
THE COMMON PATTERN SPECIFICATION LANGUAGE

Douglas E. Appelt

Artificial Intelligence Center
SRI International

333 Ravenswood Ave, Menlo Park, CA

Boyan Onyshkevych

R525
Department of Defense

Ft. Meade MD

ABSTRACT

This paper describes the Common Pattern Specification Language (CPSL) that was developed during the TIPSTER program by a
committee of researchers from the TIPSTER research sites. Many information extraction systems work by matching regular
expressions over the lexical features of input symbols. CPSL was designed as a language for specifying such finite-state grammars
for the purpose of specifying information extraction rules in a relatively system-independent way. The adoption of such a common
language would enable the creation of shareable resources for the development of rule-based information extraction systems.

1. T H E N E E D F O R C P S L

As researchers have gained experience with information
extraction systems, there has been some convergence of
system architecture among those systems based on the
knowledge engineering approach of developing sets of
rules more or less by hand, targeted toward specific sub-
jects. Some rule-based systems have achieved very high
performance on such tasks as name identification. Ide-
ally, developers of information extraction systems
should be able to take advantage of the considerable
effort that has gone into the development of such high-
performance extraction system components. Unfortu-
nately, this is usually impossible, in part because each
system has a native formalism for rule specification, and
the translation of rules from one native formalism to
another is usually a slow, difficult, and error-prone pro-
cess that ultimately discourages the sharing of system
components or rule sets.

Over the course of the TIPSTER program and other
information extraction efforts, many systems have con-
verged on an architecture based on matching regular
expression patterns over the lexical features of words in
the input texts. The Common Pattern Specification Lan-
guage (CPSL) was designed to take advantage of this
convergence in architecture by providing a common for-
malism in which finite-state patterns could be repre-

sented. This would then enable the development of
shareable libraries of finite-state patterns directed
toward specific extraction tasks, and hopefully remove
one of the primary barriers to the fast development of
high-performance information extraction systems.
Together with common lexicon standards and annota-
tion standards, a developer can exploit previous domain
or scenario customization efforts and make use of the
insights and the hard work of others in the extraction
community. The CPSL was designed by a committee
consisting of a number of researchers from the Govern-
ment and all of the TIPSTER research sites involved in
Information Extraction that are represented in this vol-
ume.

2. I N T E R P R E T E R A S S U M P T I O N S

A pattern language is intended to be interpreted. Indeed,
the interpreter is what gives the syntax of the language
its meaning. Therefore, CPSL was designed with a
loosely specified reference interpreter in mind. It was
realized that extraction systems may not work exactly
like the reference interpreter, and it was certainly not the
goal of the designers to stifle creativity in system design.
However, it was hoped that any system that imple-
mented at least the functionality of the reference inter-
preter would, given appropriate lexicons, be able to used
published sharable resources.

23

The functionality assumed to be implemented by the
reference interpreter is as follows:

The interpreter implements cascaded finite-state trans-
ducers.

Each transducer accepts as input a sequence of annota-
tions conforming to the Annotation object spec-
ification of the TIPSTER Architecture
[Grishman, this volume]. The fundamental
operation performed by the interpreter is to test
whether the next annotation in sequence has an
attribute with a value specified by the grammar
being interpreted.

Each transducer produces as output a sequence of
annotations conforming to the Annotation
object specification of the TIPSTER Architec-
ture.

The interpreter maintains a "cursor" marking the cur-
rent position in the text. All possible rules are
matched at each point. One of the matching
rules is selected as a "best match" and is
applied. The application of a rule results in the
creation of new annotations, and in moving the
"cursor" to a new position.

The interpreter does an initial tokenization and lexical
lookup on the input. Each lexical input item is
marked with a Word annotation, and attributes
from the lexicon are associated with each anno-
tation.

The interpreter provides an interface to any external
functions to extend the functionality of the basic
interpreter. Such functions should be used spar-
ingly and be carefully documented. One exam-
ple of a legitimate use would be to construct
tables of information useful to subsequent
coreference resolution.

To date, one interpreter has been developed that closely
conforms to the specifications of the reference inter-
preter, namely the TextPro system, implemented by
Appelt. The object code, together with a fairly compre-
hensive English lexicon and gazetteer, and a sample
grammar for doing name recognition on Wall Street
Journal texts is freely downloadable over the web at the
following URL:

http://www.ai.sri.com/-appelt/TextPro/.

3. A D E S C R I P T I O N O F C P S L

A CPSL grammar consists of three parts: a macro defini-
tion part, a declarations part, and a rule definition part.
The declaration section allows the user to declare the
name of the grammar, since most extraction systems
will employ multiple grammars to operate on the input
in sequential phases. The grammar name is declared
with the statement

Phase: <grammar_name>

The Input declaration follows the Phase declaration, and
tells the interpreter which annotations are relevant for
consideration by this phase. For example, a name recog-
nizer will probably operate on Word annotations, while
a parser may operate on Word and NamedEntity annota-
tions. If there are multiple annotation types declared in
the Input declaration, the first annotation in the list is
considered the "default" annotation type. The impor-
tance of the default annotation will be explained under
the discussion of quoted strings. Any other annotations
are invisible to the interpreter, as well as any text that
might be annotated exclusively by annotations of
ignored types. A typical Input declaration would be:

Input: Word, NamedEntity

Finally, the language supports an Options declaration,
where the user can specify implementation-dependent
interpreter options to be used when interpreting the
grammar.

3.1 The Rules Section

The rules section is the core of the grammar. It consists
of a sequence of rules, each with a name and an optional
priority. The general syntax of a rule definition is

Rule: <rule_name>
Priority: <integer>

<rule_pattern part> -->
<rule_action_part>

Rules have names primarily for the implementation
dependent convenience of error printing and tracing
modules. Priority values can be any integer, and indicate
to the interpreter whether this rule is to take precedence
over other rules. The implementation of priority in the
reference interpreter is that the rule matching the most
annotations in the input stream is preferred over any rule
matching fewer annotations, and if two rules match the
same number of annotations, the rule with the highest
priority is preferred. If several rules match that have the

24

same priority, then the rule declared earlier in the file is
preferred. Interpreters should adopt this priority seman-
tics by default. If another priority semantics is imple-
mented, the grammar writer can select it in the Options
declaration.

The reference interpreter is assumed to maintain a "cur-
sor" pointer marking its position in the chunk of input
currently being processed. The interpreter matches each
rule pattern part against the sequence of annotations of
the declared input type. If no rules match, then the cur-
sor is moved past one input annotation. If one or more
rule pattern parts match at the current cursor position,
the interpreter selects the "best" match according to the
priority criteria discussed above, and executes the rule
action part for that rule. Finally, the interpreter moves
the cursor past the text matched by the main body part
of the rule pattern part. This process is repeated until the
cursor is finally moved to the end of the current input
chunk.

The Rule Pattern Part.

The pattern part of the rules consists of a prefix pattern,
a body pattern, and a postfix pattern. The prefix and
postfix patterns are both optional, but the body is man-
datory. The syntax is as follows:

< prefix_pattern > body_pattern

< postfix_pattern >

When pattern matching begins, the reference interpreter
assumes that the initial cursor position is between the
prefix pattern and the body pattern. If the annotations to
the immediate left of the cursor match the prefix pattern,
then the body pattern is matched. If that match is suc-
cessful, then the postfix pattern is matched. If all three
matches are successful, then the pattern is deemed a suc-
cessful match. Following success and execution of the
rule's action part, the cursor is moved to the point in the
text after which the body pattern matched, but before the
postfix pattern, if any.

Each of the constituents in the above rule is defined the
same way. They are grouped (and optionally labeled)
sequences of pattern elements. Labels are only useful in
the central body pattern, because the annotations
matched in the body pattern can be operated on by the
action part of the rule. When a new annotation is created
from a label in the body pattern, the new annotation
receives a span consisting of the first through last char-
acters covered by the spans of the matched annotations.

Groups of pattern elements are enclosed with parenthe-

ses, and are optionally followed by a label. There are
two types of label expressions, indicated by ":" and "+:"
characters, respectively. When used in the pattern part of
a rule, the ":" label references the last-matched annota-
tion within its scope. The "+:" annotation, on the other
hand, refers to the entire set of annotations matched
within its scope. Here is an example of labels used in a
pattern:

((~douglas"):firstName ~appelt")

+:wholeName

In this example, the label "firstName" refers to the
annotation spanning " d o u g l a s " , and the label
"wholeName" refers to the set of annotations { " d o u -
g l a s " "appelt" }.

Pattern elements are constraints on the type, selected
attributes and values of the next annotations in the input
stream. The basic form of an attribute constraint is

Annotation_type. attribute <rel>

<value>

The annotation_type must be one of the types listed on
the Input declaration for this grammar. The attribute
must be one of the attributes defined for that annotation
type. The < r e l > element is one of the relations appro-
priate for the attribute type. Possible relations are equal
(==), not equal (!=), greater than (>), less than (<),
greater than or equal to (>=), less than or equal to (<=).
The <value> element can be a constant of any type
known to the interpreter, or it can refer to an annotation
matched in the pattern part. The data types supported by
the reference interpreter are integer, floating point num-
ber, Boolean, string, symbol, a reference to another
annotation, or sets of any of those types. The reference
interpreter does not treat symbols and strings differently,
except that if a symbol contains any non-alphanumeric
characters, it must be enclosed in string quotes in order
to be parsed correctly by the grammar compiler.

A pattern element consists of constraints in the above
form, enclosed in brace characters. For example:

{Word.N == true,

Word.number == singular}

would match an annotation that has a Boolean "N"
attribute with value true, and a character "n umber "
attribute whose value is " s i n g u l a r . "

The reference interpreter assumes that if an attribute is
not present on an annotation, it will be treated as though

25

it were a Boolean attribute with value false. Reasonable
type coercion is done when comparing values of differ-
ent types.

An abbreviation allows an entire pattern element to be
replaced by a quoted string. This is shorthand for con-
straining the lemma attribute of the default input annota-
tion for this grammar to be the specified string. For
example, if annotation type Word were declared to be
the default input type for the current grammar then the
pattern element

"howdy"

would be exactly equivalent to typing

{Word.lemma == ~howdy"}.

The reference interpreter assumes that the value of the
lemma attribute is the character sequence that is used to
look the word up in the lexicon to obtain its other lexical
attributes.

In addition to being sequenced in groups, pattern ele-
ments can be combined with one of several regular
expression operators. Possible operations include

Alternation: (argl I arg2 I "" I arg n)

Iteration: (argl arg2 ... argn) * or (argl

arg2 ... argn) +

Optionality: (argl arg2 ... argn)?

As you would expect, * matches zero or more occur-
rences of its argument, + matches one or more occur-
rences, and ? matches zero or one occurrences.

Finally, a pattern element can be a call to an external
function. An external function call is simply the name of
the function followed by parameters enclosed in square
brackets. The function must be defined to return a Bool-
ean value, and it can take any number of arguments,
which can be references to annotations and attributes
bound by labels defined to the left of where the external
function call appears in the pattern. If the function
returns true, the pattern matching continues, and it fails
if the function returns false.

The Rule Action Part

The rule action part tells the interpreter what to do when
the rule pattern part matches the input at the current
position, and consists of a comma-separated list of
action specifications. The basic form of an action speci-
fication is

annotation/attribute

<assignment_operator> <value>

The annotation/attribute specification is an instruction to
the interpreter to build a new annotation. The annota-
tion/attribute specification has the following syntax:

:<label>.<annotation_type>.

<attribute>

The label must be one of the labels defined in the pattern
part of the rule. Also, the label must have been bound
during the pattern-matching phase. For example, a label
in an optional element that was not matched would be
unbound, and generate a runtime error. The annotation
type of the newly created annotation can be any annota-
tion type. The attribute is optional. If present, it means
to assign the value on the right hand of the assignment
operator to the indicated attribute on the newly created
annotation. If the attribute is not present, then the only
legal value on the right hand of the assignment operator
is "@", which tells the interpreter to create an annota-
tion spanning the specified label, but which has no
attributes.

The binding and the type of the label determine the span
set of the newly created annotation. If the label was
defined with ":", the annotation has a single span, which
is the first through the last character of the annotations
in the group to which the label is attached. If the label
was defined with "+:", the new annotation has a set of
spans, where each span in the set is obtained from one of
the annotations in the group to which the label is
attached.

When the reference interpreter is evaluating an assign-
ment statement, it looks for an annotation of the type
specified on the left -hand side that has the exact span
specified by the label. If one exists, then that one is used
to complete the assignment operation. Otherwise, a new
annotation is created. This functionality allows one to
assign values to multiple attributes on a single annota-
tion by using a sequence of assignment actions with the
same label and annotation type.

CPSL includes two assignment operators: "=" and "+=".
The former operator is the basic assignment operator.
The latter operator assumes that the left hand operand
represents a set, and the right hand element is added to
the set by the assignment.

In addition to assignment statements, the action part of a
rule can contain simple conditional expressions. The
conditional expression can refer to the attributes of

2 6

annotations bound during the pattern match. Simple
conjunction and disjunction operators (& and D are pro-
vided for multiple conditional clauses, however, the lan-
guage does not define a full Boolean expression syntax
with parentheses and operator precedence. The clauses
are simply evaluated left to fight. The THEN and ELSE
clauses of the conditional consist of a Here is an exam-
ple of a conditional expression:

(IF :l.Word.lemma != false

THEN

:rhs.DateTime.lemma = :l.Word.lemma)

Action specifications can also be calls to external func-
tions, invoked as before, by the name of the function fol-
lowed by a list of parameters enclosed in square
brackets. External functions can return a value or be
defined as void. If the function returns a value, it can
appear on the right-hand side of an assignment state-
ment. Otherwise, the external function call appears as an
entire action specification.

CPSL does not specify how the interface between the
interpreter and the external function should be imple-
mented. Each implementation is free to define its own
API.

3.2 The Macro Definition Section

The grammar writer can optionally define macros at the
beginning of a grammar definition file. CPSL macros
are pure text substitution macros with the following
twist: each macro consists of a pattern part and an action
part, just like a CPSL rule. The macro is invoked by
writing its name followed by an argument list delimited
by double angle brackets somewhere in the pattern part
of a rule. When the compiler encounters a macro call in
the pattern part of the rule, it binds the parameters in the
call to the variables in the macro definition prototype.

The parameter bindings are substituted for occurrences
of the parameters in the macro's pattern part, and the
expanded pattern part is then inserted into the rule's pat-
tern part in place of the macro call. Then, parameter
substitution is performed on the macro's action part, and
the resulting action specification is then added to the
beginning of the rule's action part. It is permitted for the
pattern part of a macro definition to contain references
to other macros, so this macro substitution process is
iterated until no more macro substitutions are possible.

Here is an example of a macro definition:

Short_and_stupid[X,lbl] ==>

{Word.X == true, Word.ADJ == false}

:ibl. Item.X = true, ;;

An invocation of the above macro:

Rule: foo

(Short_and_stupid<<N,myLabel>>)

:myLabel

:myLabel. Item.type = stupid

would result in the following rule being compiled:

Rule: foo

({Word.N == true,

Word.ADJ == false}):myLabel

:myLabel. Item.N = true,

:myLabel. Item.type = stupid

Macros can be used to automatically generate some very
complicated rules, and when used judiciously can con-
siderably improve their readability and comprehensibil-
ity.

4. A FORMAL DESCRIPTION OF CPSL

The following is a BNF description of the common pattern specification language:

<GRAMMAR> ::= <MACROS> <DECLARATIONS> <RULES>

.... Declarations

<DECLARATIONS> ::= <DECL> (<DECLARATIONS>)

<DECL> ::= <DECL_TYPE> : <SYMBOL_LIST>

<DECL_TYPE> ::= Phase [Input I Options

27

<SYMBOL_LIST> ::= <SYMBOL> (, <SYMBOL_LIST>)

- Macros

<MACROS> ::= <MACRO> (<MACROS>)

<MACRO> ::= <MACRO_HEADER> ==>

<PAT_PART> --> <ACT_PART> ;;

<MACRO_HEADER> ::= <SYMBOL> [<PARAMLIST>]

<PAT_PART> ::= any characters except --> and ;;

<ACT_PART> ::= any characters except --> and ;;

<PARAMLIST> ::= <SYMBOL> (, <PARAM_LIST>)

<MACRO_INVOCATION> ::= <SYMBOL> << <ARG_LIST> >>

<ARG_LIST> ::= <ARG> (, <ARG_LIST>)

<ARG> ::= any characters except ; and >>

Rules

<RULES> ::= <RULE> (<RULES>)

<RULE> ::= <NAME DECL> (<PRIORITY_DECL>) <BODY>

<NAME_DECL> ::= Rule : <SYMBOL>

<PRIORITY DECL> ::= Priority : <NUMBER>

<BODY> ::= <CONSTRAINTS> --> <ACTIONS>

<CONSTRAINTS> ::= (< <CONSTRAINT_GROUP> >)

<CONSTRAINT_GROUP>

(< <CONSTRAINT_GROUP> >)

<CONSTRAINT_GROUP> ::= <PATTERN_ELEMENTS>

(I CONSTRAINT GROUP)

<PATTER~LELEMENTS> ::= <PATTER~EMEMENT>

(<PATTER~LELEMENTS>)

<PATTERN_ELEMENT> ::= <BASIC_PATTERN_ELEMENT> I

~(~ <CONSTRAINT_GROUP> ~)" <KEENE_OP> <BINDING> I

"(~ <CONSTRAINT_GROUP> ")" I

~(~ CONSTRAINT_GROUP ~)" <KLEENE_OP> I

~(~ <CONSTRAINT_GROUP> ~)" <BINDING>

28

<KLEENE_OP> ::= * I + I ?

<BINDING> ::= <INDEX_OP> : <LABEL>

<INDEX_OP> ::= : I +:

<LABEL> ::= <SYMBOL> I <NUMBER>

<BASIC_PATTER~ELEMENT> ::= { <C_EXPRESSION> } i

<QUOTED_STRING> I

<SYMBOL> i

<FUNCTION_CALL>

<FUNCTION_CALL> ::= <SYMBOL> "[" <FARG_LIST> "]"

<FARG_LIST> ::= nil I <FARG> ("," <FARG_LIST>)

<FARG> ::= <VALUE> I (^) <INDEX_EXPRESSION>

<C_EXPRESSION> ::= <CONSTRAINT>

(", " <C_EXPRESSION>)

<CONSTRAINT> ::= <ATTRSPEC> <TEST_OP> <VALUE> I

<ANNOT_TYPE>

<ATTRSPEC> ::= <ANNOT_TYPE> <SYMBOL>

<ANNOT_TYPE> ::= <SYMBOL> I <ANY>

TEST_OP ::= == I ~= I >= I <= I < I >

<VALUE> ::= <NUMBER> I <QUOTED_STRING> I <SYMBOL>

I true I false

<ACTIONS> ::= <ACTION_EXP) (, <ACTIONS>)

<ACTION_EXP> ::= <IF_EXP>] <SIMPLE_ACTION>

<IF_EXP> ::= "(" IF <A C EXPRESSION>

THEN <ACTIONS> ")" I

"(" IF <A_C_EXPRESSION> THEN <ACTIONS>

ELSE <ACTIONS> ")"

<A_C_EXPRESSION> ::= <A_CONSTRAINT>

(<BOOLEAI~OP> <A C EXPRESSION>)

<BOOLEA~OP> ::= & I "J"

<A_CONSTRANT> ::= <INDEX_EXPRESSION>

29

<TEST OP> <VALUE>

<SIMPLE_ACTION> ::= <ASSIGNMENT> I

<FUNCTION_CALL>

<ASSIGNMENT> ::= <INDEX_EXPRESSION> = @ I

<INDEX_EXPRESSION> < ASSIGN_OP >

(<VALUE> I <INDEX_EXPRESSION> I

<FUNCTION_CALL>)

<ASSIGN_OP> ::-- I +=

<INDEX_EXPRESSION> : := : <INDEX> <FIELD>

<FIELD> ::= <ANNOT_TYPE> (<SYMBOL>)

REFERENCES

1. Gfishman, Ralph et al. The TIPSTER Architecture (this volume)

30

