
I N F O R M A T I O N E X T R A C T I O N R E S E A R C H A N D
A P P L I C A T I O N S : C U R R E N T P R O G R E S S A N D

F U T U R E D I R E C T I O N S

A n d r e w K e h l e r , J e r r y R . H o b b s , D o u g l a s A p p e l t ,

J o h n B e a r , M a t t h e w C a y w o o d , D a v i d I s r a e l ,

M e g u m i K a m e y a m a , D a v i d M a r t i n , a n d C l a i r e M o n t e l e o n i

SRI In te rna t iona l*

1 I n t r o d u c t i o n

Analysts face a daunting task: they must accurately
analyze, categorize, and assimilate a large body of
information from a variety of sources and for a va-
riety of domains of interest. The complexity of the
task necessitates a variety of information access and
extraction tools which technology up to this point
has not been able to provide. SRI's TIPSTER Phase
III project has focused on two major obstacles to the
development of such tools: inadequate degrees of ac-
curacy and portability. We begin by providing an
overview of SRI's information extraction (IE) sys-
tem, FASTUS, and then describe our efforts in these
two areas in turn. We then conclude with some
thoughts concerning future directions.

2 O v e r v i e w o f F A S T U S

FASTUS processes natural language and produces
representations of the information relevant to a par-
ticular application, typically in the form of database
templates. As an example, we consider the task
specified for the Sixth Message Understanding Con-
ference (MUC-6), which was, roughly speaking, to
identify information in business news that describes
executives moving in and out of high-level positions
within companies (Appelt et al., 1995). When FAS-
TUS encounters a passage such as example (1),

(1) John Smith, 47, was named president of ABC
Corp. He replaces Mike Jones.

it should extract the information that Mike Jones is
'out' and John Smith is 'in' at the position of presi-
dent of company ABC Corp.

FASTUS consists of three major components. The
first is the pattern recognition module, which consists
of a series of finite state transducers that recognize

Artificial Intelligence Center, 333 Ravenswood Av-
enue, Menlo Park, CA 94025, kehler@ai.sri, corn

patterns in the text and create templates represent-
ing event and entity descriptions. Pattern recogni-
tion relies on a second component, the coreference
module, which identifies the referents of a variety
of types of referential expressions (e.g., pronouns,
definite noun phrases). Finally, the merger unifies
templates created from different phrases in the text
that describe the same events.

We illustrate by walking through an analysis of
passage (1). The input is initially processed by us-
ing the finite state transducers to recognize relevant
patterns and annotate the text accordingly. First,
one or more preprocessing phases recognize low-level
patterns such as person names, organization names,
and parts of speech.

[John Smith]pERS--NAME [47]gUM [was]AUX
[named]v [president]g [of JR [ABC
Corp]ORG-NAME

The parsing phase identifies very local syntactic con-
stituents, such as noun groups and verb groups; no
attachment of ambiguous modifiers is attempted.

[John Smith]pEIRS-NAMIZ [47]NUM [was named]vG
[president]NG [of]p [ABC Corp]oRG--NAME

The combiner phase pieces together slightly larger
constituents when it can be done reliably.

[John Smith, 47]PERS--NG [was named]vc [presi-
dent of ABC Corp.]POS--NG

Finally, the domain phase applies domain-dependent
patterns to the sentence to identify clause-level
states and events. In this case, the entire sentence
will match such a pattern.

[John Smith, 47, was named president of ABC
Corp]DOMAIN--EV ENT

Recognizing a pattern in the domain phase typi-
cally causes one or more template objects to be cre-
ated. In light of the MUC-6 task specification, we

61

defined transition templates that track movements
in and out of positions at companies; a person's
leaving a job is represented by the start state of a
transition, whereas a person's taking a job is rep-
resented by the end state. Therefore, the person,
company, and position in the first sentence of (1)
are represented in an end state since Smith is taking
the described position. To facilitate certain types of
inferencing during the merging phase, we also posit
that someone, at this time unknown, is most likely
leaving the position, this being represented in the
transition's start state as shown in Figure 1.

in Figure 1 to produce the template shown in Fig-
ure 3, which will lead to the correct output.

START

END

PERSON MIKE JONES]
POSITION PRESIDENT
ORGANIZATION ABC CORP.

PERSON JOHN SMITH
POSITION PRESIDENT
ORGANIZATION ABC CORP.

Figure 3: A Successful Merge

START

END

PERSON
POSITION PRESIDENT
ORGANIZATION ABC CORP.

] POSITION PRESIDENT
ORCANIZATION ABC CORP.

Figure h Template Generated from John Smith was
named president of ABC Corp.

The second sentence in the passage, He replaces
Mike Jones, is then analyzed by the pattern match-
ing phases, the details of which we omit. During
this analysis, the coreference module identifies John
Smith as the referent of "he". Having recognized a
domain-level pattern, all that is known is that there
is a start state involving the person Mike Jones and
an end state involving the person John Smith, rep-
resented by the template shown in Figure 2.

[PERSON MIKE JONES]
START / POSITION - - -

L ORGANIZATION

END POSITION
ORGANIZATION

Figure 2: Template Generated from He replaces
Mike Jones.

As they stand, of course, these two templates do
not appropriately summarize the information in the
text; there is a discourse-level relationship between
the two that must be captured. This is the job of the
merging component. When a new template is cre-
ated, the merger a t tempts to unify it with templates
that precede it. In this case, the template shown in
Figure 2 should be unified with the template shown

3 F o c u s o n A c c u r a c y

The first major obstacle to the broad deployment
of IE technology we address is the inadequate level
of accuracy of existing systems. We have sought to
push the accuracy of each of the three major modules
of FASTUS in our T I P S T E R effort.

3.1 A Latt ice-Based System for Pat tern
Recogni t ion

One of the main reasons for the success of FASTUS is
that it bypasses much of the complex linguistic pro-
cessing characteristic of previous systems. Process-
ing decisions are made using local rather than global
evidence, minimizing the risk that correct analyses
get lost in a sea of incorrect ones. For instance, at
each phase in the pattern recognition component,
only the analysis deemed to be the best is passed to
the next phase. Unfortunately, while this strategy
has proved advantageous in general, in many cases
it leads to premature processing decisions based on
too little information.

For instance, for the following example,

(2) The committee heads announced the appoint-
ment of John Smith as CEO.

the parser phase of FASTUS will correctly mark "the
committee heads" as a noun group. This decision is
made because the noun usage of "head" is more com-
mon than the verb usage in this domain, and because
of a "greedy" preference for longer constituents. Us-
ing the same heuristics for example (3),

(3) The committee heads Viacom's CEO recruit-
ment efforts.

the system will generate the same analysis for "the
committee heads". Since "heads" is actually used as
a main verb in this example (with "the committee"
as its subject), the parser's incorrect choice will re-
sult in there being no domain-phase analysis for the
sentence.

62

The trick, then, is to try to improve the scope (and
thus, the accuracy) of the current mechanisms, with-
out adopting the inadequacies of previous frame-
works that FASTUS was designed to improve upon.
To do this, we implemented a lattice-based version of
FASTUS. In keeping with the finite state paradigm,
the pattern recognition phases perform transduc-
tions over compact lattice representations of the in-
put, passing such representations between phases.
With a lattice representation, there are as many
analyses for a string as there are paths through it,
yet processing remains efficient. The processing of
examples (2) and (3) will result in a lattice with
both possible analyses for "the committee heads".
In example (2), the successful match will result from
matching a path in which "the committee heads" is
analyzed as a noun group, whereas in (3), the suc-
cessful domain-phase match will result from a path
in which "the committee" is analyzed as a noun
group and "heads" is analyzed as a verb group.

Although compactly represented, the numerous
analyses that can result from lattice-based process-
ing still require some methods for pruning and path
selection. To date, we have implemented and eval-
uated a variety of strategies. Thus far, the results
of these experiments, as measured by F-score on the
MUC-6 task, have been somewhat mixed. A typi-
cal experiment will yield about one point of gain in
F-score; as expected, recall generally climbs with a
smaller sacrifice in precision. We plan to do further
experimentation in the future.

3.2 Improvements to Coreferenee
Resolut ion

We have implemented various high-precision and
largely domain-independent incremental extensions
to the coreference resolution module.

Delayed Resolut ion in the Lattice System
The implementation of the lattice-based system
opened up the possibility of addressing several coref-
erence issues that could not be cleanly addressed
within the nonlattice system. The first is a catch-
22 which results from a need to perform coreference
resolution both before and after the domain phase
level of analysis. (Recall that coreference resolution
comes before the domain phase.) We illustrate with
example (4).

(4) Analysts have been expecting IBM to announce
some changes. In fact, today they named John
Smith as president.

Let us assume, plausibly enough, that the domain
phase contains a pattern of the following sort, which

will match the second sentence if the referent of
"they" is a company (in this case IBM).

Event := Company named Person as Position

Coreference resolution must necessarily apply be-
fore the domain phase, since the pattern interpreter
needs to know whether the denotation of the sub-
ject (the referent of "they") is a company. Unfortu-
nately, in this particular case the coreference module
is likely to choose "analysts" as the referent, since it
occupies the subject position of the preceding clause,
which usually indicates a higher degree of salience
than the object position that "IBM" occupies. In-
tuitively, however, just the fact that the system has
the aforementioned pattern suggests that one would
expect a company to be situated at that point in
the context of the clause. Thus, there is reason to
want coreference to apply after it has access to that
pattern, that is, after domain-phase processing.

A similar problem occurs with respect to intrasen-
tential coreference constraints. Consider the sen-
tence

(5) John Smith removed him from the CEO post.

Intrasentential constraints, dictated by the syntac-
tic structure of the sentence, tell us that "him" can-
not refer to John Smith. However, only the domain
phase has a notion of sentence-level syntax, so the
system has no way of knowing of the applicability
of this constraint given that the coreference module
operates before this phase.

The lattice-based system provides a way to in-
corporate and preserve ambiguities through the do-
main phase, and thus offers an opportunity to ad-
dress these problems. Instead of selecting only the
most preferred referent for a referential expression,
the coreference module takes the set of alternatives
and writes arcs for each onto the lattice in place
of the referential phrase, including relative levels of
preference. This lattice then serves as input to the
domain phase, as before, at which point the above
constraints can be enforced. In the case of exam-
ple (4), for instance, the path in which "they" is
rewritten as "analysts" will not result in a success-
ful match, whereas the path in which it is rewritten
as "IBM" will. Alternatively, if both potential ref-
erents were company names, then the one that the
coreference module considers to be most preferred
will be selected.

Contributions of the coreference and lattice com-
ponents were independently measured on an earlier
baseline system. We observed that both components
increase the recall and precision independently, with

63

the recall (error reduction of 8% to 10%) much more
affected than the precision (error reduction of 1% to
2%). The coreference-lattice combination leads to
an even greater increase in the recall (13% error re-
duction) but less impact on the precision (less than
1% error reduction). After this evaluation, we real-
ized that the logic of the coreference-lattice integra-
tion was incomplete, because of certain destructive
operations that should not be maintained in a strat-
egy in which alternatives are preserved. We expect
an even greater performance impact when integra-
tion is completed.

E x t e n s i o n s to C o v e r a g e We also implemented
extensions to the coverage of the coreference module.

First, we implemented a module for resolving im-
plicit arguments for certain relational nouns. Re-
lational nouns are those whose denotations are de-
termined in association to a possessor entity. In
the business-political domain, position nouns such
as CEO and vice president are relational, associated
with (sometimes implicit) organizations at which
these positions exist. As a first step, we added a
mechanism for resolving implicit organizations for
position expressions similar to those for pronoun res-
olution. This addition increased the IE recall by al-
most a point (0.85%), a nontrivial gain for a change
of relatively limited scope.

We also added a resolution routine for definite
temporal expressions. Indexicals such as "today",
"next week", "last Monday", and "10 years ago" are
resolved with respect to the document date. Par-
tial temporal expressions such as "Friday" and "the
23rd" are resolved with respect to the combination
of the closest verb tense and the salient date in the
global or local context. The globally salient date is
the document date, whereas the locally salient date
is the most recent date mentioned in the text. The
performance of the date resolution routine was eval-
uated with eight training articles containing a total
of 53 definite date expressions. Among the currently
intended coverage of 43 expressions, 37 were cor-
rectly resolved. We can interpret it as having 69.8%
recall (37/53) and 86.0% precision (37/43).

F r a g m e n t Ana ly s i s After we observed the ef-
fectiveness of implicit argument resolution as de-
scribed above, we added a domain-specific t reatment
of what we call fragment analysis. FASTUS often
finds fragments of domain patterns in texts because
of insufficient domain coverage--an inevitable limi-
tation, given the ability for natural language to ex-
press the same content in many different, often un-
predictable surface realizations. Consider the follow-
ing example.

(6) John Doe, who is known for his "my way or the
highway" management style, but who nonethe-
less receives rave reviews from industry insiders,
even his enemies, was named president of IBM.

In this case, FASTUS is likely to match the fragment
"was named president of IBM," outputt ing a tran-
sition with a position and organization. Unfortu-
nately, given the intervening material between this
fragment and the subject, it will also most likely fail
to link the transition to the incoming person, John
Doe. The fragment analysis code corrects this by in-
specting each transition created for a sentence, and,
assuming that a substantial but incomplete template
is found, a t tempts to locate candidates from the
surrounding discourse context to replace the empty
slots. The overall effect, specifically of making par-
tial domain event templates more complete, is sim-
ilar to that of the merging phase. The difference is
that while merging combines two or more partially
filled domain events, missing argument resolution
fills empty slots of each domain event with recently
mentioned entities even if they are not associated
with extracted events. We compared the effects of
fragment analysis and merging on the overall score
using the 100 message MUC-6 training set. The re-
sult is shown in Table 1; fragment analysis alone
performed better than merging alone, with the two
together performing the best.

A n A n a l y s i s o f W o r d N e t Sanda Harabagiu, a
former post-doctoral fellow at SRI, performed an
analysis of how WordNet might be used to improve
coreference resolution, particularly by exploiting hy-
pernym and synonym information. Using the MUC-
6 coreference training messages as her corpus, she
found that 60% of the coreferenee examples fall
into categories in which WordNet is of no poten-
tial use: Cases of identity between strings (e.g., "a
company.. . the company") comprised 42.3% of the
examples, and cases in which coreference is indi-
cated by syntactic configuration (e.g., appositives, as
in "John Smith, president of Acme Widgets") com-
prised 18.27% of the examples.

Reference involving a synonym relation made up
8.33% of the examples. Of these, 3.1% were syn-
onyms in WordNet, such as "bill" and "measure".
However, 5.23% were not in WordNet. Some of these
cases one could imagine being in such a knowledge
source, such as "business" and "company"; it just
so happens that they are not. On the other hand,
there are also more difficult cases, such as "IBM"
and "wounded computer giant", for which no knowl-
edge base is likely to contain a relation.

Reference involving a hypernym relation made up

64

Merging Fragment Analysis

Off Off
Off On
On ! Off
On ! On

Precision [Recall [F-score

71 42 52.60
68 48 56.10
65 52 57.67
64 55 59.17

Table 1: Contributions of Fragment Analysis and Merging

11.0% of the cases. Of these, 3.7% were in Word-
Net, such as "quarter" and "period", and "chair-
man" and "officer". The other 7.3% were not in
WordNet. Again, there were cases which one could
imagine being there, such as "automaker" and "com-
pany". Others, however, such as "Clinton officials"
and "Clinton camp", are not likely to be found in
any such knowledge base.

The remaining cases were often more difficult;
many involving metonymy.

3.3 Learning Merging Strategies
Early in the project, we performed an analysis of the
errors FASTUS made on a subset of the MUC-6 devel-
opment corpus. The majori ty of the errors indicted
merging at least in part, suggesting that merging
improvements had a potential for high payoff.

The existing FASTUS merging algorithm is quite
simple - it a t tempts to merge newly created tem-
plates with previous ones, starting with the most
recent. Templates are merged when they are unifi-
able in accordance with any prespecified constraints.
Despite its simplicity, the algorithm has proven to
be fairly successful. Nonetheless, it is quite possi-
ble that other merging strategies could yield better
results.

There are two ways in which one might a t tempt
to identify such strategies. First, one could perform
data analyses to identify good merging principles,
handcode them, and test the results. Alternatively,
one could a t tempt to have merging strategies be
acquired by the system automatically, using some
training mechanism. We at tempted both of these,
which we discuss in turn.

D a t a A n a l y s e s a n d E x p e r i m e n t a t i o n The
first action we took was to perform an extensive
analysis of merging results. We developed detailed
mechanisms for tracing merging behavior and dis-
tributed transcripts among several project partici-
pants. In analyzing these, we identified a variety of
constraints which appeared to be extremely reliable,
in particular, characteristics of templates that were
almost always correlated with incorrect merges.

One by one, these constraints were implemented

and tested. In each case, end-to-end performance
on the scenario template task either remained the
same or decreased slightly. In no case did we get a
nontrivial increase in performance.

This was rather puzzling and frustrating, and
highlighted some of the problems with handcoding
system improvements. For one, the processes of data
analysis, system coding, and testing are labor inten-
sive. One cannot try all possible alternative sets of
constraints one might consider, so one can never be
sure that other, unat tempted constraints would not
have fared better. Second, it could be that we were
being misguided by the relatively small data sets
that we were analyzing by hand. Thus, we began
considering other paradigms for identifying better
merging strategies.

There were also other, longer-term considerations
for moving away from handcoding merging improve-
ments. For one, the optimal merging strategy is
highly dependent on the quality of the input it re-
ceives, which is constantly evolving in any realis-
tic development setting, thus requiring continual re-
experimentation. Thus, changes that improve per-
formance at one point in system development could
potentially decrease performance at another time, or
vice versa. Second, a general goal of IE research is
to have systems that can be trained for new applica-
tions long after the system developers are involved,
which precludes experimentation by hand.

These considerations mot ivate research to deter-
mine if merging strategies can be learned automat-
ically. There are several different types of learning,
including supervised, unsupervised, and an area in
between which one might call indirectly supervised.
We have performed experiments using all three types
of technique, which we describe below. 1

x The work reported on here, also discussed in Kehler
(1998), concerns learning merging strategies in support
of the scenario template task of MUC-6 as described in
Section 2. While we are unaware of any other reported
research on this task, other work has addressed other
MUC-style tasks. For instance, Kehler (1997) describes
a probabilistic approach to entity-level merging that out-
performs several baseline metrics. Also, researchers at
BBN (Ralph Weischedel, TIPSTER 18-month meeting)

65

S u p e r v i s e d M e t h o d s In our first set of experi-
ments, we took the approach most commonly pur-
sued in the computat ional linguistics literature,
namely supervised learning. Supervised methods re-
quire a set of training da ta tha t the learning algo-
r i thm can consult in constructing its model. For our
initial experiments, we ran the 100 MUC-6 train-
ing messages through FASTUS and wrote out feature
signatures for the 534 merges tha t the system per-
formed. The feature signatures were created by ask-
ing a set of 50 questions about the context in which
the proposed merge is taking place, referencing the
content of the two templates and /o r the distance
between the phrases from which each templa te was
created. Some example questions are:

• SUBSUMED?: true if the contents of one tem-
plate completely subsume the contents of the
other.

* UNNAMED-REFERENCES?: true if either
transition has a slot filled with an object lack-
ing a proper name, e.g., "an employee" in the
person slot. While these objects can merge
with other (perhaps named) entities of the same
type, in general they should not.

* LESS-THAN-700-CHARS?: true if the phrases
from which the templates are created are less
than 700 characters apar t in the text.

After the feature signatures were written, we exam-
ined the texts and manual ly encoded a key for each.

We a t t empted two approaches to classifying
merges using this corpus as training data. The
first was to grow a classification tree in the style of
Breiman et al. (1984). At each node, the algori thm
asks each question and selects the one resulting in
the purest split of the data. Entropy was used as the
measure of node purity. In the second set of exper-
iments, we used the approach to m a x i m u m entropy
modeling described by Berger et al. (1996). The two
possible values for each of the same 50 questions (i.e.,
yes or no) were paired with each of the two possi-
ble outcomes for merging (i.e., correct merge or not)
to create a set of feature functions, or features for
short, which were used in turn to define constraints
on a probabilistic model. We used the learned max-
imum entropy model as a classifier by considering
any merge with a probabil i ty strictly greater than
0.5 to be correct, and otherwise incorrect.

report on learned merging strategies achieving good per-
formance on the less complex template entity and tem-
plate relation tasks in MUC-7, although no comparison
with a similar hand-coded system was provided.

Out of the available set of questions, each ap-
proach selects only those that are most informative
for the classifier being developed. In the case of the
decision tree, questions are selected based on how
well they split the data. In the case of m a x i m u m
entropy, the algori thm approximates the gain in the
model 's predictiveness that would result f rom im-
posing the constraints corresponding to each of the
existing inactive features, and selects the one with
the highest anticipated payoff. One potential advan-
tage of m a x i m u m entropy is that it does not split
da ta like a decision tree does, which may prove im-
por tant as training sets will necessarily be limited in
their size.

In our prel iminary evaluations, we used two-thirds
of our annota ted corpus as a training set (356 exam-
ples), and the remaining one-third as a test set (178
examples). We ran experiments using three different
such divisions, using each example twice in a train-
ing set and once in a test set. In each case the maxi-
m u m entropy classifier chose features corresponding
to either 6 or 7 of the available questions, whereas
the decision tree classifier asked anywhere from 7 to
14 questions to get to the deepest leaf node. In each
case there was considerable, but not total, overlap in
the questions utilized. Adding the errors from the
three evaluations together, the decision tree made
34 errors (out of a possible 534), in which 13 correct
merges were classified as incorrect and 21 incorrect
merges were classified as correct. The m a x i m u m en-
tropy classifier made a total of 31 errors, in which
14 correct merges were classified as incorrect and
17 incorrect merges were classified as correct. This
is compared to a total of 139 errors out of the 534
merges that the current merger made according to
the annotat ions.

These results may appear to be positive, as it
would seem tha t both methods found some reliable
information on which to make classifications. How-
ever, our goal here was to improve end-to-end per-
formance on the scenario templa te task, and thus we
wanted to know how much of an impact these im-
proved merging strategies have on that performance.
Therefore, we replaced the existing FASTUS merg-
ing algori thm with two more discriminating mergers,
each directed by one of our learned classifiers. The
first version consulted the decision tree and merged
only when the example was classified as correct. The
second version did the same using the m a x i m u m en-
tropy classifier. For these experiments, the two mod-
els were trained using the entire set of 534 examples.

As we were still experimenting at this point, we
were not ready to perform an evaluation using our
set of blind test messages. As an information gath-

66

ering experiment, we applied FASTUS using the new
mergers to the corpus of messages that produced
the training data. We would of course expect these
experiments to yield better results than when ap-
plied to unseen messages. Nonetheless, the results
were humbling - both experiments failed to improve
the performance of the overall system, and in fact
degraded it slightly. Generally, a point of precision
was gained at the expense of a point or two of recall.

Clearly, there is a rift between what one might
consider to be good performance at discriminating
correct and incorrect merges based on human judg-
ments, and the effect these decisions have on over-
all performance. Because the baseline FASTUS algo-
r i thm merges too liberally, using the classifiers cause
many of the incorrect merges that were previously
performed to be blocked, at the expense of blocking
a smaller number of correct merges. Thus, it is possi-
ble that the correct merges the system performs help
its end-to-end performance much more than incor-
rect merges hurt it. For instance, it may be that cor-
rect merges often result in well-populated templates
that have a marked impact on performance, whereas
incorrect merges may often add only one incorrect
slot to an otherwise correct template, or even result
in templates that do not pass the threshold for ex-
tractability at all. In fact, in certain circumstances
incorrect merges can actually help performance, if
two incorrect templates that would produce incor-
rect end results are unified to become one.

In any case, it should be clear that improved per-
formance on an isolated subcomponent of an IE sys-
tem, as measured against human annotations for
that subcomponent, does not necessarily translate
to improved end-to-end system performance. Add
this to the cost of creating this annotated data -
which will continually become obsolete as the up-
stream FASTUS modules undergo development - and
it becomes clear that we need to look to other meth-
ods for learning merging mechanisms.

U n s u p e r v i s e d M e t h o d s Naturally, the main al-
ternatives to supervised methods are unsupervised
methods. We consider replacing our merging algo-
ri thm with one that performs an unsupervised clus-
tering of the templates and merges the templates in
each cluster. Of course, we will not know a priori
how many clusters there are, that is, how many tem-
plates we should be left with when we are finished. A
method that does not require such knowledge is Hi-
erarchical Agglomerative Clustering (HAC) (Duda
and Hart, 1973; Everitt, 1980, inter alia).

The HAC algorithm is conceptually straightfor-
ward. Given a set of examples, the algorithm begins

by assigning each to its own cluster. A predeter-
mined similarity metric is then applied to each pair-
wise combination of clusters, and the most similar
pair combined. The process is iterated until no pair
of clusters have a similarity that exceeds a preset
threshold.

Our application of clustering is somewhat different
from many problems to which clustering has been
applied. For one, our clusters will always have only
one member, since templates are merged upon clus-
tering. Issues with how to compute similarity be-
tween two nonsingleton sets O f data points are there-
fore avoided. Furthermore, our notion of similarity is
nonstandard. Usually, similar examples are distinct,
but have properties that are "close" to each other in
some space. Here, similarityis meant to measure the
likelihood that the two templates are incomplete de-
scriptions of the same complex of eventualities (i.e.,
the same transition), although the templates them-
selves may look very different.

We performed some informal experiments in
which we intuited a similarity metric, assigning
weights to a subset of the questions that we had
defined for the supervised learning experiments. For
instance, templates that were created from phrases
close to each other in the text and that overlapped in
content received high similarity, whereas those that
were far apart and did not overlap received low sim-
ilarity. Instead of merging incrementally as in the
supervised learning experiments, pattern matching
was first applied to the entire text, and the resulting
templates were clustered and merged until no pair
of templates passed a preset similarity threshold.

Running the system over the MUC-6 development
set yielded results similar to our experiments using
the supervised mergers. We did not find this to be
particularly surprising; for instance, the mediocre
results could be attributable to the similarity metrics
not being very good.

We did not push this approach any further, be-
cause it is still lacking with respect to one of our
goals for pursuing learning strategies. While it ad-
dresses the problem of requiring annotated training
data, it does not address the fact that the optimal
merging strategy is inherently dependent on its in-
put. If we encode a similarity metric for clustering
and keep it fixed, we are left with only a single degree
of freedom - t h e similarity threshold at which to halt
the clustering process. While this may yield some
leverage (for instance, good input to the merger may
call for a high threshold, whereas bad input may call
for a lower threshold), it will certainly be too inflex-
ible in the general case.

In sum, several factors could influence the likeli-

67

hood of a potential merge within a particular appli-
cation, and it therefore seems that something tied to
the application needs to guide the learning process.

Indirect ly Superv i sed M e t h o d s When devel-
oping an IE system, one typically encodes (or is
given) a moderate-size set of end-to-end develop-
ment keys for a set of sample messages. These keys
need to be encoded only once. We did not use these
keys for supervised learning because of the difficul-
ties in aligning the inaccurate and incomplete inter-
mediate templates produced by the system with the
(normalized) end results. However, we can use the
keys to evaluate the end results of the system, and
a t tempt to tune a merging strategy based on these
evaluations. After all, it is improved end-to-end per-
formance that we are seeking in the first place.

Thus, we consider a form of what we are calling in-
directly supervised learning. We use the HAC mech-
anism described in the previous section, but a t tempt
to learn the similarity metric instead of stating it
explicitly. The search through the space of possi-
ble similarity metrics will be driven by end-to-end
performance on a set of training messages.

We start by defining a space of similarity met-
rics. In a preliminary experiment, we used 7 of the
questions that were used in the supervised experi-
ments, coupled with their negations, for a total of
14 questions. These questions are assigned weights,
either positive or negative, that get incorporated
into a similarity metric when the question is true
of a potential merge. Let Ai be the weights assigned
to corresponding questions qi, and let the function
fq, (t l , t2) be 1 if the question qi is true of the tem-
plates t l and t2, and 0 if not. Then the similarity
S(tx,t2) is given by

e E i fqi (tl ,t2)*)~i

S (t l , t 2) --= e~]ifqi(tx,t2).A i q- 1

This function, which is adapted from the form of
the probability model used in the maximum entropy
framework, provides a similarity measure in terms
of a probability.

We used an annealing strategy to tune the weights
Ai. The algorithm begins by processing the 100-
message MUC-6 development set, usually with a
randomly selected initial configuration that estab-
lishes a baseline F-score. The algorithm then iter-
ates, selecting some of the questions at random (per-
haps just one, perhaps all of them) and permuting
their weights by a random amount, either positive or
negative. The system is then rerun over the training
set and the F-score measured. Any permutation re-
sulting in an F-score that is strictly greater than the

current baseline is adopted as the new baseline. To
stay out of local maxima, a permutat ion leading to a
decrease in performance may also be adopted. This
is the annealing part - such negative permutations
are accepted with a probability that is proportional
to a steadily decreasing measure of ' temperature ' ,
and inversely proportional to the magnitude of the
decrement in performance. Thus, permutations that
decrease performance slightly in early stages of the
search are likely to be adopted, whereas permuta-
tions that decrease performance either significantly
or in later stages of the search are not.

The results of one of several experiments are
shown in Figure 4. The search began with an initial
similarity metric achieving an F-score of 58.83, and
continued for 300 iterations. A low F-score of 57.70
was achieved early, in iteration 10. The best metrics
considered yielded an F-score of 59.80.

Obviously, and somewhat surprisingly, this graph
is practically flat. On one hand, it is unfortunate
that there aren' t higher high points: The learner
was not able to leverage the available features to ac-
quire a much better merging strategy than the one
it started with. Perhaps even more surprising, how-
ever, is that there were also not lower low points -
only iteration 10 achieved a score lower than 58. Be-
cause the learner was not given any bias with respect
to the permutations it a t tempted, some of those it
considered were intuitively poor (e.g., boosting the
weight for phrases that are very far apart, lowering
the weight for sparsely filled templates with no over-
lap). Thus, one might have expected certain of these
to devastate performance, but none did. It seems
that as long as a certain amount of merging is per-
formed, it matters less which templates are actually
merged, and in what order.

Conc lus ions and Future Direct ions In sum,
the learned mechanisms were neither significantly
better nor worse than a hand-coded merging strat-
egy. The inability to outperform the existing strat-
egy could be at tr ibuted to several facts. We sus-
pect that a major problem is the lack of accessi-
ble, reliable, and informative indicators for merg-
ing decisions. Unlike lower-level problems in natural
language processing (NLP) in which local informa-
tion appears to bear highly on the outcome, includ-
ing, for instance, part-of-speech tagging (Church,
1988; Brill, 1992, inter alia) and sense disambigua-
tion (Yarowsky, 1994; Yarowsky, 1995, inter alia),
none of the questions we have formulated appear to
be particularly indicative of what effect a potential
merge will have on system performance. This sug-
gests that more research is needed to identify ways

68

64

62

60

58

56

i i i i i

5 0 1oo 15o 2 0 0 2 5 0

Figure 4: Results of a Learning Experiment

300

to access the necessary knowledge from independent
sources such as existing knowledge bases, or by min-
ing it from online text corpora using unsupervised
or indirectly supervised learning techniques.

Furthermore, these experiments may be cause for
concern about the nature of the scoring metric and
procedure used in MUC-6. All of the merging strate-
gies at tempted, both hand-coded and automatically
learned, performed similarly. This (rather unex-
pected) result would suggest that the scoring mech-
anisms be given a closer look, which we do in the
following section.

3.4 Ana ly s i s o f t h e S c o r i n g S y s t e m

As we have indicated, the lack of more significant
progress in some of the foregoing efforts had us puz-
zled. Intuitively positive system changes were not
showing much effect in terms of end-to-end perfor-
mance, nor were certain intuitively negative changes.
Of course, judgments of what constitute positive and
negative changes are only as good as the scoring
mechanism which is providing the feedback. As part
of a related project at SRI, we began to find some
more concrete evidence that at times this feedback
has been misguiding our efforts. Incremental refine-
ments in the system's output, ones that should yield
superior results, nevertheless receive a lower score
from the scoring mechanism.

The following text (WSJ article 870112-0001) pro-
vides an example illustrating this point:

(7) The board also named a three-man executive
committee to perform the chief executive's role.
The three members are Victor Steele, head of
the company's beverage division; Brian Bal-
dock, head of the leisure and health division;

and Shaun Dowling, who runs industrial oper-
ations.

Further executive resignations or dismissals are
widely expected. The positions of Olivier Roux,
head of financial planning, and Thomas Ward,
a U.S. at torney who is a close aide to Mr.
Saunders, are "open to question," one Guinness
source said.

FASTUS does poorly on this example, for under-
standable reasons. It did not produce any succes-
sion events for the first paragraph, because doing so
would require resolving a variety of difficult linguis-
tic issues lying beyond the depth of processing at
which FASTUS operates. On the other hand, for rea-
sons that won't be described in detail, the system
generated a succession event from the second para-
graph involving the position "head of financial plan-
ning", with four IN-AND-OUT templates involving
Roux, Saunders, and two other people mentioned in
the article.

While not much could be done for the first para-
graph, we modified FASTUS SO that it would not pro-
duce a template from the second paragraph. The
change to the system performance on this message
has to be positive: while we do not generate any
additional correct information from the change, we
eliminated four predications about an irrelevant po-
sition, three of which would be false even if one con-
sidered the position to be relevant. Other output
for this text was not affected, so we would expect
to observe the same recall (correct output was not
changed), but notably higher precision from having
eliminated the incorrect succession event, four incor-

69

rect IN-AND-OUTs, and two irrelevant PERSON
templates.

In reality, this change resulted in a slight rise in
precision (from 57 to 59) and a dramat ic reduc-
tion in recall (from 50 to 33), causing the F-score
on this message to p lummet from 53.30 to 42.67.
The reward for eliminating four irrelevant predica-
tions was a 20% drop in the score. This result is, to
say the least, counterintuitive, and suggests serious
problems in the ability of the scoring mechanism to
provide adequate feedback.

We have several speculations regarding the causes
of this behavior, but final conclusions await a more
comprehensive study. It should be obvious in any
case, however, that further progress in IE is crucially
dependent on these issues being resolved. While this
is true regardless of the approach one takes to system
development, it is especially so if we want to move
toward systems with rules and procedures that are
learned automatical ly. Successful learning depends
on the assumption that learned improvements are
reflected in the evaluation function; if this is not the
case then learning is all but hopeless. Thus, future
research in IE must be coupled with research into
evaluation strategies.

3.5 T h e Z i p f Ef fec t on Information
Extract ion Appl icat ions

A fundamental question with respect to IE applica-
tions is the nature of the Zipf curve relating pat tern
development to improved coverage. In a given appli-
cation, there is usually a small set of pat terns which
will have broad applicability - that is, they are likely
to match on many examples in any given set of un-
seen data. For instance, a MUC-6 pat tern designed
to match the sentence

(8) John Smith was appointed CEO of IBM.

will a lmost certainly match many other similar ex-
amples also. At the other end of the spectrum,
there are many 'one-of-a-kind' examples in any given
training corpus for which the corresponding pat tern
is unlikely to match many other examples. For in-
stance, a pat tern developed to handle the sentence

(9) John Smith and his associate, Roger Jones, the
former of which will soon be on board at IBM
and the latter of which will be heading to Ap-
ple, are in line to be CEO and chairman, re-
spectively.

is unlikely to match other examples in any
reasonably-sized corpus of unseen data. The big
question, then, is at what point in development do

the great majori ty of examples fall into the second
class; at this point performance gains on training
da ta do not transfer to gains on test data. It could
very well be the case that after developing pat terns
to handle the examples in a moderately-sized train-
ing set - say 100 messages, as in the MUC-6 training
c o r p o r a - one has reached the point of diminishing
returns.

In support of a project related to T I P S T E R , the
Office of Research and Development provided us
with an additional set (90 messages) of da ta with
keys annota ted in accordance with the MUC-6 task
specification. This gave us an oppor tuni ty to see
whether new improvements inspired by this da ta
would transfer to the test data. The changes we im-
plemented were all relatively minor. They included:

• Fixing a few problems in name recognition

• Adding a parser phase pat tern

• Adding domain phase pat terns for a few
metaphorical expressions

• Eliminating a filter for irrelevant texts

• Fixing other minor bugs

These modifications caused our score on the new
training da ta to increase from 46.4 to 52.1, which
is not a surprising result. Given that the fixes were
directed narrowly at specific examples in this set,
we did not expect to see much of an improvement
in either of the other da ta sets. Our suspicions were
confirmed by results on the basic training data; our
score on this set went from 58.6 to 59.6. Quite sur-
prisingly, however, our score on the blind test set
rose significantly, from 51.7 to 57.1 - an increase of
over 10%.

Thus, necessarily adding a proviso about the ade-
quacy of the evaluation metrics per the last section,
we have a negative da ta point for the hypothesis that
100 training messages place us beyond the point of
diminishing returns. The second set of messages ap-
parently had considerable overlap with the test da ta
in areas that did not overlap with the original train-
ing set.

4 F o c u s o n P o r t a b i l i t y

A second major obstacle to the broad utilization of
IE technology is the t ime and expertise needed to
develop new systems. Users need to be able to de-
velop extraction systems for new information needs
rapidly and without the assistance of a system de-
veloper. We have been developing infrastructure,
consisting of patterns, ontologies, and tools, which
brings us closer to these capabilities.

70

4.1 Open Domain System

The majority of previously pursued IE tasks, in-
cluding those in the MUC evaluations, have been
centered on extracting information from a narrowly
defined domain. Alternatively, one might imagine
developing a system capable of extracting informa-
tion about a significantly broader set of events that
might potentially be of interest to an analyst. We
call such a system an open domain application.

We are currently completing our implementation
of an open domain system for business news. The
system is built upon an infrastructure consisting of a
broad set of patterns and ontologies. These patterns
and ontologies will serve as a basis for the analyst
to produce special-purpose IE systems (which we
call FASTLETS) for specific information needs. Such
FASTLETS could be used not only for database gen-
eration, but also to improve systems for document
and subdocument retrieval and for task-driven sum-
marization, among other applications.

The patterns and ontologies were developed from
an in-depth analysis of the 150 most common verbs
and nominalizations within a corpus of Wall Street
Journal texts. A frequency analysis was performed
to identify these verbs and nominalizations, and a
list was generated of all the sentences in the corpus
containing each. A chart was then constructed for
each group, listing each verb and its role fillers (sub-
ject, object, prepositional objects). This gave rise to
the patterns required to cover the examples, and the
elements and organization of an ontology emerged.
A few example patterns are shown below.

Person analyzes { Industry I Commodity]
Financial-Instrument)

{ Company I Person } controls Company

{ Company] Country } exports Goods to
Country

Coperorg invests Money in { Financial-
Instrument I Market] Country I Company }

The italicized elements indicate concepts in the de-
veloped ontologies; for instance, Coperorg is a cat-
egory subsuming several other concepts including
Person, Company, and Organization.

Open domain patterns are integrated with the
compile-time transformation component of FASTUS.
This component is capable of taking a single pattern
and specifying the different ways in which it can be
expressed in English. Thus, the first pattern in .the
list above will not only match sentence (10),

(10) John Smith analyzed the automobile industry.

but it will also match examples such as (11) and
(12).

(11) The automobile industry has been analyzed by
John Smith.

(12) John Smith's analysis of the automobile indus-
try...

The output of the open domain pattern set is a
case-frame style template, marking roles and modi-
fiers such as agent, patient, location, time, and pur-
pose.

Open Domain and Rule Acquisition As we
have indicated, one of the ways in which the open
domain infrastructure can be used is as the basis
for allowing end users to construct their own pat-
terns tailored to their own information needs. The
development process will be much like what expert
developers do to build systems, except that there
will be a richer set of tools for doing so. For in-
stance, in our MUC-6 effort, we first outlined the
events of interest, and then scanned training texts
to determine the verbs and nominalizations that en-
coded those events. We then categorized them into
classes of verbs with the same case frames, and wrote
subject-verb-object patterns for each of the classes.

We are currently developing an interface that will
allow end users to accomplish this. Analysts will se-
lect the open domain patterns that are relevant to
their needs, and constrain their arguments in appro-
priate fashions. The system will support testing on
existing corpora and provide assistance for further
rule adaptation. The interface is being implemented
in Java.

4.2 An Application: Using IE to Improve
Document Retrieval

As we have mentioned previously, one of the possi-
ble uses for FASTLETS is to improve the quality of
document retrieval (DR) results. We discuss some
of our past and current work, as well as future plans.

Completed Experiments In work predating
T I P S T E R Phase III, a topic was chosen from the
TREC-5 corpus which overlapped significantly with
the MUC-6 management succession topic. SRI's
MUC-6 system was used to reorder the retrieval re-
sults from the UMASS Inquery ad-hoc query system,
based on the results of finite state pattern matching.
This experiment produced a positive result, which,
while far from being definitive, suggested that fur-
ther investigation should be performed. Of course,
the scenario that was being tested is not realistic, as
such highly developed [E systems will not generally

71

exist for most information needs. A more reasonable
scenario would be one in which a rapidly developed
FASTLET is used to perform such a task.

During T I P S T E R Phase III, SRI teamed with
GE R&D to part icipate in the TREC-6 evaluation.
FASTLETS were developed for 23 of the 47 topics in
the TREC-6 routing task, in which up to 4 hours
per topic was spent reading a small set of relevant
texts and writing a small number of g r a m m a r rules
and lexical attr ibutes. Each FASTLET was then run
overnight on some additional training data, and an-
other 1 to 2 hours was spent (on average) making any
necessary adjustments, for a total of an average of 4
to 6 hours per topic. The major i ty of these FASTLET
grammars were developed by a Stanford undergrad-
uate, who has the characteristics one might expect
the end user of such a system to have: he is smar t
and computer literate, but knows essentially nothing
about NLP, linguistics, IE, and DR.

In the G E / S R I joint TREC-6 entry, the routing
query version of GE ' s DR system was used to pro-
vide the top 2000 ranked documents for each topic.
The FASTLETS were then used to rerank the list and
produce the top 1000. The results were encourag-
ing, albeit again not definitive. In abstract terms,
the G E / S R I system improved on the results of the
GE system alone for 16 topics, degraded them for
5 topics, and received the same results on 2 topics.
Of the 16 topics in which the results were improved,
in 2 cases the improvement was very significant, in
6 cases the improvement was significant, and in 8
cases the improvement was small and insignificant.
For one topic, ours was the best performing system.
Of the 5 cases in which the results were degraded,
in 3 cases the decline was significant and in 2 cases
it was very significant.

These results are encouraging in that they indicate
that the FASTLET approach to improving DR may
be feasible, considering that in at least some cases
NLP techniques improved the results of an already
competi t ive routing query system.

A n O n g o i n g S t u d y The results of the forego-
ing experiments are especially encouraging consid-
ering that they were achieved using a highly subop-
t imal overall architecture. The DR and IE systems
were treated as black boxes: the DR system ranked
documents using standard DR types of evidence
(word frequency analysis), and then the FASTLETS
reranked the documents based on pat tern matching
evidence, without considering (or even having access
to) the DR evidence. All the FASTLETS had access
to was the output ordering. In actuality, it is likely
that both types of evidence are useful for relevance

determination, and that the relative usefulness of
each varies on a per-topic basis. Wha t is needed is
an architecture in which the DR and IE evidence
is considered together, with a principled mechanism
for selecting the most informative features for docu-
ment relevance on a per-topic basis.

We are currently pursuing such an architecture,
which, in addition to certain modifications to FAS-
TUS, requires a research-level DR capability. We
have implemented a variety of word collection and
frequency analysis mechanisms which leverage the
considerable tokenization and morphological anal-
ysis capabilities of FASTUS. We have also imple-
mented several learning algori thms capable of incor-
porat ing and weighing heterogeneous types of evi-
dence.

In order to speed up FASTUS processing on large
da ta collections, we implemented a "trigger word"
compiler for FASTUS grammars . The mechanism
reads in a pa t tern set and generates a list of words
required to match them. Any sentence that does
not contain a word on the list can be ignored after
early stages of processing. 2 Initial experiments have
indicated a speed up of more than a factor of three.

Mechanisms for generating relevance features
from FASTLET results are currently being imple-
mented, in preparat ion for the learning experiments.
We will report on the results of these experiments in
a future forum.

5 C o n c l u s i o n s a n d F u t u r e D i r e c t i o n s

We have summarized SRI 's developments in address-
ing two major obstacles to the broad deployment of
IE technology: accuracy and portability. The T IP -
STER program has witnessed significant progress in
both areas, and has perhaps witnessed even greater
progress in our understanding of IE technology.

We believe that the current s tate of IE technol-
ogy suggests two main directions for future work;
directions which look to opposite directions of the
research-to-applications spectrum. The first direc-
tion is to leverage the progress we have made to
embed IE technology within applications in which
it can be useful. Candidate applications include
document retrieval, task-based summarizat ion, task-
based machine translation, cross-document and mul-
t imedia fusion, and trend analysis. Current progress

2Although it should be noted that every sentence
needs to be processed up through the combiner phase
if coreference is to work optimally, since referents for
referential expressions can occur in otherwise irrelevant
sentences. The degree to which ignoring this fact af-
fects performance is an empirical question, which will be
studied in future work.

72

prepares us well for such investigations, the critical
question being whether current levels of accuracy are
sufficient for success.

Our work has also suggested that if we are to
achieve revolutionary (rather than merely evolution-
ary) improvements in the state-of-the-art, we also
need to step back and focus on fundamental re-
search. Current approaches are good at identifying
the information that natural language "wears on its
sleeve"; the remainder will require new and richer
techniques. Basic research is necessary to guide the
development of such mechanisms, and must be cou-
pled with an investigation into evaluation mecha-
nisms.

6 A c k n o w l e d g m e n t s

We thank Sanda Harabagiu and Jeffrey Petit for
their contributions to this work. This research
was supported by the Defense Advanced Research
Projects Agency and the Office of Research and De-
velopment under the TIPSTER Phase III program.
We also thank the Office of Research and Develop-
ment for providing an additional set of annotated
training data.

Everitt, B. 1980. Clustering Analysis. John Wiley
and Sons, New York.

Kehler, Andrew. 1997. Probabilistic coreference in
information extraction. In Proceedings of the Sec-
ond Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP-97), pages 163-
173, Providence, RI, August.

Kehler, Andrew. 1998. Learning embedded dis-
course mechanisms for information extraction. In
Proceedings of the AAAI Spring Symposium on
Applying Machine Learning to Discourse Process-
ing. AAAI, Stanford, CA.

Yarowsky, David. 1994. Decision lists for lexical am-
biguity resolution: Application to accent restora-
tion in Spanish and French. In Proceedings of the
32nd Annual Meeting of the Association for Com-
putational Linguistics (A CL-9~), pages 89-95, Las
Cruces, June.

Yarowsky, David. 1995. Unsupervised word sense
disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics (ACL-
95), pages 189-196, Cambridge, MA, June.

R e f e r e n c e s

Appelt, Douglas E., Jerry R. Hobbs, John Bear,
David Israel, Megumi Kameyama, Andy Kehler,
David Martin, Karen Myers, and Mabry Tyson.
1995. SRI International FASTUS system MUC-
6 test results and analysis. In Proceedings of the
Sixth Message Understanding Conference (MUC-
6), Columbia, Maryland.

Berger, Adam, Stephen A. Della Pietra, and Vin-
cent J. Della Pietra. 1996. A maximum entropy
approach to natural language processing. Compu-
tational Linguistics, 22(1):39-71.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J.
Stone. 1984. Classification and Regression Trees.
Wadsworth, Belmont, CA.

Brill, Eric. 1992. A simple rule-based part of speech
tagger. In Proceedings of the Third Conference
on Applied Natural Language Processing, Trento,
Italy.

Church, Kenneth W. 1988. A stochastic parts pro-
gram and noun phrase parser for unrestricted text.
In Proceedings of the Second Conference on Ap-
plied Natural Language Processing, pages 136-143,
Austin.

Duda, Richard O. and Peter E. Hart. 1973. Pat-
tern Classification and Scene Analysis. John Wi-
ley and Sons, New York.

73

