
TIPSTER LESSONS LEARNED: THE SE/CM PERSPECTIVE

Harold Corbin and Aaron Temin
Li t ton P R C

1500 P R C D r i v e

M c L e a n , V A 2 2 1 0 2

{ corb in_ha l , t e m i n _ a a r o n } @ p r c . c o m

I N T R O D U C T I O N

The TIPSTER architecture is a domain-specific
software architecture (DSSA) for the text
processing domain. The primary goal of the
architecture was to allow the use of standardize
text processing components, enabling "plug and
play" capabilities of the various tools being
developed. This would permit the sharing of
software among the various research efforts and
operational prototype applications.

PRC, Inc., was the systems engineering and
configuration management (SE/CM) contractor for
the TIPSTER program, phases II and III (1994-
1998). During this time we had close association
with all the TIPSTER participants: Government,
research contractors, and project contractors. Our
primary role was to support the TIPSTER
Architecture Committee and its co-chairpersons.
We were able to observe the entire process of
creating the TIPSTER architecture and applying it
to research, projects, and the Architecture
Capabilities Platform (ACP).

The architecture was successful in many ways,
though it also fell short of expectations in most
areas. This paper describes our perspective on the
architecture, to help subsequent efforts understand
how to benefit from, and efficiently extend, the
architecture.

B A C K G R O U N D

It will be helpful, in understanding the lessons
learned, to bear in mind some background of the
TIPSTER program, the intended uses of the
architecture, and the process used to develop the
architecture.

2.1 Relevant Programmatics
TIPSTER was a DARPA program, with funding

provided primarily by DARPA, CIA, and NSA.
Coordination among these agencies was formally
accomplished by a Memorandum of Understanding

(MOU). The MOU specified overall funding
contributions, and set the administrative guidelines
for the three sponsoring agencies. The TIPSTER
Research and Evaluation Committee (REC) was
charged with oversight responsibility of the 15
research efforts and the Architecture Committee
had oversight of the architecture development and
the Architecture Capability Platform effort. Each
effort was managed independently by a
government Contracting Officer's Technical
Representative (COTR) and the goal was to have
the COTRs report to the appropriate committee.

Phase III of the TIPSTER Text Program
initially was designed for three years. The third
year, however, was eliminated due to funding
shortfalls experienced by the government sponsors.

2.2 Intended Uses of the Architecture
The architecture was intended to have two

direct applications:
1. Provide researchers with guidelines on

building their components so that they
could easily be used by other researchers
within the program. This would also mean
that duplication of effort could also be
reduced when researchers shared common
pre-processing needs, or when the output of
one research project could serve as the
input to another.

2. Provide developers with guidelines on
building entire applications, including
interface specifications that would allow
the projects to incorporate advances made
by the researchers as those results became
available.

There were also other intended effects, such as
providing guidance to those writing requirements
for acquiring text processing systems, and helping
shape and publicize the TIPSTER program.

17

2.3 The Development and Maintenance
of the Architecture

The basic development of the architecture was
done over nearly two years (April 1994 - January
1996) by the Contractors Architecture Working
Group (CAWG) with three-day technical meetings
about once a month. The CAWG was composed of
one or two people from each of the Phase II
contractors. These meetings were essentially
discussion and negotiation sessions among the
participants. E-mail discussions and additional
work was conducted when the members returned
home. Later, after a baseline architecture was
established, procedures were established to modify
and improve the architecture through a Request For
Change (RFC) process. Near the end of Phase II
several RFCs were submitted and carried over into
Phase III, and several more RFCs were submitted
during Phase III. RFCs were voted on by the
Architecture Committee, and revisions to the
design document were made as RFCs were
approved.

TIPSTER included a mechanism called the
Engineering Review Board, chaired by the SE/CM,
which held reviews on TIPSTER projects and
reported on differences between the architecture
used by the project developers and the documented
TIPSTER architecture. This was the major source
of RFCs (though RFCs could be submitted at
anytime).

3 L E S S O N L E A R N E D

This section describes several lessons we
believe have been learned as a result of having
pursued the development of the architecture.

3.1 Architectures Are "Good Things to
Have"

Whatever the specific achievements or failings
of the current TIPSTER architecture, the consensus
of the program is that having an architecture was a
good idea. It provided a central focus to an
otherwise somewhat loosely-coupled set of
contracts and it provided a forum for the
researchers to share concerns and make progress
on areas of mutual interest. It made it much easier
to describe the program and its goals, both to
participants and to outside interested parties.

There was always a lot of great hope expressed
in the architecture and a stated desire by all
participants that its goals were important to

achieve. Though it may be judged that the final
TIPSTER architecture did not achieve all these
goals, we should be encouraged by the
achievements and use the lessons learned for an
improved architecture in the future. We should
consider architectures as a good idea for text
processing systems.

3.2 Programmatic Incentives May Be
Necessary To Get The Architecture
Used

Usually, an architecture is a model of standards
and interfaces used to development common,
reusable components or modules in support of
various domain operational applications. Applying
this concept to the research environment was new
and unusual. Normally, researchers are concerned
with new algorithms and concepts and are not
involved in the bigger application or system
picture. They must be properly indoctrinated in the
needs for an architecture, provided adequate
support tools and directed to use the architecture.
It can not be an optional consideration except
where their work has no bigger contribution to an
application.

3.3 Direction and Support
In Phase II, the Government and COTRs, would

meet once a month for architecture discussions.
This provided common grounds to support
architecture development. In Phase III, these
meetings did not occur, with the result that
architecture development slowed because of lack
of common guidance to the researchers as to the
importance of the architecture. Also, the work
statements and funding for some of the researchers
may not have supported their needed contributions
to the architecture through the Technical Working
Groups.

The message here is that when there are so
many contracts, a high level of coordination and
cooperation is necessary.

3.4 The Architecture Should Be
Available At The Beginning

Since the architecture was designed in parallel
with the researchers' main tasks it could not serve
as a framework on which they could do their work
since it changed frequently. Thus, there was
uncertainty as to the environment and structure into
which their work should fit and how their
components would work with other components.

18

The architecture development process should
have proceeded quite differently. The architecture
should have been essentially complete after two or
three months so the researchers would know about
the framework in which they were expected to
work. This improved schedule could have been
achieved by having an Architecture Design Team
(ADT) consisting of no more than five people
working together continuously, at one location, for
two or three months. The ADT should be
comprised of domain specialists AND system
specialists. A suggested composition would be:

• Two expert Document Detection computer
linguists

• Two expert Extraction computer linguists

• System Engineer and Chief Architect
(knowledge of, and experience in, building
real applications is important)

The major focus of the architecture for Phase III
was the development of a COmmon Request
Broker Architecture (CORBA) compliant
Architecture Capabilities Platform (ACP) to host
TIPSTER-compliant software components and
modules. The ACP provides a software platform to
test individual TIPSTER tools and capabilities.
Developers will be able to demonstrate to the
Government the modularity of their text handling
systems by plugging components and modules into
the ACP and interacting with the other TIPSTER
components on the platform. In addition, the ACP
will demonstrate the capability to interact with
systems based on Z39.50 standards. The ACP will
also have various supporting components such as
document collections, standard detection needs,
lexicons, a document manager and a default
graphical user interface (GUI).

The unavailability of the ACP in Phase III is
very similar to the unavailability of the architecture
in Phase II. Both were needed early so the
researchers could properly design and test their
products during development. Even though there
was a limited budget for the ACP it probably
would have been more effective if most of the
money was loaded to the beginning of the project
so it could "get on the air" sooner.

3.5 Architectures Can Promote Sharing
and Increase Efficiency

Text processing systems are complicated
systems composed of many components. Broadly
speaking, these components are arranged in a serial

3.6

pipeline, each component building on the output of
the preceding component. While researchers
concentrated on developing individual
components, they all had need for input data. In
the extreme case shown in Figure 1, a version of
each component m in an N-stage pipeline gets built
N-m+l times (by that many researchers). Ideally,
each component could be built once and then
shared (Figure 2).

TIPSTER demonstrated this sharing with
several components. The most highly shared
component was the Document Manager. Several
versions (but far fewer than the number of research
efforts) were built and shared throughout Phases II
and III. Lexicons, semantic nets, and some part-of-
speech tagging components were also shared.

There was also a great deal of discussion of
sharing that we feel would have materialized had
there been more time (even simply the third year of
Phase III). This component sharing was primarily
hampered by the delay of fielding the ACP.

Architecture Design and
Application Development
Experience Are Critical

The CAWG approach could have been more
tightly controlled, directed, and limited in duration.
The contributors were experts in their particular
domain, but the group as a whole would have
benefited from additional expertise in system
architecture design.

Early on it was apparent that the CAWG could
not agree on the scope, selection, design or utility
of numerous small modules. This resulted in an
architecture of large components (the equivalent of
a Computer Software Component in lifecycle
terminology). The issues the CAWG faced with
small modules were ownership of algorithms and
software, module interfaces, which modules would
be designed and whether small modules were
technically feasible. There also appeared to be
some resistance to the concept of a larger,
generalized systems approach for TIPSTER. This
is somewhat understandable since many of the
researchers were used to working independently on
small algorithmic pieces of code.

The end result was that the architecture was
made of three large components. Document
Manager, Document Detection and Information
Extraction. Since all of the researchers could use a
Document Manager, it became the center-piece of

19

Research proiect 1

.................................. i i

. t I
Research proiect 2

Research project 3

Research project 4

Module 1 Module 2 Module 3 Module 4

Figure 1: Each project builds its own copy of each module.

Research proiect 1

Research proiect 2

Research proiect 3

Research proiect 4

Module 1 Module 2 Module 3 Module 4

Figure 2: Each project reuses modules from other projects.

20

4

the architecture and controlled much of the
remaining work of Phase II. In our opinion, this
significantly weakened the concept of an
architecture that could be used to build a variety of
domain applications. If the document manager
functions were smaller and more flexible, they
would likely have been able to support a broader
set of needs (e.g., detection researchers were
unable to develop a compliant document manager
that was also fast enough for their needs). The
program also would have benefited from greater
focus on the detection and extraction components.

UNFINISHED WORK
The architecture currently is a work-in-

progress. Some things that might be considered for
a future program are:

The existing architecture is a mixture of
standards, interfaces and implementation
approaches. This causes confusion as to
what parts are really architecture and which
parts are module and component code. An
overhaul of the architecture is needed to
separate these things into a document
which provides organization and structure
through standards augmented with
compliant modules which are built to the
architecture standard as components in a
toolbox. The ACP is a partial step toward
the toolbox; however, more tools are
needed.

The interfaces need clarification so that
they specify only what is needed for
compatible interfaces, allowing for
different implementations that allow
systems to optimize for different
constraints. Many of the current interfaces
are overly constrained.

A standardized storage method for
documents should be established. This
would allow different and possibly more
efficient Document Manager components
to be used in the architecture on an
interchangeable basis. If an architecture is
as general, flexible and open-ended as the
TIPSTER architecture, it becomes nearly
impossible to have a application built
which can have interchangeable
components.

• Code should be provided which supports
the Detection Need and Queries function.

Since this is a generic function, a tool to
support it is appropriate.

The Pattern Specification Language
capability should be completed and tested.
This could be a critical area in
standardizing rules to bring Information
Extraction technology up the level of
Document Detection technology.

5 DOCUMENTS
Four basic TIPSTER document were prepared

during Phase II and updated during Phase III.
These documents established the baselines for
TIPSTER and were placed under configuration
management control. The current versions of the
documents are:

TIPSTER Text Architecture Concept, Version 1.12

TIPSTER Text Architecture Requirements, Version
2.01

TIPSTER Text Architecture Design, Version 3.1

TIPSTER Text Configuration Management Plan,
Version 1.3

6 C O N C L U S I O N

In presenting a brief history of the development
of the TIPSTER architecture and an assessment of
its use and value, we hope to encourage future
programs to undertake the development of a
domain specific architecture and to enable those
programs to capitalize on the TIPSTER experience
so that a working-level architecture may be
developed.

21

