTUS algo- 
r i thm merges too liberally, using the classifiers cause 
many of the incorrect merges that  were previously 
performed to be blocked, at the expense of blocking 
a smaller number of correct merges. Thus, it is possi- 
ble that the correct merges the system performs help 
its end-to-end performance much more than incor- 
rect merges hurt it. For instance, it may be that  cor- 
rect merges often result in well-populated templates 
that have a marked impact on performance, whereas 
incorrect merges may often add only one incorrect 
slot to an otherwise correct template, or even result 
in templates that  do not pass the threshold for ex- 
tractability at all. In fact, in certain circumstances 
incorrect merges can actually help performance, if 
two incorrect templates that  would produce incor- 
rect end results are unified to become one. 

In any case, it should be clear that  improved per- 
formance on an isolated subcomponent of an IE sys- 
tem, as measured against human annotations for 
that subcomponent, does not necessarily translate 
to improved end-to-end system performance. Add 
this to the cost of creating this annotated data  - 
which will continually become obsolete as the up- 
stream FASTUS modules undergo development - and 
it becomes clear that  we need to look to other meth- 
ods for learning merging mechanisms. 

U n s u p e r v i s e d  M e t h o d s  Naturally, the main al- 
ternatives to supervised methods are unsupervised 
methods. We consider replacing our merging algo- 
ri thm with one that  performs an unsupervised clus- 
tering of the templates and merges the templates in 
each cluster. Of course, we will not know a priori  
how many clusters there are, that is, how many tem- 
plates we should be left with when we are finished. A 
method that does not require such knowledge is Hi- 
erarchical Agglomerative Clustering (HAC) (Duda 
and Hart, 1973; Everitt, 1980, inter alia). 

The HAC algorithm is conceptually straightfor- 
ward. Given a set of examples, the algorithm begins 

by assigning each to its own cluster. A predeter- 
mined similarity metric is then applied to each pair- 
wise combination of clusters, and the most similar 
pair combined. The process is iterated until no pair 
of clusters have a similarity that exceeds a preset 
threshold. 

Our application of clustering is somewhat different 
from many problems to which clustering has been 
applied. For one, our clusters will always have only 
one member, since templates are merged upon clus- 
tering. Issues with how to compute similarity be- 
tween two nonsingleton sets O f data  points are there- 
fore avoided. Furthermore, our notion of similarity is 
nonstandard. Usually, similar examples are distinct, 
but have properties that are "close" to each other in 
some space. Here, similarityis meant to measure the 
likelihood that the two templates are incomplete de- 
scriptions of the same complex of eventualities (i.e., 
the same transition), although the templates them- 
selves may look very different. 

We performed some informal experiments in 
which we intuited a similarity metric, assigning 
weights to a subset of the questions that  we had 
defined for the supervised learning experiments. For 
instance, templates that were created from phrases 
close to each other in the text and that  overlapped in 
content received high similarity, whereas those that 
were far apart  and did not overlap received low sim- 
ilarity. Instead of merging incrementally as in the 
supervised learning experiments, pattern matching 
was first applied to the entire text, and the resulting 
templates were clustered and merged until no pair 
of templates passed a preset similarity threshold. 

Running the system over the MUC-6 development 
set yielded results similar to our experiments using 
the supervised mergers. We did not find this to be 
particularly surprising; for instance, the mediocre 
results could be attributable to the similarity metrics 
not being very good. 

We did not push this approach any further, be- 
cause it is still lacking with respect to one of our 
goals for pursuing learning strategies. While it ad- 
dresses the problem of requiring annotated training 
data, it does not address the fact that  the optimal 
merging strategy is inherently dependent on its in- 
put. If we encode a similarity metric for clustering 
and keep it fixed, we are left with only a single degree 
of freedom - t h e  similarity threshold at which to halt 
the clustering process. While this may yield some 
leverage (for instance, good input to the merger may 
call for a high threshold, whereas bad input may call 
for a lower threshold), it will certainly be too inflex- 
ible in the general case. 

In sum, several factors could influence the likeli- 
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hood of a potential merge within a particular appli- 
cation, and it therefore seems that  something tied to 
the application needs to guide the learning process. 

Indirect ly  Superv i sed  M e t h o d s  When devel- 
oping an IE system, one typically encodes (or is 
given) a moderate-size set of end-to-end develop- 
ment keys for a set of sample messages. These keys 
need to be encoded only once. We did not use these 
keys for supervised learning because of the difficul- 
ties in aligning the inaccurate and incomplete inter- 
mediate templates produced by the system with the 
(normalized) end results. However, we can use the 
keys to evaluate the end results of the system, and 
a t tempt  to tune a merging strategy based on these 
evaluations. After all, it is improved end-to-end per- 
formance that  we are seeking in the first place. 

Thus, we consider a form of what we are calling in- 
directly supervised learning. We use the HAC mech- 
anism described in the previous section, but a t tempt  
to learn the similarity metric instead of stating it 
explicitly. The search through the space of possi- 
ble similarity metrics will be driven by end-to-end 
performance on a set of training messages. 

We start by defining a space of similarity met- 
rics. In a preliminary experiment, we used 7 of the 
questions that were used in the supervised experi- 
ments, coupled with their negations, for a total of 
14 questions. These questions are assigned weights, 
either positive or negative, that get incorporated 
into a similarity metric when the question is true 
of a potential merge. Let Ai be the weights assigned 
to corresponding questions qi, and let the function 
fq, (t l , t2) be 1 if the question qi is true of the tem- 
plates t l  and t2, and 0 if not. Then the similarity 
S(tx,t2) is given by 

e E i  fqi (tl ,t2)*)~i 

S ( t l , t 2 )  --= e~]ifqi(tx,t2).A i q- 1 

This function, which is adapted from the form of 
the probability model used in the maximum entropy 
framework, provides a similarity measure in terms 
of a probability. 

We used an annealing strategy to tune the weights 
Ai. The algorithm begins by processing the 100- 
message MUC-6 development set, usually with a 
randomly selected initial configuration that  estab- 
lishes a baseline F-score. The algorithm then iter- 
ates, selecting some of the questions at random (per- 
haps just one, perhaps all of them) and permuting 
their weights by a random amount,  either positive or 
negative. The system is then rerun over the training 
set and the F-score measured. Any permutation re- 
sulting in an F-score that  is strictly greater than the 

current baseline is adopted as the new baseline. To 
stay out of local maxima, a permutat ion leading to a 
decrease in performance may also be adopted. This 
is the annealing part - such negative permutations 
are accepted with a probability that  is proportional 
to a steadily decreasing measure of ' temperature ' ,  
and inversely proportional to the magnitude of the 
decrement in performance. Thus, permutations that 
decrease performance slightly in early stages of the 
search are likely to be adopted, whereas permuta- 
tions that  decrease performance either significantly 
or in later stages of the search are not. 

The results of one of several experiments are 
shown in Figure 4. The search began with an initial 
similarity metric achieving an F-score of 58.83, and 
continued for 300 iterations. A low F-score of 57.70 
was achieved early, in iteration 10. The best metrics 
considered yielded an F-score of 59.80. 

Obviously, and somewhat surprisingly, this graph 
is practically flat. On one hand, it is unfortunate 
that  there aren' t  higher high points: The learner 
was not able to leverage the available features to ac- 
quire a much better merging strategy than the one 
it started with. Perhaps even more surprising, how- 
ever, is that  there were also not lower low points - 
only iteration 10 achieved a score lower than 58. Be- 
cause the learner was not given any bias with respect 
to the permutations it a t tempted,  some of those it 
considered were intuitively poor (e.g., boosting the 
weight for phrases that  are very far apart,  lowering 
the weight for sparsely filled templates with no over- 
lap). Thus, one might have expected certain of these 
to devastate performance, but  none did. It seems 
that  as long as a certain amount  of merging is per- 
formed, it matters  less which templates are actually 
merged, and in what order. 

Conc lus ions  and Future  Direct ions  In sum, 
the learned mechanisms were neither significantly 
better  nor worse than a hand-coded merging strat- 
egy. The inability to outperform the existing strat- 
egy could be at tr ibuted to several facts. We sus- 
pect that  a major  problem is the lack of accessi- 
ble, reliable, and informative indicators for merg- 
ing decisions. Unlike lower-level problems in natural 
language processing (NLP) in which local informa- 
tion appears to bear highly on the outcome, includ- 
ing, for instance, part-of-speech tagging (Church, 
1988; Brill, 1992, inter alia) and sense disambigua- 
tion (Yarowsky, 1994; Yarowsky, 1995, inter alia), 
none of the questions we have formulated appear to 
be particularly indicative of what effect a potential 
merge will have on system performance. This sug- 
gests that  more research is needed to identify ways 
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Figure 4: Results of a Learning Experiment 
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to access the necessary knowledge from independent 
sources such as existing knowledge bases, or by min- 
ing it from online text corpora using unsupervised 
or indirectly supervised learning techniques. 

Furthermore, these experiments may be cause for 
concern about the nature of the scoring metric and 
procedure used in MUC-6. All of the merging strate- 
gies at tempted,  both hand-coded and automatically 
learned, performed similarly. This (rather unex- 
pected) result would suggest that  the scoring mech- 
anisms be given a closer look, which we do in the 
following section. 

3.4 Ana ly s i s  o f  t h e  S c o r i n g  S y s t e m  

As we have indicated, the lack of more significant 
progress in some of the foregoing efforts had us puz- 
zled. Intuitively positive system changes were not 
showing much effect in terms of end-to-end perfor- 
mance, nor were certain intuitively negative changes. 
Of course, judgments of what constitute positive and 
negative changes are only as good as the scoring 
mechanism which is providing the feedback. As part 
of a related project at SRI, we began to find some 
more concrete evidence that at times this feedback 
has been misguiding our efforts. Incremental refine- 
ments in the system's output,  ones that should yield 
superior results, nevertheless receive a lower score 
from the scoring mechanism. 

The following text (WSJ article 870112-0001) pro- 
vides an example illustrating this point: 

(7) The board also named a three-man executive 
committee to perform the chief executive's role. 
The three members are Victor Steele, head of 
the company's beverage division; Brian Bal- 
dock, head of the leisure and health division; 

and Shaun Dowling, who runs industrial oper- 
ations. 

Further executive resignations or dismissals are 
widely expected. The positions of Olivier Roux, 
head of financial planning, and Thomas Ward, 
a U.S. at torney who is a close aide to Mr. 
Saunders, are "open to question," one Guinness 
source said. 

FASTUS does poorly on this example, for under- 
standable reasons. It did not produce any succes- 
sion events for the first paragraph, because doing so 
would require resolving a variety of difficult linguis- 
tic issues lying beyond the depth of processing at 
which FASTUS operates. On the other hand, for rea- 
sons that  won't be described in detail, the system 
generated a succession event from the second para- 
graph involving the position "head of financial plan- 
ning", with four IN-AND-OUT templates involving 
Roux, Saunders, and two other people mentioned in 
the article. 

While not much could be done for the first para- 
graph, we modified FASTUS SO that  it would not pro- 
duce a template from the second paragraph. The 
change to the system performance on this message 
has to be positive: while we do not generate any 
additional correct information from the change, we 
eliminated four predications about  an irrelevant po- 
sition, three of which would be false even if one con- 
sidered the position to be relevant. Other output  
for this text was not affected, so we would expect 
to observe the same recall (correct output  was not 
changed), but notably higher precision from having 
eliminated the incorrect succession event, four incor- 
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rect IN-AND-OUTs,  and two irrelevant PERSON 
templates.  

In reality, this change resulted in a slight rise in 
precision (from 57 to 59) and a dramat ic  reduc- 
tion in recall (from 50 to 33), causing the F-score 
on this  message  to p lummet  from 53.30 to 42.67. 
The reward for eliminating four irrelevant predica- 
tions was a 20% drop in the score. This result is, to 
say the least, counterintuitive, and suggests serious 
problems in the ability of the scoring mechanism to 
provide adequate feedback. 

We have several speculations regarding the causes 
of this behavior, but final conclusions await a more 
comprehensive study. It  should be obvious in any 
case, however, that  further progress in IE is crucially 
dependent on these issues being resolved. While this 
is true regardless of the approach one takes to system 
development,  it is especially so if we want to move 
toward systems with rules and procedures that  are 
learned automatical ly.  Successful learning depends 
on the assumption that  learned improvements  are 
reflected in the evaluation function; if this is not the 
case then learning is all but hopeless. Thus, future 
research in IE must  be coupled with research into 
evaluation strategies. 

3.5 T h e  Z i p f  Ef fec t  on Information 
Extract ion  Appl icat ions  

A fundamental  question with respect to IE applica- 
tions is the nature of the Zipf curve relating pat tern  
development to improved coverage. In a given appli- 
cation, there is usually a small set of pat terns  which 
will have broad applicability - that  is, they are likely 
to match  on many  examples in any given set of un- 
seen data.  For instance, a MUC-6 pat tern designed 
to match  the sentence 

(8) John Smith was appointed CEO of IBM. 

will a lmost  certainly match many  other similar ex- 
amples also. At the other end of the spectrum, 
there are many  'one-of-a-kind'  examples in any given 
training corpus for which the corresponding pat tern  
is unlikely to match  many  other examples. For in- 
stance, a pat tern  developed to handle the sentence 

(9) John Smith and his associate, Roger Jones, the 
former of which will soon be on board at IBM 
and the latter of which will be heading to Ap- 
ple, are in line to be CEO and chairman, re- 
spectively. 

is unlikely to match other examples in any 
reasonably-sized corpus of unseen data.  The big 
question, then, is at what point in development do 

the great majori ty  of examples fall into the second 
class; at this point performance gains on training 
da ta  do not transfer to gains on test data.  It  could 
very well be the case that  after developing pat terns 
to handle the examples in a moderately-sized train- 
ing set - say 100 messages, as in the MUC-6 training 
c o r p o r a -  one has reached the point of diminishing 
returns. 

In support  of a project related to T I P S T E R ,  the 
Office of Research and Development provided us 
with an additional set (90 messages) of da ta  with 
keys annota ted  in accordance with the MUC-6 task 
specification. This gave us an oppor tuni ty  to see 
whether new improvements  inspired by this da ta  
would transfer to the test data.  The changes we im- 
plemented were all relatively minor.  They included: 

• Fixing a few problems in name recognition 

• Adding a parser phase pat tern  

• Adding domain phase pat terns  for a few 
metaphorical  expressions 

• Eliminating a filter for irrelevant texts 

• Fixing other minor bugs 

These modifications caused our score on the new 
training da ta  to increase from 46.4 to 52.1, which 
is not a surprising result. Given that  the fixes were 
directed narrowly at specific examples in this set, 
we did not expect to see much of an improvement  
in either of the other da ta  sets. Our suspicions were 
confirmed by results on the basic training data;  our 
score on this set went from 58.6 to 59.6. Quite sur- 
prisingly, however, our score on the blind test set 
rose significantly, from 51.7 to 57.1 - an increase of 
over 10%. 

Thus, necessarily adding a proviso about  the ade- 
quacy of the evaluation metrics per the last section, 
we have a negative da ta  point for the hypothesis that  
100 training messages place us beyond the point of 
diminishing returns. The second set of messages ap- 
parently had considerable overlap with the test da ta  
in areas that  did not overlap with the original train- 
ing set. 

4 F o c u s  o n  P o r t a b i l i t y  

A second major  obstacle to the broad utilization of 
IE technology is the t ime and expertise needed to 
develop new systems. Users need to be able to de- 
velop extraction systems for new information needs 
rapidly and without the assistance of a system de- 
veloper. We have been developing infrastructure, 
consisting of patterns,  ontologies, and tools, which 
brings us closer to these capabilities. 
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4.1 Open Domain System 

The majority of previously pursued IE tasks, in- 
cluding those in the MUC evaluations, have been 
centered on extracting information from a narrowly 
defined domain. Alternatively, one might imagine 
developing a system capable of extracting informa- 
tion about a significantly broader set of events that 
might potentially be of interest to an analyst. We 
call such a system an open domain application. 

We are currently completing our implementation 
of an open domain system for business news. The 
system is built upon an infrastructure consisting of a 
broad set of patterns and ontologies. These patterns 
and ontologies will serve as a basis for the analyst 
to produce special-purpose IE systems (which we 
call FASTLETS) for specific information needs. Such 
FASTLETS could be used not only for database gen- 
eration, but also to improve systems for document 
and subdocument retrieval and for task-driven sum- 
marization, among other applications. 

The patterns and ontologies were developed from 
an in-depth analysis of the 150 most common verbs 
and nominalizations within a corpus of Wall Street 
Journal texts. A frequency analysis was performed 
to identify these verbs and nominalizations, and a 
list was generated of all the sentences in the corpus 
containing each. A chart was then constructed for 
each group, listing each verb and its role fillers (sub- 
ject, object, prepositional objects). This gave rise to 
the patterns required to cover the examples, and the 
elements and organization of an ontology emerged. 
A few example patterns are shown below. 

Person analyzes { Industry I Commodity ] 
Financial-Instrument ) 

{ Company I Person } controls Company 

{ Company ] Country } exports Goods to 
Country 

Coperorg invests Money in { Financial- 
Instrument I Market] Country I Company } 

The italicized elements indicate concepts in the de- 
veloped ontologies; for instance, Coperorg is a cat- 
egory subsuming several other concepts including 
Person, Company, and Organization. 

Open domain patterns are integrated with the 
compile-time transformation component of FASTUS. 
This component is capable of taking a single pattern 
and specifying the different ways in which it can be 
expressed in English. Thus, the first pattern in .the 
list above will not only match sentence (10), 

(10) John Smith analyzed the automobile industry. 

but it will also match examples such as (11) and 
(12). 

(11) The automobile industry has been analyzed by 
John Smith. 

(12) John Smith's analysis of the automobile indus- 
try... 

The output  of the open domain pattern set is a 
case-frame style template, marking roles and modi- 
fiers such as agent, patient, location, time, and pur- 
pose. 

Open Domain and Rule Acquisition As we 
have indicated, one of the ways in which the open 
domain infrastructure can be used is as the basis 
for allowing end users to construct their own pat- 
terns tailored to their own information needs. The 
development process will be much like what expert 
developers do to build systems, except that there 
will be a richer set of tools for doing so. For in- 
stance, in our MUC-6 effort, we first outlined the 
events of interest, and then scanned training texts 
to determine the verbs and nominalizations that en- 
coded those events. We then categorized them into 
classes of verbs with the same case frames, and wrote 
subject-verb-object patterns for each of the classes. 

We are currently developing an interface that will 
allow end users to accomplish this. Analysts will se- 
lect the open domain patterns that  are relevant to 
their needs, and constrain their arguments in appro- 
priate fashions. The system will support testing on 
existing corpora and provide assistance for further 
rule adaptation. The interface is being implemented 
in Java. 

4.2 An Application: Using IE to Improve 
Document Retrieval 

As we have mentioned previously, one of the possi- 
ble uses for FASTLETS is to improve the quality of 
document retrieval (DR) results. We discuss some 
of our past and current work, as well as future plans. 

Completed Experiments In work predating 
T I P S T E R  Phase III, a topic was chosen from the 
TREC-5 corpus which overlapped significantly with 
the MUC-6 management succession topic. SRI's 
MUC-6 system was used to reorder the retrieval re- 
sults from the UMASS Inquery ad-hoc query system, 
based on the results of finite state pattern matching. 
This experiment produced a positive result, which, 
while far from being definitive, suggested that  fur- 
ther investigation should be performed. Of course, 
the scenario that  was being tested is not realistic, as 
such highly developed [E systems will not generally 
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exist for most information needs. A more reasonable 
scenario would be one in which a rapidly developed 
FASTLET is used to perform such a task. 

During T I P S T E R  Phase III,  SRI teamed with 
GE R&D to part icipate in the TREC-6  evaluation. 
FASTLETS were developed for 23 of the 47 topics in 
the TREC-6 routing task, in which up to 4 hours 
per topic was spent reading a small set of relevant 
texts and writing a small number  of g r a m m a r  rules 
and lexical attr ibutes.  Each FASTLET was then run 
overnight on some additional training data,  and an- 
other 1 to 2 hours was spent (on average) making any 
necessary adjustments,  for a total  of an average of 4 
to 6 hours per topic. The major i ty  of these FASTLET 
grammars  were developed by a Stanford undergrad- 
uate, who has the characteristics one might expect 
the end user of such a system to have: he is smar t  
and computer  literate, but knows essentially nothing 
about  NLP, linguistics, IE, and DR. 

In the G E / S R I  joint TREC-6  entry, the routing 
query version of GE ' s  DR system was used to pro- 
vide the top 2000 ranked documents  for each topic. 
The FASTLETS were then used to rerank the list and 
produce the top 1000. The results were encourag- 
ing, albeit again not definitive. In abstract  terms, 
the G E / S R I  system improved on the results of the 
GE system alone for 16 topics, degraded them for 
5 topics, and received the same results on 2 topics. 
Of the 16 topics in which the results were improved, 
in 2 cases the improvement  was very significant, in 
6 cases the improvement  was significant, and in 8 
cases the improvement  was small and insignificant. 
For one topic, ours was the best performing system. 
Of the 5 cases in which the results were degraded, 
in 3 cases the decline was significant and in 2 cases 
it was very significant. 

These results are encouraging in that  they indicate 
that  the FASTLET approach to improving DR may  
be feasible, considering that  in at least some cases 
NLP techniques improved the results of an already 
competi t ive routing query system. 

A n  O n g o i n g  S t u d y  The results of the forego- 
ing experiments are especially encouraging consid- 
ering that  they were achieved using a highly subop- 
t imal overall architecture. The DR and IE systems 
were treated as black boxes: the DR system ranked 
documents using standard DR types of evidence 
(word frequency analysis), and then the FASTLETS 
reranked the documents  based on pat tern matching 
evidence, without considering (or even having access 
to) the DR evidence. All the FASTLETS had access 
to was the output  ordering. In actuality, it is likely 
that  both types of evidence are useful for relevance 

determination,  and that  the relative usefulness of 
each varies on a per-topic basis. Wha t  is needed is 
an architecture in which the DR and IE evidence 
is considered together, with a principled mechanism 
for selecting the most  informative features for docu- 
ment  relevance on a per-topic basis. 

We are currently pursuing such an architecture, 
which, in addition to certain modifications to FAS- 
TUS, requires a research-level DR capability. We 
have implemented a variety of word collection and 
frequency analysis mechanisms which leverage the 
considerable tokenization and morphological anal- 
ysis capabilities of FASTUS. We have also imple- 
mented several learning algori thms capable of incor- 
porat ing and weighing heterogeneous types of evi- 
dence. 

In order to speed up FASTUS processing on large 
da ta  collections, we implemented a "trigger word" 
compiler for FASTUS grammars .  The mechanism 
reads in a pa t tern  set and generates a list of words 
required to match  them. Any sentence that  does 
not contain a word on the list can be ignored after 
early stages of processing. 2 Initial experiments have 
indicated a speed up of more than a factor of three. 

Mechanisms for generating relevance features 
from FASTLET results are currently being imple- 
mented, in preparat ion for the learning experiments.  
We will report  on the results of these experiments in 
a future forum. 

5 C o n c l u s i o n s  a n d  F u t u r e  D i r e c t i o n s  

We have summarized SRI 's  developments in address- 
ing two major  obstacles to the broad deployment of 
IE technology: accuracy and portability. The T IP -  
STER program has witnessed significant progress in 
both areas, and has perhaps witnessed even greater 
progress in our understanding of IE technology. 

We believe that  the current s tate of IE technol- 
ogy suggests two main directions for future work; 
directions which look to opposite directions of the 
research-to-applications spectrum. The first direc- 
tion is to leverage the progress we have made to 
embed IE technology within applications in which 
it can be useful. Candidate applications include 
document  retrieval, task-based summarizat ion,  task- 
based machine translation, cross-document and mul- 
t imedia fusion, and trend analysis. Current progress 

2Although it should be noted that every sentence 
needs to be processed up through the combiner phase 
if coreference is to work optimally, since referents for 
referential expressions can occur in otherwise irrelevant 
sentences. The degree to which ignoring this fact af- 
fects performance is an empirical question, which will be 
studied in future work. 

72 



prepares us well for such investigations, the critical 
question being whether current levels of accuracy are 
sufficient for success. 

Our work has also suggested that if we are to 
achieve revolutionary (rather than merely evolution- 
ary) improvements in the state-of-the-art, we also 
need to step back and focus on fundamental re- 
search. Current approaches are good at identifying 
the information that natural language "wears on its 
sleeve"; the remainder will require new and richer 
techniques. Basic research is necessary to guide the 
development of such mechanisms, and must be cou- 
pled with an investigation into evaluation mecha- 
nisms. 
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