
BUILDING AN ARCHITECTURE: A CAWG SAGA

Ralph Grishman
C o m p u t e r Sc i ence D e p a r t m e n t

N e w York U n i v e r s i t y

715 B r o a d w a y , 7 th F l o o r

N e w York , N Y 10003

grishman©cs, nyu. edu

Abstract

The Tipster Architecture - - a standardized inter-
face for providing document management, document
retrieval, and information extraction services - - is
one of the major products of Phase II of the Tip-
ster program. The architecture was developed by the
Contractors' Architecture Working Group (CAWG)
over the past two years. It has been refined through
feedback from the demos developed by the CAWG
for the 6-month and 12-month Tipster meetings, and
from the Tipster-compliant systems now being imple-
mented.

M O T I V A T I O N

Phase II of the Tipster program had a twofold mis-
sion: to advance the technology for document detec-
tion (information retrieval and routing) and informa-
tion extraction from free text, and also to facilitate the
delivery of this technology to Government customers.

How could delivery of this technology be improved?
The Government proposed an approach of identify-
ing a core set of services needed by a broad range of
text analysis applications, and defining a standard set
of functions and interfaces for these services. These
functions and interfaces would constitute an architec-
ture - - the Tipster Architecture.

Creation of a standardized architecture could help
in many ways. It could speed initial application devel-
opment by providing standardized, pre-existing mod-
ules. It could ease system maintenance through well-
defined, well-document internal interfaces between
modules. It could support system upgrading to take
advantage of improved technology, by making it much
easier to replace an older module with a newer (and
hopefully better-performing) module. And by mak-
ing it easier to combine language analysis modules in
novel ways (for example, combining extraction and

detection) it could enhance system performance.
In addition, the architecture would make it easier

to conduct research on individual components of a
text analysis system, by creating an environment of
standardized modules. The lone experimenter would
not need to create an entire application system from
scratch to conduct experiments.

Central to all these benefits would be the notion of
plug and play: defining a set of modules and inter-
faces with sufficient precision that we could unplug
one vendor's module and replace it with another ven-
dor's without affecting system functionality.

THE S A G A

The L a u n c h

The objective was certainly quite ambitious: to cre-
ate an architecture which could satisfy the needs of a
wide range of text analysis applications and could be
implemented efficiently enough to support operational
systems. To meet this challenge, the Government as-
sembled a group of representatives of the contractors
who would be conducting research and development
under Tipster Phase II, and told us we had six months
to create an architecture. By including representa-
tives of the contractors who would have to use the
architecture (during the rest of Phase II), the Gov-
ernment sought to insure that all the essential needs
of various detection and extraction applications would
be addressed. 1

The prospect was challenging and indeed a bit
daunting for a group none of whom had written an

1The members of the committee have included, over the
course of Phase II, Bill Caid, Jamie Callan, Jim Conley,
Hal Corbin, Jim Cowie, Kathy DiBella, Ted Dunning, Joe
Dzikiewicz, Louise Guthrie, Jerry Hobbs, Clint Hyde, Marc
Ilgen, Paul Jacobs, Matt Mettler, Bill Ogden, Peggy Otsubo,
Bev Schwartz, Ira Sider, Ralph Weischedel, and Remi Zajac;
Ralph Grishman chaired the committee.

213

architecture before. No one was sure quite what the
final document would look like. Fortunately, a series
of planning workshops for Phase II, held in the spring
of 1993, had identified some basic concepts for an ar-
chitecture, and provided a strong base of ideas from
which to start.

Central among these ideas was the notion of an an-
notated document. All of the information which was
learned about a document in the course of its analysis
- - header zones, paragraph and sentence boundaries,
person and organization names in the text, relational
information about selected types of events, comments
by human analysts, etc. - - would be stored as an-
notations which would be kept with the document.
The annotations would point to segments of the orig-
inal text; the original text would be maintained un-
changed.

Starting from these ideas, the CAWG set out in
April, 1994 to knit together an architecture. Over
the spring and summer of 1994 the outlines of an ar-
chitecture began to come together in the form of an
Architecture Design Document. The CAWG initially
met once a month in Washington; in the intervening
four weeks, the committee chair prepared a revised
Design Document to reflect the changes and additions
proposed at the previous meeting.

The architecture was specified in terms of a hi-
erarchy of object classes, with operations associated
with each class (and inheriting operations from classes
above it in the hierarchy). The initial specifica-
tion was programming language independent, but in-
cluded some basic guidelines for implementations in
C and Lisp.

The principal object classes included the document
and the annotation, which were mentioned before.
Documents were organized into collections. In ad-
dition to annotations, which provided information
about segments of a document, a document could
have attributes which specified information about the
entire document (e.g., its source or creation date). In-
formation about an entire collection could be recorded
as attributes on the collection.

Modules within the Architecture Communicate pri-
marily by passing documents and collections, and by
adding annotations and attributes. Thus a "name an-
notator" would take a collection and add to each doc-
ument in the collection some annotations indicating
the proper names found in that document. An infor-
mation extraction module would add annotations cor-
responding to instances of a type of event. A retrieval
engine would take a collection and a query and return
a (smaller) collection of relevant documents, with an
attribute on each document indicating its degree of
relevance to the query.

A number of specialized object types had to be
added for retrieval and routing, including different
types of queries and indexes for document and query
collections.

T h e D e m o s

To show the benefits of the architecture, and to push
its further development, the Government asked the
CAWG to create an integrated demo system for the 6-
month Tipster meeting in November 1994. New Mex-
ico State Univ. created a "Document Manager" - -
an implementation of the core document management
functions in accordance with the architecture. Several
other contractors 2 provided detection and extraction
components which conformed to the architecture and
interfaced to this document manager. This demo pro-
vided the first, albeit limited, demonstrat ion of "plug
and play", and the first demonstrat ion of detection
and extraction systems interacting through annotated
documents.

This demo led to several revisions to the
architecture. 3 In addition, its success led to the de-
sign of an even more ambitious demo for the 12-month
Tipster meeting in May 1995. This second demo in-
tegrated several extraction systems, several detection
systems and a richer set of interfaces 4. The 12-month
demo, in turn, propelled further developments in the
architecture, including methods for declaring annota-
tions and for representing information extraction tem-
plates as annotations.

A few more changes were made to the architecture
document as a result of problems which came up dur-
ing the 12-month demo. In particular, an explicit
specification of the C-language interface was added
to the document.

O n t h e O p e n S e a

By late 1995, several Government systems were being
implemented in conformance with the Tipster Archi-
tecture. Contractors found that they had to extend or
modify the architecture to meet the needs of specific
applications. These modifications and extensions are
now beginning to be presented to the CAWG and to
the Government 's Architecture Commit tee for possi-
ble revision of the standard architecture.

2BBN, HNC, Martin-Marietta, and the Univ. of
Massachuset ts

3 Most contentiously, the removal of "document lists", which
were lists of pointers to documents in collections; all sets of
documents were now stored uniformly as collections.

4including contributions from BBN, HNC, Lockheed-
Martin, New Mexico State Univ., SRI, TRW, and the Univ.
of Massachuset ts

214

A L I V I N G A R C H I T E C T U R E

The Government originally hoped that an architecture
could be completed in six months, and that we could
then all go back to doing research and writing sys-
tems in conformance with the architecture. It hasn ' t
quite worked out that way. We did have an architec-
ture after six months, so we might have stopped there
and let the Government mandate that people use that
architecture as best they could. However, the Govern-
ment had an ambitious set of goals, and we were still
a long way from meeting all of them. In addition, it
was recognized that real success for the architecture
lay in making it attractive enough, in both design
and availability of components, to be widely and vol-
untarily adopted. So we have embarked on a program
of gradual improvement of the architecture. This is
comparable to many efforts at programming language
standardization, where an initial specification is grad-
ually revised over several years in response to user
and developer feedback.

After two years, we are closer to meeting the goals
set for the architecture, but we are still not done.
We expect that there will be continuing incremental
revisions to the architecture driven by the need for
efficiency, completeness, precision, and simplicity:

• ef f ic iency: we have tried to minimize the loss of
efficiency due to conformance to the architecture.
We recognize that there will be some cost in con-
formance, since we are using general mechanisms
in place of ones specially developed for a sin-
gle application, but we need to insure that these
costs are not so great that they make the archi-
tecture unattractive. In particular, we have been
looking recently at the problems of retrieval, to
insure that the operations associated with creat-
ing a new collection of documents for the results
of a retrieval operation can be performed quickly.

• c o m p l e t e n e s s : in some sense the architecture
will never be "complete": there will always be
requests to standardize additional services or re-
sources associated with text analysis. However,
there are some areas which are clearly lacking
and are needed by many applications. The archi-
tecture as yet makes no special provision for op-
eration in a multi-process environment; we need
to include such mechanisms as read and write
locks and transaction control which are typical
of data base systems. We need to specify the
error conditions for the operations in the archi-
tecture and the mechanisms for error signaling.
The details of the interface have as yet been fully
spelled out only for C; based on the implementa-

tions which are planned, we need to add explicit
specifications for C + + , CORBA, and Common
Lisp.

• p r e c i s i o n : We recognized all along that the rel-
atively brief English prose describing the opera-
tions in the architecture left some things under-
specified. Nonetheless, it was a sobering experi-
ence in the fall of 1995 when for the first time a
contractor who had not been part of the CAWG
(and hence was not privy to the "oral tradition"
of the CAWG) prepared a design for a Tipster-
compliant application, and interpreted the De-
sign Document in some unexpected ways. This
experience has led to an extended discussion of
the semantics of some operations, and plans to
include both more details and some examples in
the Design Document.

It has also prompted the development of an ini-
tial version of a v a l i d a t i o n s u i t e by New Mex-
ico State Univ. Until now, conformance to the
Tipster Architecture has been gauged by a man-
ual comparison of an implementation with the
Design Document. The validation suite imple-
ments a series of tests, each of which tests some
aspect of architecture compliance. It thus will
allow the verification of architecture compliance
to be partially automated. It will also provide
a definition of some aspects of the architecture
which can complement the prose descriptions in
the Design Document.

• s imp l i c i t y : We have made a strong effort f rom
the beginning to assemble an architecture from a
small number of simple yet powerful objects, and
where necessary to rethink parts of the design
rather than simply adding stuff on. As we try to
make the architecture more comprehensive, there
will be a natural tendency to just add features
and operations. Unfortunately this makes the ar-
chitecture harder to understand and harder to im-
plement. We therefore will need to maintain our
vigilance in protecting and enhancing the clarity
of the design.

Our hope is that, by continuing to be responsive to the
needs of the users - - the designers and implementers
of text analysis systems - - in developing the archi-
tecture, we can encourage the creation of a wide vari-
ety of Tipster-compliant modules, available as COTS
(commercial, off-the-shelf) products. Through this
"marketplace of Tipster modules" we will be able to
meet our goal of facilitating the transition of advanced
text analysis techniques to operational systems.

215

