
TIPSTER PHASE I FINAL REPORT

Bill Caid, Stephen Gallant, Joel Carleton, David Sudbeck

HNC, Inc.
5501 Obedin Drive

San Diego, CA 92121
(619) 546-8877

. D E S C R I P T I O N O F S Y S T E M U S E D

I N 2 4 - M O N T H E V A L U A T I O N

1.0 T e c h n i c a l A p p r o a c h

Overview: During Phase I of the TIPSTER program,
HNC developed a unique approach to machine learning of
similarity of meaning. This approach, embodied in a
system called "MatchPlus", exploits this learned
similarity of meaning for concept-based text retrieval,
routing and visualization of textual information.
MatchPlus uses an information representation scheme
called "context vectors" to encode similarity of usage.
Key attributes of the context vector approach are as
follows:

Words, documents, and queries are represented by
context vectors. A context vector encodes a
representation of the meaning of a word, query, or
document as a high-dimension, fixed length, real
vector.

Elements of the context vector, called "features",
define a "meaning space" used for classification and
retrieval of documents. The selection of features is
automatically determined by the system and defines
the "frame of reference" for the formation of the
context vectors. The direction of the context vector
provides an encoding of the meaning of the
associated text.

A context vector is assigned to each unique word and
phrase in the system lexicon during system
initialization. Word and phrase context vectors are
then learned from free text based on the context of
their occurrences in the training text using a
constrained self organization technique. This
learning is fully automatic: no external knowledge
bases, dictionaries or thesauri are needed for learning
the vectors.

Once trained, vectors for words with similar usage in
the training text (for example NASA and Space
Shuttle) will point in approximately the same
direction. Vectors for words with unrelated usage
(like NASA and peanut) will be approximately
orthogonal. The degree of similarity of usage is
analogous to similarity of direction.

Word and phrase context vectors are used to form
context vectors for documents a n d queries.
Document and query context vectors are computed as
the weighted sum of the context vectors associated
with stems and phrases in the document or query.
Long documents may be split and represented by
several vectors. Document context vectors are
normalized to prevent long documents from being
favored over short documents. When complete, each
document's context vector contains an estimate of the
meaning of the document relative to the current
feature set.

The context vector representation scheme offers a number
of advantages. Documents can be classified (clustered),
retrieved, and routed by computing conventional
geometric distances. This is because documents that have
similar context vectors (i.e., point in roughly the same
direction) will have similar information content. Simple
Euclidean distance measurements between sets of context
vectors are a measure of similarity of meaning.
Additionally, since all tokens in the system (words,
queries, and documents) have the same vector
representation, these comparisons of similarity can be
carried out at any level of detail: word, sentence,
paragraph, document, or set of documents. This provides
a mechanism for automatically finding high relevance
"hot spots" within a document. The hot spot detection
feature is referred to as "highlighting". Highlighting can
be performed at both the paragraph-within-a-document
and word-within-a-paragraph levels.

69

Document retrieval is performed by simply finding
documents having context vectors that are close to the
query context vector. A document's relevance to the
query is determined by comparing the dot product of the
query context vector with that of the document's context
vector. A large dot product implies strong relevance to
the query. The documents in the retrieval list are ranked
according to the magnitude of the dot products.

Routing is performed in a similar fashion. The context
vector for each incoming document is compared to the
context vector of each routing query, and if the dot
product exceeds the similarity threshold, the document is
routed to the user(s) associated with that query.

Context vectors can be used alone or in combination with
a Boolean filter, thus the name "MatchPlus". Using a
compound query approach, MatchPlus can augment and
enhance existing Boolean search systems because the
most relevant documents are at the top of the retrieval
list. In this mode, MatchPlus will provide relevance-
ranked documents within the set of documents that meet
the Boolean filter criterion, thus helping to reduce
information overload common to Boolean-based systems.

Features: The key features of the MatchPlus approach
from a user's perspective are as follows:

Documents are retrieved based on meaning rather
than word match and are ranked based on relevance
to the query. MatchPlus will find related documents
even if the key word is not present in those
documents.

• The unified representation approach allows the entire
text of documents to be used as a search query.

Adaptive learning by steering (refining) the query
context vector using relevance feedback can quickly
improve the quality of a query.

• The system learns similarity of meaning from usage
and can track the evolving meaning of terms.

• Easy-to-use graphical query interface is based on X
Windows/MOTIF.

Architecture: Key attributes of the current MatchPlus
system architecture are:

Allows operation on very large corpora (in excess of
107 documents) in networked and/or distributed
processing environments. Allows heterogeneous
corpus contents and formats.

Supports Boolean, context, and relevance feedback
query modes, and can be integrated with existing
"key word" match systems to provide performance
improvements and relevance rankings.

• Extendible and hardware-independent architecture
that provides easy-to-use graphical user interface.

Summary of Conclusions: The research conducted during
Phase I of the TIPSTER program has resulted in the following
conclusions:

• The context vector approach to text representation is
viable.

Matchplus, which exploits the concept of "similarity
of use", is fully automatic. Demonstration of
MatchPlus's ability to learn "similarity of use" has
been demonstrated in the legal, medical and scientific
domain as well as in foreign languages such as
Spanish and Japanese.

MatchPlus's vector representation provides a
detailed explanation capability that can be utilized to
answer basic informational questions such as:

1. Why was this document retrieved?

2. What section of the document is most
relevant?

3. What is the commonalty with this group of
documents?

. What is the relationship of this concept with
the rest of the text and what, if any, are the
senses in which it is used?

5. Has this concept changed or has it been used
in a different context over time?

Next Steps: To fully exploit the context vector
representation further research is required in these general
a r e as :

• Use of context vectors in non-text domains such as
images.

Refinement of the clustering technique to improve
retrieval and routing performance and speed as well
as automated subject indexing, visualization, and
word sense disambiguation.

• Continued participation in TREC evaluations and
continued in-house retrieval and routing testing in an

7 0

effort to understand how MatchPlus's concept
retrieval system can be improved for information
retrieval and routing.

Related Research: The MatchPlus context vector
approach appears to be directly extensible to text in all
languages and domains. Concepts for further extending
the approach to provide content-addressable access for
image, video, sound, and sensor data have also been
developed. Rome Labs (USAF) funded further
development of the HNC context vector-based approach
as part of the Automated Librarian SBIR contract. Phase
II of this SBIR, called Image Content Addressable
Retrieval System (ICARS) will extend the context vector
approach to the image domain. The context vector
representation can also provide a vehicle for visualization
of the information content of free text. Any word or set
of words has a vector representation. As such, graphical
representations of information content can be achieved
based on the context vector representation. HNC is
currently developing a text information visualization
system as part of non-TIPSTER, ORD-sponsored
activities. When complete, this system, called
DOCUVERSE, will have the capability to perform icon-
based browsing of text as well as graphically displayed
directed queries.

Current Deployment Status: Preliminary prototype test
versions of MatchPlus have been in use at Wright-
Patterson AFB (FASTC) for over one year. MatchPlus is
also being evaluated at USAIA (FSTC) and other
agencies for analysis of classified data. HNC has
received a contract to develop a prototype MatchPlus
system for a large legal publishing firm. Current plans
call for the evaluation of MatchPlus as part of the US
Patent and Trademark Office Automated Patent System
upgrade effort. The current implementation of the
MatchPlusITIPSTER system is based on the C language
and uses X Windows/MOTIF as the graphical user
interface.

I.I Processing Flow and Key Modules

I .I .I MatchPlus Functional Overview

HNC's approach to the TIPSTER text retrieval and
routing problem is called "MatchPlus". MatchPlus is a
neural network-based approach to the problem of free text
retrieval, classification and routing. The key technical
feature of MatchPlus is the representation of words,
documents, and queries by "context vectors". A context

vector encodes a representation of the meaning of a word,
query or document as a high-dimension, fixed length, real
vector. Context vectors for new words are "learned" from
the text corpus using a process called "bootstrapping".
Using the bootstrapping technique, MatchPlus learns the
usage of words and meanings of documents that contain
those words by using only the text corpus.

Once bootstrapping is complete, the resulting word
context vectors are then used to form a "document context
vector" for each document in the corpus. Document
context vectors are computed as the weighted sum of the
context vectors associated with stems and word groups in
the document.

Documents can be classified, retrieved and routed by
computing conventional geometric distances. Simple
Euclidean distance between sets of context vectors are a
measure of similarity of meaning. Thus, document
retrieval is performed by simply finding documents that
are "close" to the query context vector. Document
relevance to the query is assessed via a dot product of the
query context vector with each document context vector.
Large dot products imply strong relevance to the query.
The retrieval list is ranked according to magnitude of the
dot product.

Routing is performed in a similar fashion. Context
vectors are computed for incoming documents and
compared to each routing query. If the dot product
exceeds the similarity threshold, the document is routed
to the user(s) associated with that query.

Context vector similarity assessment techniques can be
used alone or in combination with a "Boolean filter", thus
the name "MatchPlus". Using a compound query
approach, MatchPlus can augment and enhance existing
Boolean search systems since the most relevant
documents are at the top of the retrieval list. In this
mode, MatchPlus will provide relevance-ranked
documents within the set of documents that meet the
Boolean filter criterion, thus helping to reduce
"information overload" common to Boolean-based
systems.

The key attributes of the MatchPlus system architecture
a r e :

• Design accommodates very large corpus (more than 1
million documents).

• Architecture supports operation in a distributed CPU
environment.

71

• Provisions for heterogeneous format corpus built into
system.

• X Windows/MOTIF GUI under Sun/OS.

The sections below provide a more in-depth examination
of the MatchPlus system. This discussion will "walk-
through" the operation of the system in each high level
mode and will trace the processing that occurs to a query
when a retrieval is performed.

1.1.2 MatchPlus Operating Modes

The MatchPlus system operates in three main modes:

• System Generation

• Retrieval

• Routing

The system generation mode provides initialization and
maintenance capabilities and is used to "teach" the system
the meanings of words given a training corpus of text.
Once the meanings of the stem words have been derived,
these are used to compute document context vectors.

Retrieval mode allows the user to enter queries to the
MatchPlus system and find documents that meet the
query specification(s).

Routing mode, as the name implies, provided routing
services for incoming documents. In a sense, routing is
the inverse of retrieval. In retrieval, there is one query
and many documents that might apply to the query. In
routing, there is one document and many routing queries
that may apply to the document.

In order to provide a better basis for understanding the
operation of the MatchPlus system, the key data
structures used by the MatchPlus system will be described
prior to the detailed explanation of the operating modes.

1.1.3 Key Data Structures and Control Files

An object oriented design was utilized during the design
of the MatchPlus architecture. Therefore, to gain a better
understanding of the operation of the system, a
description of these data objects is required. MatchPlus
makes use of several "key" data structures. These
structures are key in the sense that many software
components use the information contained within these

structures. These data structures are described below. In
an effort to standardize and reuse software components,
"access routines" and "standard packages" have been
developed. These packages provide a common format
interface to widely used facilities such as hash tables,
linked lists, etc. Since these data structures are
conventional data structures and are not TIPSTER
specific, they will not be discussed.. .

1.1.3.1 Corpus Description Data Structure

The corpus description (CD) data structure, as it's name
implies, carries information about where documents that
comprise the corpus are located, how they are formatted,
etc. The CD is used to compress the amount of
information that is required to completely describe the
corpus of text to the system. In general, there are no
restrictions about the number of documents per file, the
number of files per directory or the number of directories
that comprise the corpus. The only restriction is that one
document cannot span a file. A schematic of the CD is
shown in Figures 1A and lB. As can be seen from the
figure, the CD contains a number of sub-objects. These
sub-objects are:

The root object is of type "tCorpus" and contains a
series of base addresses and lengths of each of the
other object arrays. Additionally, it also contains the
number of elements (dimension) of the context
vectors used by the system.

The array of objects of type "tDocDescr" contain
information about each specific document in the
corpus. This information includes the (internal)
document ID, start FSEEK address, length in bytes, a
code for the file that contains the document, a status
and a pointer to the document context vector. There
is one object of type tDocDescr for each document in
the corpus.

The array of objects of type "tFileDescr" contains
information about the files that comprise the corpus.
There is one object for each file. This object
contains information such as which host in a network
contains the file, a code for the fully qualified Unix
path for the file, a pointer to the file name, a tag to
indicate how the file will be deformatted and pointers
to the deformatting functions and/or deformatting
script file name. Using this scheme, all documents in
a file must have the same format. However, each file
in the corpus can have a different format if desired.

7 2

ICorpus

#Documents

pDocDescrStart ~ '

#Files

pFileDesoStart tF

#Hosts

pHostListStart 0 "

#Paths

pPathListStart

#Elements in CV

. • . . • " tDodgescr

cDocld (tic
iFileld.

tFi leI~:r

cFilelD

tHoslList

~ 1 pS~-IostO
pSzHostt

!

cDocOffset
dgoctength
cDocStatus
pDocPortCV

< Repealed Once
For Eadl

Document >

!

cDodd
iFileld
cDocOffset
dgocLength
cDoc.Statu s

iHostld
iPathld (1~

[pSzfileName •

I1~ ~ p S z S ~ p t R l e N a m e O

(Need PaBe) |
e

pDocPortCV 0"

cFilelD
iHosUd
iPathld
)SzRleName 0"
cDeformatTa8
pProcDeforrnat •
pSzSoipffileName •

• pSzHost#1-k)sts

tPathList

I pSzPath0
pSzPathl

I pSzPath#paths

Dekxning
Procedure

Defonmtting
Script Ale

Figure 1A. Corpus Description Data Structure

Pointed to by tDocPartCV
tD°cDescr • ~ / iTreel3ucketld [tCV

' _ 1 , - / " i , ent,
• Unkedlstof / pCVArray IIF~ I Element2

tO/Element [_
objects. ~ ~ pNextCVElement J i

• End of ist (k [Element N
asn,~ed by NNN ~ I

<null> pointer. •

• One obiect in
list fox each I:X:X't
of ckx:umenL

iTreeBucketld
cDocPartOffset
cDocPanLength
pCVArray
< null >

 iE, oo,0 i Element 1
Element 2

l

I E, ne.tN I

• lbere is at least one
tl~PartCV obiect for
each document

• Depending on tbe
document lenglh there
may be multiple context
vectors per document.

• Diagram to left depicts
data structure for a dngle
document with multiple
conte~a vectors.

• Number of dements in
the context vector is listed
in the tCorpus structure

Figure lB. Corpus Description Data Structure (cont.).

7 3

The array of objects of type "tHostList" contains a
list of character strings with the host ID. This feature
would only be required in a distributed
implementation.

The "tPathList" object is an array of character stnngs
that contain the paths to each data file in the corpus.
Using this approach all files could reside in the same
directory. Alternatively, they could each reside in a
separate directory or some intermediate combination.

1.1.3.2 Stem Information Data Structure

The Stemlnfo (SI) data structure contains information
about the stem words that comprise the corpus and is
shown in Figure 2. Access through the SI data structure is
via the HNC-common "hashing package". In addition to
a standard hashing function, this package provides a key
capability: caching. The hashing package has a provision
to allow the hashed objects to be either memory resident
or "cached". If the objects are to be cached, a compile
time parameter allows the user to determine how many
objects will be kept in memory. This provision allows the
application to control the amount of virtual memory used
during execution. This is a key capability, since Sun/OS
has a fixed upper bound of 500 Mb for virtual memory
usage for a single task. Without the caching capability,
MatchPlus would consume well over a gigabyte in virtual
memory during the generation of the system!

Like the CD data structure, SI is composed of a series of
sub-objects. These sub-objects are:

The root object is of type "tStemlnfoDescr" and
contains a pointer to the hash description object and
the total number of unique stems found in the corpus.

The "tHashDescr" object contains information about
the hashing function that provides access to the
individual stems. This information includes a pointer
to the hash table, page sizes and status flags, a
pointer to the hashing key comparison function and
paging control function and a pointer to the hash
table itself.

The hash table is of type "tStemHashTable" and
consists of an array of pointers to the stem
description objects.

The information about each stem is contained in the
"tStemDescr" object and contains a pointer to the
stem string, the stem status, a count of the number of
documents that contain the stem (used for
normalization), a pointer to the context vector for this
stem and a pointer to the inverted index entries for
this stem.

The stem context vector, like all context vectors
within MatchPlus, is of type "tCV". This is an array
of floating point vector elements that encode the
"meaning" of the stem as learned from the training
corpus.

The inverted index entries for each stem are
contained in a linked list. The objects in the linked
list are of type "tDocList" and are managed by the
HNC-standard linked list package. The objects in the
linked list contain the document ID and number of
occurrences of the stem in that document. The
document ID is used as an index in the CD data
structure.

I ~ I . k " ~ , A " I : I !/

I :e=::, F/f, ' :=" I - -"== -
r -= - -d l

. - - - - ° , ~

Figure 2. StemInfo Data Structure

7 4

/* @(#)system op_info.file 1.4 6/11/92 */

Note: the following is my current thought, if you have any Qs
please let me know, we can discuses about it
6/1/92:PQ
This file will be updated by calling update_system_op_info_file0
previous_last_doc_num and total doc num will be updated by calling
update system_op_info_file in the end od Func. InitializeCorpusDescr

Retrieval:

retrieval
1
1000

Start always FIRST_DOCINX3-IIDDEN
End always last doe num

process key
Previous last doc number,dunng retrieval,it always 1
Last doe number in current corpus

#Generate DocList operation range definition
Start doe number and end doe number will be updated
by calling InitializeCorpusDescr when system_op is (1) or (2)
(1) regenerate_system:
(2) add_more_docs :
(3) within_this_range:
inverted index
regenerate_system
1
1000

Start = 1, End = last doc num
Start = previous last doe num, End = last_doc_num
Start = user_define, End = user_define
process key
regenerate_system,add_more_does or witMn_this range
Start of doe number
End of doe number

Figure 3. System.Op.Info.File

1.1.3.3 System Operational Info File

The system operational information file (SOIF), shown in
Figure 3, is not a data structure, but a simple flat ASCII
file that controls system generation and maintenance
operations. This file allows control of the range of
operations performed by the system expressed using the
internal document ID. Specifically, this file allows
control of the range of documents used for:

s Retrieval operations

• Formation of the corpus description data structure

• Generation of stem hash table entries and the
associated stem information file

• Bootstrapping

• Generation of document context vectors

In general, the only difference between a "new" system
generation and an incremental update (maintenance) is
the range of documents involved in the operation.

1.1.4 System Generation Overview

Generation of the MatchPlus system consists of four
steps. If a "ground-zero" system build is being
performed, all steps must be performed. For incremental
builds and maintenance, step 2 may be omitted or
performed on a subset of the whole corpus. These four
steps are detailed below.

• Initialize Primary Tables: This step initializes
tables that are used as part of other operations.
Specifically, this step performs the following actions:

Allocates the Corpus Descnption data structure.
Using control information provided by the SOIF
and other files, this step writes the document
start and length information into the Corpus
Description structures.

7 5

Reads the stop word list file and generates and
saves the stop word hash table.

Reads the stemming exception list file and
generates and saves the exception word hash
table.

Reads the stem word group file and generates
and saves the stem word group hash table (not
yet implemented).

- Reads the core stem list and loads this data into
the Stemlnfo data structure.

Form Secondarv Tables: This step derives
information from the training corpus as specified by
the System.Op.Info.File. Actions performed in this
step are:

Load data into the Stemlnfo data structure. This
operation consists of building the stem list and
associated hash table, sorting the stem
occurrence information and forming the inverted
index. The resulting information in the Stemlnfo
structure is saved to disk.

Pre-bootstrap (if double bootstrapping is
specified) or loading core stem context vectors
into the Stemlnfo structure.

Bootstrapping. This operation will make two
complete passes through the corpus to determine
the stem context vector for non-core words based
on their usage in the training corpus. The
resulting learned stem context vectors are stored
in the Stemlnfo structure and then the completed
StemInfo data structure is saved to disk.

Compute Document Context Vectors: This operation
forms context vectors for all documents in the corpus.
Unlike the bootstrap operation where a subset of the
corpus can be used for training and stem context
vector generation, all documents that are to be
retrieved must have a context vector calculated.
Context vectors for documents are calculated from
the context vectors of the stems that comprise the
document. The resulting vector is normalized such
that the system does not "favor" long documents over
short ones.

Generate Cluster Tree: This operation forms the
document context vector cluster tree. This capability
will result in a centroid-consistent cluster tree that is
used to reduce document retrieval times.

1 . 1 . 5 D o c u m e n t R e t r i e v a l

Document retrieval is implemented in two sets of
processing steps and is shown in Figure 4. The first set of
steps is initialization and consists of the following:

• Stemlnfo data structure is restored from disk (if not
already memory resident).

Stop word, exception word and word group hash
tables are restored from disk (if not already memory
resident).

• Cluster tree is restored from disk (if not already
memory resident).

The second set of processing steps is event driven
operation and consists of the following steps:

Query processing is performed. The user may
specify a topic to be automatically processed or may
invoke interactive mode such that queries are entered
via the X Windows GUI.

Retrieval query processing module processes and
parses the query into Boolean and context
components.

• Query components are saved to disk for possible later
u s e .

A query context vector is formed from the query
components. Boolean and context terms are treated
equally in this step.

For the specified Boolean query terms, the inverted
index is used to determine which documents contain
these terms. A list of documents that meet the
Boolean filter is formed.

The query context vector is used in conjunction with
the cluster tree to find context-relevant documents
via the dot product operation. A ranked list is
formed.

The Boolean list and the context-relevant lists are
merged and an aggregate list is formed. This list is
sorted.

When the user selects a document for display on the
GUI, the document is deformatted (if needed) and
displayed on the screen.

7 6

- ~ Stettl Infolmatkm • I I

i I ~ c : : ~ n , J . . L . I 1 I ~ I
lh.l ~ , - - i1,,-~ I
• Gue~y

I _ I I _ _ . _ _ _ S _ l cente, t ~ ~ eoae~n
I ~ t ~ I . w ~ • ~ ~ ~it~.,~,J
I Hera ~ U~ I I ~ Ura
l Tal:les l • and ~ (~J~y CV I
I I Tal:l~ C~J~y ~ / l

~ , 4 P'I D o a a . m t & I

I -
~ 1 Coqxl$

T ~ D~atpUon

Figure 4. Document Retrieval

1 .1 .6 D o c u m e n t R o u t i n g

Document routing is, in a sense, the inverse of retrieval.
In retrieval, there is one query and may documents. In
routing, there are many queries and one document. The
process flow for document routing is shown in Figure 5.
This flow shares many processing components with the
retrieval flow. Routing is broken down into three main
operations:

Initialization; The initialization operation restores all
data structures and tables as needed. This includes
Corpus Description, StemInfo, and the stop word,
exception word and word group hash tables.

Ouerv Processing: This operation is divided into
GUI and topic query processing. If interactive mode
is selected, the GUI is used to assemble a routing
query. If topic mode is selected, the specified topic
text is read. Queries used for document retrieval can

also be restored and used for routing. For the
selected mode, the query is parsed into Boolean and
context terms and a similarity threshold, to be used
for route/no-route decisions. A routing context
vector is then computed using both the Boolean and
context terms. 'ntis query processing step is
performed for each routing query to be used in the
system. The routing information (context vector,
Boolean terms and match threshold) is stored in a
table along with the user ID of the route.

Document Routing: For each document to be routed,
the following steps are performed:

If required, the document is deformatted into the
MatchPlus-internal format.

Document preprocessing is performed: stop
words are removed, stemming exceptions are
identified and stems are produced.

7 7

] Stem Inform ation
Restore I Stem

Infonnatlon Rautl

I Pro~e~

Topic Topic ~ ~
[Processing I .J[

oo,_LI ool ld I

Restore ~ Wold Lists Jt
Tables ~ and Tables -

Boolean Query
Restore
Saved Context Quer¢
Query

Boolean
Query

I •

Rautins

~ k

CoNtext Routing
Query cv " - - = 1

m • /

• I I YtComp, r, CV', I ' q v IILlC°mpa:eCV's
• loot P oduct - I - ~ , - I I , I ,oo, P,o.c I - - I i I I I " c I or.M, I or N N) I

• 'hr~'ho'd I F ~ x l r ~

I kl Boolean D~cum~t
CV COln pal~ to

• I Filter "threshold
I

-

T P~processe d Oolllnl en t

~le~nine I Document
Dispositia~

J,
Document
to Corpus

Text Oescriptian

Figure S. Document Routing

Additionally, a context vector for the
preprocessed document is computed.

For each routing query in the system:

The preprocessed document is passed
through the Boolean filter operation to see if
the filter criteria is met for this routing
query.

The dot product of the routing query context
vector and the document context vector is
computed.

The Boolean filter is passed or the dot
product threshold is exceeded, then the
document is routed to the user associated
with this routing query.

I f specified, the document is added to the corpus,
Corpus Description and Stemlnfo data structures.

1.2 System Throughput

Building the MatchPlus system can be broken down into
three main areas: inverted index generation, learning of
stem context vectors, and generation of document context
vectors. The approximate times to build the system as

well as the retrieval time are given in Table 1. The
hardware is a Sun Sparc 10 with 512 megabytes of RAM.

BUILD STAGE TIME

Inverted Index Generation -10,000 documets an
hour

Stem Context Vector Learning -2000 documents an
hour

Generation of Document -25,000 documents an
Vectors hour

Retrieval -3000 documents per
CPU second

Table 1. System Build Times

It should be noted that the stem context vector learning
does not need to be applied to the entire data set. For the
TIPSTER 24 month evaluation the system was only
trained (i.e. learning of stem context vectors) on 80,000
documents (approximately 40 hours).

For the TIPSTER tests the use of a boolean filter greatly
increased the retrieval speed. Instead of ranking the
entire database using the document context vectors a

7 8

broad boolean filter would return a small subset (50,000-
100,000 documents) which would then be ranked by
context vector. Another approach the MatchPlus system
utilizes to speed up retrievals is the use of clustering
(refer to section 4.0 for a discussion of clustering). HNC
has been successful in speeding up retrievals by a factor
of 20 with no degradation in performance by utilizing
document clusters.

1.3 Key Innovations

During Phase I of the TIPSTER project the HNC team,
through its research and experimentation, has formed
some highly significant conclusions. These conclusions
not only encompass the main' objective of TIPSTER
phase I, text retrieval and routing, but address much
larger issues involving the processing of information.
The major conclusions and innovations are as follows:

Context vector approach to text information
representation is viable. The assertion that a vector
space model can be utilized to retrieve from large
(gigabyte) heterogeneous databases has been proven.
In addition the use of initial hand entered context
vectors is unnecessary and in fact does NOT perform
as well as a fully automatic approach. Unforeseen
uses for context vectors have also been discovered.
These include document clustering, word sense
disambiguation, visualization, image retrieval, and
automated hyperlinks in a hypertext environment.

• Fully automated learning of similarity of usage has
been demonstrated. Even very low frequency words
(e.g. last names) are trained such that they are
associated with logical "concepts". This is done
automatically with no thesauri or knowledge base,
only the relationships as they occur in the text are
used. Beyond the obvious benefit for retrieving
documents and investigating word relationships,
other possible applications of "similarity of usage" is
in the analysis of how particular concepts evolve and
change over time. For example a person's name may
always be mentioned with a certain company, but if
new text were added in which the name appeared
with a different company this change in relationship
would trigger an alarm for an analyst. Refer to
Figures 6 and 7 for examples of automated learning
for specific words (referred to as "stem trees"). The
text to the right of the bar graph is an example of the
context in which a specific word is found in the text.

• Context Vector representation is language
independent. MatchPlus uses no language dependent

knowledge basis (e.g. WordNet, thesauri). Small
(10-20 meg) systems have been built both in Spanish
and Kanji and the "learning" of similarity of use
witnessed in English carried over to the other
languages.

Conventional neural networks can be effectively
applied to context vector operations. In a routing
environment basic networks can be trained and have
shown to give a 20 % improvement over adhoc
methods. Additionally, clustering algorithms have
been utilized to perform automated word sense
disambiguation and document clustering. Automated
word sense disambiguation with context vectors has
benefits beyond information retrieval such as
machine translation. Document clustering also has
further applications in visualization and automated
subject indexing.

Constrained learning law (bootstrapping)
promotes learning stability. Constraining the
geometry of the vector space can produce a stable
solution independent of the number of training passes
through the corpus.

2. SYSTEM GOALS

The primary goal of the HNC's MatchPluslTIPSTER
effort was to apply advanced adaptive and neural network
techniques to improve the state of the art in text retrieval
and routing technology. More specifically HNC sought to
design a vector space model for text that encodes a
representation of similarity of meaning. To reach this
goal HNC developed an adaptive technique to learn
similarity of meaning for words using only free text as
examples. Once the similarity of meaning was encoded
in a vector representation the MatchPlus system needed
to exploit the learned relationships to provide improved
precision and recall over current techniques. In addition
it was HNC's intent to apply neural network learning
algorithms to automatically improve queries based on
user feedback.

The MatchPlusITIPSTER effort had a number of
secondary goals. These included the development of a
genetic representation for word similarity that could be
exploited for other uses (e.g. visualization, key word
extortion), use of a minimum of human knowledge for
system generation and retrieval (e.g. dictionaries,
thesauri), and the creation of a basis for multi-media and
multi-language capabilities.

79

chernobyl
chernobyl ̂ react
accid^cher nobyi

&aster
dam^radi

accid^nudear
demonslrat
acddAreact

maksimov
telethon

radiophob
graves[
nuclear

nuclear^react
scherback

humankind
scherl3ak

taraper
entemb

nudear ̂ lmW~

0.1 0.2 0.3 0.4 0.5 0.6
Det~eduot

0.7 0.8 0.9

Figure 6. "Stem Tree" for Chernobyl

hezbollah
amal
syrm

mOil~aW
mughntyeh

umbrell
mlllSaw
shiyah

sohll
hallaJ

fadlallah
lutddalh

zealot
shiit

secet
funclament

lariat
Sl~lllOn

god
moslem ̂ shiit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I
Dot Product

Figure 7. "Stem Tree" for Hezbollah

80

3. EVOLUTION OF THE SYSTEM

At the start of the 2 year TIPSTER project HNC had
nothing more than a preliminary prototype that embodied
the conceptual idea for the use of context vectors for
information retrieval. The original prototype was built on
less than 500 documents. Throughout the TIPSTER
program the original MatchPlus system underwent a
significant amount of changes and enhancements. The
goals of these changes and enhancements are explained in
section 2. The evolution of the system was driven by
both the performance on the TIPSTER data (i.e. recall
and precision numbers) as well as a software design that
enabled the processing of gigabytes of text such as the
TIPSTER collection. Some of the major software design
strategies implemented for processing large databases are
listed as follows:

• Caching algorithms to prevent the overflow of virtual
memory.

• File splitting for files that span more than a single
disk

Heap data structures to quickly get the top "N"
documents from a collection of "M" documents given
that "N" is much smaller than "M".

• Internal memory management to prevent excessive
memory allocation and memory freeing.

• Use of clustering to prevent searches on the entire
database.

• Re-ordering of document vectors by cluster to reduce
the number of disk seeks thus, speeding up retrieval.

Changes and enhancements not related to the size of the
data, but rather the goal of learning similarity of use in a
vector representation and exploiting that representation
were made in various areas. Those areas and the
enhancements or changes made are as follows (for
detailed results of the enhancements refer to section 4):

1) Preprocessing

• Addition of word phrases.

• Use of a stemming exception list prevents words
such as "army" from being stemmed to "arm")

2) Bootstrapping

• Use of a fully automated learning algorithm (i.e.
the use of the manually entered core stem
context vectors from the original system was
replaced by a fully automated learning
technique.

• Use of a batch update for the training of stem
context vectors.

• Ability to transplant the learned relationships
from one corpora to another and suffer no
degradation in performance.

• Ability to automatically disambiguate words
given only free text examples.

• Improvement over original stem context vector
learning law that provides adjustable constraints
and comes to stability.

3) Generation of Document Context Vectors

• Ability to cluster documents.

4) Query Processing

• Use of broad boolean filters

• Automated parsing of the TIPSTER topics which
provides optimum performance.

• Relevance feedback to improve an original
adhoc query.

5) Routing

• Use of perceptron learning to create a routing
query given a set of relevance judgments

6) Graphical User Interface

• Word, paragraph and document highlighter to
quickly get to the most relevant information.

• Simplistic method for user relevance feedback

* Automated subject index

• Examination of learned relationships (i.e. stem
trees)

• Document headline display to quickly scan a set
of retrievals

81

® Ability to process natural language queries.

4. EXPERIMENTS & PERFORMANCE

A number of research areas were identified as possible
candidates for improvements in MatchPlus performance.
These areas covered a wide range of processes including
preprocessing, learning and query formation. HNC
utilized the official retrieval results from the document
detection runs sent in for the 12 month, 18 month and 24
month evaluations. These evaluations consisted of a set
of 150 topics and 3 CD-ROMs with about 1 gigabyte of
document data each. The document data consisted of the
Wall Street Journal, San Jose Mercury News, AP
Newswire, Information from Computer Selected disks,
Federal Register, U.S. Patents and short abstracts from the
Department of Energy. These sources had a varied
length, a varied writing style, a varied level of editing and
a varied vocabulary. In addition to utilizing the official
test collection, the HNC team created subsets of the
TIPSTER corpus. These subsets contained exhaustive
relevance judgments for each of the topics (either judged
internally or judged by the TIPSTER relevance assessors)
and varied in size. A 1,000 document corpus (~10
megabytes), 10,000 document corpus (~60 megabytes),
30,000 document corpus (-120 megabytes), and a 80,000
document corpus (-320 megabytes) all containing
selections from the AP Newswire, Wall Street Journal,
Federal Registry and the Department of Energy were
utilized for testing. In addition to the recall (number of
relevant items retrieved / total number of relevant items
in collection) and precision (number of relevant items
retrieved / total number of items retrieved) numbers
obtained from the evaluation code and the test collections
mentioned above, HNC analyzed the quality of the
learned relationships via the "stem trees" (refer to figures
6 and 7). By evaluating the effectiveness of MatchPlus to
learn similarity of use as well retrieval performance HNC
was able to meet two goals: superior retrieval and routing
performance and the ability to learn similarity of use.

4.1 P r e p r o c e s s i n g T e s t s

Preprocessing consists of scanning each document for
individual tokens. Each token (delineated by a space, tab,
comma, etc.) is then stemmed (i.e. endings such as "ed"
and "ing" are removed). Stemming serves the function of
treating words such as "run" "runs" and "running" as the
same stem (word) as well as greatly decreasing the size of
the data structures. A stemming exception list is
consulted (to remove stemming errors such as stemming

"army" to "arm") as well as a stop word list. The stop
word list removes frequently used word such as "and" and
"the" that contribute little to the overall meaning of the
text.

The Use of word pairs (e.g. "white house") was
investigated. The list was manually generated by
presenting all two word combinations that were found in
the text to an analyst who determined if it was a valid
word pair. Our investigations found it was best to split
the word pairs into their individual words. For example if
"white house" was found in the corpus or the query there
would be three different context vectors used for the
calculations, one for "white" one for "house" and one for
the word pair "white house". The use of word pairs in
both the bootstrapping and the query processing gave an
improvement of 10%-15%.

Use of classical IR tools such as stop word lists and
stemming improved performance. Eliminating stop
words, stemming and stemming exception words caused a
decrease in performance of 12%.

Late in the project HNC was able to experiment with a
head list from Compton's New Media. A sample of this
list is in Table 2.

take
tall

tangle

took
taller

tangleweed

taken
tallest
tangles

taking

tangled

Table 2. Encyclopedia Britanica Head List

Replacing the MatchPlus baseline stemmer (the Lovins
stemmer) with the head list gave no improvement in
retrieval performance. On the TIPSTER tests the head
list did get equivalent performance to the baseline
stemmer. It is interesting that the list did not help more.
As seen in Table 2, the two words "took" and "take" are
treated as a single word while the baseline stemmer
(which simply removes suffixes) would treat these as
different words. It seems that with the context vector
approach if terms such as "take" and "took" are used in
similar ways in the text the context vector learning
approach will encode that, likewise, if they are used in
dissimilar ways the context vectors for the two words will
not point in the same direction. If in preprocessing, the
two words are treated as a single word (e.g. take is the
same as took) the context vector learning will never be
given the chance to determine if in fact the two words are
used in a similar fashion.

8 2

4 .2 B o o t s t r a p i n g T e s t s 4 . 2 . 2 F r e e z i n g C o r e C o n t e x t V e c t o r s T e s t s

Major effort was spent experimenting and researching the
vector learning law. The main objectives were superior
retrieval performance and the ability to automatically
learn similarity of use for any domain and corpus size.
The following are the major experimental areas and the
conclusions reached.

4 .2 .1 A u t o m a t i c R e p r e s e n t a t i o n T e s t s

The key discovery of Phase I was the ability to
automatically learn a vector representation for words
using only free text examples. MatchPlus's original
approach used a set of 940 core context vectors. Each
core word was compared to a set of 80 features (words).
On a scale from -5.0 to +5.0 the amount of "similarity" or
"relation" was entered. For example if the core word
were "protein" and the features were "agriculture",
"DNA", etc. its feature vector might look like Table 3.

Core Feature Feature Feature Feature etc.
Word 1 2 3 4

agriculture DNA electronics human
protein 2.0 4.0 0.0 1.0

man 0.0 2.0 0.0 4.0

Table 3. Manually enter context vector for word
"protein"

An additional 200 random elements (floating point
numbers) were augmented to the 80 manually entered
features. All 280 feature elements were then modified
according to the bootstrap aigorithm. To investigate the
"benefit" of the manually entered core context vectors the
features were replaced by random numbers, making the
entire context vector (280 features) completely random.
This approach gave a 3% to 6% improvement over the
hand entered set on a subset of the TIPSTER corpus.
The creation of hand entered vectors are time consuming,
corpus dependent and language dependent. The full
benefits of hand entry are certainly contingent on the set
of core words and the set of features that are chosen. A
more domain specific set of manual context vectors may
be of some benefit but with the broad range of features
and the heterogeneity of the tipster corpus, hand entry
gives no apparent retrieval improvement. MatchPlus's
ability to learn word relationships from random initial
vectors without hand entered context vectors is a key
discovery that enables the MatchPlus system to work in
virtually any subject domain and any language.

The motive for "freezing" (i.e. not allowing the hand
entered context vectors to be modified during
bootstrapping) was to prevent the collapsing of the vector
space. The original bootstrapping algorithm modified
word vectors such that each vector pointed in more or less
the same direction. This collapsing phenomenon resulted
in words and ultimately documents residing in a much
restricted vector space. Individual words and documents
were indistinguishable. The hypothesis was if the hand
entered context vectors were sufficiently spread out and
kept constant this would prevent the vectors from
collapsing. Due to the limited number of hand entered
vectors (940) and the observation that similarity of use
encoded manually was drastically different from the
similarity of use learned automatically during
bootstrapping "freezing" hand entered context vectors did
not prove successful.

4 . 2 . 3 S t a g e d B o o t s t r a p p i n g T e s t s

It was thought a staged approach to vector learning may
improve performance. The conjecture was that words
within a certain frequency range should be trained to
stability, then use these vectors to train words within
another frequency. The original bootstrapping algorithm
made two passes through the entire corpus. On the first
pass only words that appeared in corpus 3 times or more
were modified. All remaining words were modified on
the second iteration. Further experiments involved up to
4 passes with varying frequency thresholds for stem
modification on any single iteration. These experiments
proved to give no significant change in performance. In
fact, the current implementation performs two passes
through the corpus modifying everything on each pass.
Performance after one iteration is only slightly worse
(2%-3%) than two iterations while a third iteration gives
a slight improvement (2%-3%) and levels off with more
than three passes through the corpus.

4 . 2 . 4 V e c t o r S i z e (D i m e n s i o n a f i t y) T e s t s

The choice of the number of features (vector elements)
for each stem was 280. Investigations as to the number of
features actually utilized was performed in various ways.
Using subsets of the TIPSTER corpus (1,000, 10,000 and
30,000 documents) in which relevance judgments were
available the vector size was both increased and
decreased. Since document context vectors are
represented in the same space as the word context vectors
the dimensionality was the same. The results of the

8 3

experiments are given in Table 4. Each entry is in
comparison to the baseline of 280 features.

Vector
Dimension

Match Filtered
Query

50 r 12 % -47 %
140 -8 % -24 %
280 0 % 0%
512 +5 % +4 %

Coniext Vector
only Query

Table 4. Vector Dimension vs. Retrieval Performance

To further give evidence as to whether or not all
dimensions of the vectors were being utilized an eigan
analysis was performed on the 1,000 document corpus.
All the stem context vectors (approximately 16,000) were
multiplied creating a 280 by 280 symmetric matrix. A
singular value decomposition was then performed to
determine if the vectors spanned the entire space. Figure
8 plots the eiganvalues for a 280 dimensional system and
figure 9 plots the eigenvalues for a 512 dimensional
system. It is clear that the 280 features are spanning the
space, any fewer would cause the stem vectors to overlap
each other and, as evidenced in Table 4, cause a
degradation in performance. Figure 9 indicates that 512
dimensions is perhaps too large for this size corpus.

ud

38

36

34

32

30

I

50 100 150 200 250

Learned Features Indic es

Figure 8. Eigen Analysis of 280 Dimension Stem
Context Vectors

300

250

150

N lO0

50

100 200 300 400 500 600

Learned Features Indices

Figure 9. Eigen Analysis of 512 Dimension Stem
Context Vectors

Empirical tests showed that increasing the vector size
improves recall. For the TIPSTER 24 month evaluation
the precision (number of relevant documents
retrieved/total number of documents retrieved) for a 280
feature vector versus a 512 feature vector showed little
difference while the recall (number of relevant documents
retrieved/total number of relevant documents) increased
approximately 5%.

4.2.5 Thesaurus Training Tests

HNC obtained an electronic thesaurus in an attempt to
encode the relationships found in the thesaurus into the
vector space model. The reasoning behind this
experiment is as follows. The bootstrapping algorithm is
designed to encode word relationships in a vector space
model using examples from free text. If a pre-existing
knowledge base (e.g. thesaurus) were used as an initial
training example this may help the MatchPlus system in
learning word relationships. The thesaurus training
vectors would act as an initial starting point for training
on the TIPSTER corpus much like the hand entered
context vectors did. Past information retrieval programs
have used thesauri for query expansion. MatchPlus
trained on the thesaurus, which did exhibit very good
stem trees, then using the trained vectors trained on the
TIPSTER corpus. In one experiment thesaurus words
were allowed to be bootstrapped (trained) by the corpus.
This gave a degradation in performance (10%-15%) over
our baseline system. An alternate approach to thesaurus
training involved "freezing" the stems that were trained
by the thesaurus during bootstrapping. There was a
significant degradation in performance (40%-50%).
Through the use of stem tree analysis after thesaurus
training and after the TIPSTER corpus training it became
apparent that "similarity of use" is NOT the same as
synonymy. Referring to the stem trees in figure 6 and

8 4

figure 7, it is clear that the related "concepts" to both
"Chernobyl" and "Hezbollah" are much more than
synonyms. The stem trees reveal the "true" meaning of
concepts as they are used in the training data.

4.2.6 Training Window Size Tests

The original bootstrapping algorithm used as its window
vector three words on either side of the "target" update
stem (refer to figure 10). These stems were summed up
using a Gaussian distributed weight and applied to the
"target" stem. There was no consideration paid to
sentence and paragraph boundaries (i.e. the window
vectors could be part of another sentence or paragraph).
Only the document boundaries were used (i.e. the
window for a "target" update stem did NOT carry over
into the next document). The conjecture was that like a
single document, each sentence contained a complete idea
or concept. Likewise a paragraph contained a unique
concept and if these "concepts" were treated as
individual documents the system would perform better.
Tests were run in which bootstrapping occurred on
sentence and paragraph markers (i.e. the window did not
use words to the right or left of the target update stem if
they began or ended a sentence or paragraph). Using only
paragraph boundaries as well as sentence and paragraph
boundaries made little difference in performance. Using
an early version of the bootstrapping algorithm there was
a slight improvement in performance (2%-4%). Although
with the latest bootstrapping implementation there is a
small degradation in performance (less than 1%). Our
conjecture that each sentence and each paragraph contains
unique "concepts" is incorrect for the TIPSTER corpus.
While some of the document sets do not contain
paragraph markers (Department of Energy, Federal
Registry) it is apparent that even when there exist
paragraph markers they do not express complete thoughts
but are inserted for aesthetic reasons.

4.2.7 Batched Learning Tests

A learning law experiment that proved to improve
retrieval performance significantly for all size builds
(1,000 documents, 10,000 documents, etc.) was the
batching of the adjustment that was to be made to each
stem. The original algorithm would make immediate
updates as it encountered each stem in the corpus. For
example if the word "stock" was the first word in the first
document its initial random context vector would get
modified by the neighboring words. When "stock" was
encountered again in the document or in one of the next
documents either as a target for updating or as a

neighboring word contributing to a target stem's update,
the "altered" context vector was used. This created a
"smearing" condition in which the context vector for any
word was continually being changed and other stems used
these "intermediate" changes when calculating their
neighborhoods. Batching was implemented to remove
this condition. The algorithm was modified such that
each update that was to be applied to any stem was stored
but never actually applied to the target word until the end
of the iteration (i.e. when all the documents were
processed). This "batching" technique provided a more
stable algorithm in that each word context vector
remained the same as it became a target for updates and a
neighbor, contributing to another word's update. Table 5
shows performance improvement with batching for
various corpus sizes.

CORPUS SIZE PERFORMANCE CHANGE
lk +25 %

10k +22 %
30k +19 %

Table 5. Batching vs. Non-Batching Performance

I--INC did experiment with batching the updates on the
document boundaries as opposed to the entire corpus but
that did not provide as big an improvement as the full
batching.

As mentioned above, the learning algorithm uses a
window size when calculating a neighborhood for a target
word. The original approach used 3 words to the left of
the target and 3 words to the right of the target. Various
other window widths were tried including using the entire
sentence as the window (again with the conjecture that
complete concepts are contained in a single sentence).
The results indicate a window width of 3 words works
well but further investigations with alternate weightings
need to be conducted (i.e. Gaussian weight is applied to
neighboring stems which causes the closest words in
proximity to the target word to have the largest weight).
Table 6 has some comparisons for various window width
sizes against the baseline of 3 words on either side that
were run on the lk corpus.

85

WINDOW SIZE PERFORMANCE CHANGE
4 words -2 %
5 words -5 %

entire sentence I -1%

Table 6. Window Size Experiment.s

Many experiments were conducted that involved
transplanting a set of stem context vectors from one
corpus to another. For example a set of vectors trained
from a 1,000 document subset could be transplanted into
a 10,000 document system. There are approximately
16,000 unique stems in the 1,000 document corpus and
60,000 stems in the 10,000 document corpus. During a
transplant the trained context vectors for each stem are
copied into the corresponding stem for the 10,000
document build. The stems not found in the 1,000
document build are set to zero since they are untrained
(experiments were conducted in which the untrained stem
context vectors were initialized to random numbers and
the retrieval performance indicated it was better to set
them to zero so they have no affect when generating
document context vectors). Once the transplant is
complete the document context vectors are calculated.
The results of various transplant experiments are
presented in Table 7.

Type of Corpus
Transplant

lk transplanted into 1Ok

10k transplanted into 30k

Transplant Performance

-7.0 % prec., -0.6 %
recall

-3.2 % prec., -2.1% recall

Table 7. Transplant Results

Given these encouraging results and the amount of time
required to bootstrap the entire TIPSTER collection,
various subsets of the TIPSTER corpus were trained and
transplanted into the entire collection. It has become
apparent that when working with gigabyte corpus sizes it
is important to train on a sufficiently large portion of the
text. A 10,000 document subset (45 meg) and an
80,0000 document subset (320 meg) were used for
training and transplanted into CD's 1 and 2 of the
TIPSTER collection. The official results (avg. prec and
total relevant) are given in Table 8.

Training Set Precision Relevant
Size Documents

10k documents .2648 7240
80k documents .2837 (+4 %) 7541 (+7 %)

Table 8. Transplant Results for CD's 1 and 2 from
TIPSTER Collection

It seems contradictory that the results in Table 6 indicate
it is possible to get "near" baseline performance by
transplanting from a smaller corpus while Table 7
indicates performance can suffer from a smaller corpus
training and transplant. If one looks at the percent of
untrained stems in the above tests it becomes apparent
that 10,000 documents (45 meg) is not large enough to
characterize the first two CD's (1,200 meg, 740,000
documents). The percentages are presented in Table 9.

Donor and Recipient of
Transplant

lk to lOk

Percent of Trained
Vectors

32 %
10k to 30k 2 1 %

10k to CD's 1 and 2
(1,200k)

80k to CD's 1 and 2
. (1,200k)

7 %

23 %

Table 9. Percent of Trained Vectors for Various
Transplants

Most of the transplanting experiments involved
transplanting a smaller training set into a larger set.
Some tests were conducted where the training set was the
same size and larger than the "target" set and the results
indicated that only a small (less than 3%) degradation in
performance is detected. This result indicates that a
sufficiently large and sufficiently domain compatible (i.e.
wall street journal transplanted into associated press,
NOT wall street journal transplanted into New England
Medical Journal) can be transplanted continuously,
eliminating the need to bootstrap new documents, thus
greatly increasing the speed of building new systems or
updating existing systems. For existing systems, when
new data needs to be added it is sufficient to simply
create a document context vector for each new document.

4.2.8 Word Sense Disambiguation

Late in the project the concept of "word sense"
disambiguation was investigated. "Word sense"

86

disambiguation refers to finding all the "senses" in which
a word is used. For example the word "star" may be used
in the context of "the moon and the stars", or in the
context of "star wars and the Strategic Defense Initiative",
or "movie star". These senses can be disambiguated from
the text as well as the query resulting in improved
retrieval performance. This process is completely
automatic and uses no thesauri or knowledge bases. The
word sense disarnbiguation uses a k-means clustering
algorithm to cluster a given set of context vectors. If, for
example the word "virus" is to be disambiguated each
neighborhood window (i.e. the 3 words on either side of
"virus") is calculated. Then each of these neighborhood
vectors (the number of vectors is simply the frequency of
the word "virus" in the corpus) are given to the k-means
clustering algorithm with a pre-specified number of
resulting clusters. Once these clusters have been
calculated they can be used in various ways. During
document context vector generation the appropriate sense
of the word can be calculated by taking the neighborhood
context vector found in the document and calculating the
dot products with the centroids of each of the clusters for
the word. The closest cluster would then be used when
calculating the document context vector. In an identical
fashion the "best" sense could be automatically
determined in a query. Given the following query:
"movie stars who are in cowboy films" it would be
expected that the cluster involving "movie stars" would
be used and NOT the cluster involving "the moon and the
stars". Evidence supporting the above claim can be found
in Table 10. The Wall Street Journal from 1990 through
1992 was used. The example shows the list of 4 clusters
that have been calculated for the word "virus". The
clusters are listed in order of dot product (highest dot
product is first) with the word "internet". It is clear the
correct sense would have been determined if the query
were "internet, virus".

S e n s e

1 computer
virus

2 mixup
3 methy-

lpredin
4 hiv

Related Related Related Related
Word 1 Word 2 Word 3 Word 4

computer

transmit
secrete

i m m u n -

deficiency

michel-
angelo
tobacco

recombine

infect

portable
computer
genetic
necros

retrovirus

Table I0. Word Senses for "virus" in the Context of
"internet"

There has been limited testing with "word sense"
disambiguation. Using the TIPSTER collection and the

topic queries the performance is slightly better (less than
5 %) than our baseline system which does not utilize the
word senses. Future experiments include using more than
one word sense for queries and/or documents, over
specifying the number of clusters wanted then running a
"combiner" to determine the appropriate number of senses
for each word on an individual basis (this has been done
for document clustering with some success, see sections
below), re-bootstrapping after the word senses have been
calculated, only modifying the sense that matches closest
with the window context vector, and using alternate
clustering algorithms that automatically determine the
number of clusters.

4 .2 .9 L e a r n i n g L a w T e s t s

One of the most important experiments involved the way
in which the word context vectors were updated. More
specifically the point at which the update was made and
the weight applied to that update were investigated. The
original learning technique used a "moving average" type
of approach with a positional weighting. The "window"
(i.e. the 3 words on either side of the target stem) was
computed using the Gaussian weighting function. This
window vector was then added to the unnormalized target
stem and the resulting vector was normalized (refer to
Figure 10).

i l l

1.0

Gaussian
Weighting
Function G(i)

i=-3 i=-21=-1 i=0 1=1i=21=3

Now is [th~ time for [all I8oodmento [cometo . . .

Neighbors Target Neighbors

Figure 10. Original Bootstrap Window Calculation

The "moving average" approach produced modest results
as evaluated by the TIPSTER tests. Further investigations
indicated the algorithm was not moving the stem context
vectors a sufficient amount in the direction of their
"window". This could be perceived when looking at the
learned relationships for a specific word. This "stem tree"
calculation uses a single stem and calculates the dot
product with every other stem in the corpus and produces
a list in order of stems that are closest to the specified
stem. The list produced after training was very similar to
the list produced before training, using the initial random
context vectors. The new approach applies a constraint to

8 7

the geometry of the vector space. The constraint will
dete~nine how close any target can get to its neighbors.
The influence of each neighbor on the target is
determined individually by Euclidean distance. The
original implementation only used the weighted sum of
neighborhood stem context vectors. The amount of the
effective error and the corresponding change in position is
determined by the co-importance of the neighbor and the
target. "Overtraining" resulting in poor performance, a
characteristic of the original approach, is eliminated when
constraints are applied to the learning law.

4.3 Document Context Vector Generation

The approach to document vector generation is to simply
add up each of the stems, weighted by the inverse
document frequency (IDF) weight (see Figure 11).

D°cCVk = Z:=, wi(StemCV~)

w i = l o g (~ N)
n i

Figure 11. Document vector equation

4.3.1 Weighting Tests

Various weighting techniques were experimented with.
One approach was to eliminate the IDF weight
completely and use a fiat weighting scheme. Like the
approach found in Figure 11 if a word is repeated a great
deal throughout the document its vector is continually
added to the document causing the document vector to
point in the same direction as the repeated stem (i.e.
overly biased toward the high frequency stems),
regardless of the other words present in the document. A
variation to the IDF weighting was experimented with.
Instead of adding the stem each time it is encountered in
the document, the stem vector is added once and given a
weight equal to the log of the frequency of the stem in the
document (Chris Buckley reported an improvement over
IDF weighting using this approach - See TREC2
Conference, Aug 30, 1993). Once again, this did not
prove to be beneficial with regards to the TIPSTER tests
but in terms of solving the problem of a single stem
"overpowering" the other stems in the document vector
representation it has proved successful. A final attempt at
alternative document generation weighting used the
importance factor formula that was used in the

bootstrapping algorithm. This too did not provide a
significant change in performance. The original approach
(the IDF weighting) does seem to give the best
performance on the TIPSTER tests over the variations
tried by HNC and others. Table 11 provides a summary
of the performance results for the 10k corpus.

WEIGHTING ' PERFORMANCE CHANGE
IDF 0%
Flat -1.8 %

Modified IDF -2.7 %
Importance -3.8 %

Table 11. Document Weighting Experiments

4.3.2 Document Clustering Tests

Document clustering uses the same algorithm as word
sense disambiguation (K-means). Each document has a
context vector. When document clustering is performed
the number of clusters is pre-specified. Each document
vector is put into one of these clusters.

The initial motivation behind document clustering was to
improve retrieval speed. Although the results are
preliminary, it is apparent that retrieval time can be
greatly reduced. As the number of clusters searched for a
retrieval goes down the retrieval speed also goes down.
Obviously as the number of clusters searched is decreased
the system's recall goes down. Early tests on the 10,000
document subset of the TIPSTER corpus indicate that by
only looking at 500 documents from the top "n" clusters
(variable number of clusters are searched for each topic)
there is less than a 5% degradation in recall and precision.
For the non-cluster system 10,000 dot products are
required for each query while the clustered system only
requires 500 dot products for each query.

An extremely noteworthy discovery involving document
clustering is an automated cluster explanation capability
that is inherent in the context vector approach. By taking
the centroid vector of each of the resulting document
clusters and "dotting" them (i.e. calculating the dot
product) with every word and word phrase in the corpus
the system can automatically elucidate the meaning of the
cluster (i.e. what the documents in the cluster are about).
would be used for all topics regardless of the number of
words contained in the "concept" section (the average
number of words in the concepts section is -25). The
relative threshold would'require "x" percent of the words
from the "concepts" section to appear in a document

88

Cluster 1
i

Cluster 2 Cluster 3 Cluster 4 Cluster 5

launch at&t snow commando interface
maiden sprint gust guerilla specific
titan cable shower shiite portable
payload " transmit appalachians lebanon architecture
pad fcc dakato gunman processor
navigation tariff wisconsin insurgent logic
shuttle mci wyoming moslem programming
rocket gte scatter afghan database
navstar fiber thunderstorm manilla graph
gooch transmitted commuter alih diagnostic
nasa coaxial lake dash software
unmanned marketplace buffalo hezbollah prolog
orbit distance minnesota islamabad maintenance
booster optic eastem fled hardware
delt phone upper mujahedeen interact
atl copper idaho palestin concur
satellite breakup picket pakistan function
space Its nebraska vorontsov computer
challenger deregulation wind wound query
discovery competition valley beirut language

Table 12. Document Cluster Closest Stems

This can be used to aid in visualization and in creating
automated subject indexes. An example of the cluster
explanation is given in Table 12. This sample was taken
from the 1,000 document test system which was clustered
into 20 groups (5 of the clusters are presented in the
table).

4.4 Query Processing

The TIPSTER evaluations consisted of 150 topic
descriptions (see appendix C for an example). Numerous
experiments were conducted to come up with the optimal
automated parsing strategy for all the topics over all of
the TIPSTER corpus. Additional experiments involved
alternative weighting schemes and relevance feedback.

4.4.1 Boolean Filters

The MatchPlus system works best in conjunction with a
gross boolean filter (i.e. specifying many terms with a
small match requirement). Given the structure of the
topic queries, it was apparent the "concepts" portion of
the topic would be a likely candidate for the boolean

filter. This in fact did turn out to be the best approach.
The two match threshold approaches were an absolute
threshold and a relative threshold. The absolute threshold
would use the same threshold for all the topics. For
example if the threshold were 4 the system would first
retrieve all the documents that had at least 4 of the words
contained in the "concepts" section of the topic
description. Once those documents were retrieved they
were ranked by dot product between their document
vectors and the query context vector. The threshold of 4
before it was retrieved. This threshold, like the absolute
threshold, was swept and it was determined that a
constant threshold of 3 (4 was slightly better for very
large corpora) performed the best.

4.4.2 Query Weighting

As is the case when generating document context vectors,
query context vectors are a weighted sum of each of the
individual query stem vectors. Again, there were various
experiments to determine the best weighting scheme. The
original approach used the traditional tf*idf weighting (tf
being the term frequency in the query). The importance

89

factor equation was experimented with as well as the
variation of the tf*idf weight, log(tf)*idf, which was
described as giving better performance for other IR
systems (see Buckley, TREC2, Aug 30, 1993). As was
found for generating document context vectors, the
original approach proved to be the best.

4.4 .3 Q u e r y E x p a n s i o n

The idea of query expansion was experimented with
during TIPSTER Phase I. Traditional adhoc query
expansions involved adding words from a thesaurus or a
preset knowledge base such as WordNet. For example if
the query were "dog" the terms "canine" and "pooch"
might be automatically added to the query. MatchPlus's
approach was to augment query terms with terms that the
system had automatically determined were related. Most
likely these terms would NOT be simply synonyms but
"concepts" that are related or found in similar documents.
For example if the query were "NASA" the top 8 related
terms added to the original query would be: "space
shuttle, unpiloted, challenger, unmanned, payload,
booster, launch, rocket". This automated query expansion
proved to be unsuccessful. It is apparent that the original
query term(s) already have, encoded in them, the related
terms that were used to augment the query. The vector
for "NASA" is already "close" to terms such as "space
shuttle" and "rocket" so documents with only these two
terms and NOT NASA will be retrieved. This "built in"
query expansion is one of the benefits of the vector space
model and such things as a thesaurus and WordNet
(which have not been successful for query expansion in
the TIPSTER tests) are not necessary. Future research
needs to be done with regard to augmenting query terms
with their related words. For example the augmented
terms could be used to broaden and enrich the boolean
filter, or the terms could be selected and de-selected by a
user in a feedback situation.

4.4 .4 R e l e v a n c e F e e d b a c k

The use of relevance feedback for adhoc queries proved
to be a success. The experiment consisted of taking the
top 20 documents retrieved for each query and making a
relevance judgment. The context vectors for the relevant
documents were then added back into the original query
vector and the new query was used to retrieve the rest of
the documents. This approach gave a 3 % to 5 % increase
in performance over our baseline scores.

4 .4 .5 V e c t o r O n l y Q u e r y

An extremely encouraging experiment involved using a
context vector query with NO boolean filter. The entire
topic (excluding the domain and definitions sections) was
used in creating this automatic adhoc query. As reported
in the tipster 24 month proceedings the context vector
query with no boolean matching only performed 3 %
worse for relevant documents and 8 % on precision. The
comparison is with a similarly formed query but with the
additional requirement that documents with at least 4 of
the terms in the "concept" section of the topic be present
in the document for it to be retrieved. This result
indicates that good retrieval performance can be obtained
using only the context vector approach. No inverted
index (used in calculating boolean "hits") is necessary,
greatly reducing the system build time and the system
storage requirements.

4 .5 R o u t i n g E x p e r i m e n t s

The vector space model lends itself very nicely to
conventional neural network training algorithms. One of
those algorithms, the single cell perceptron learning,
proved to be very useful in the routing environment.
There were two approaches experimented with using the
perceptron algorithm. The first, the "stem weighting"
approach calculated weights for each of the query terms
for each topic description. The input for the network was
the dot product between each query term and a previously
judged document (either relevant or not relevant for that
particular topic query), and the relevance judgment. An
example input is given in Table 13.

surrogate mother court case relevance
Doc I .3 .4 .7 .9 0
Doc 2 .8 .7 .5 .2 1

Table 13, Stem Weighting Input for Perceptron Learning

The output consists of weights for each of the query terms
which are applied when adding up each of the query
terms to form the final query vector. For the example
given in Table 12 one would expect the weight for the
term "case" to be low because it did not play a significant
part in retrieving the relevant document but did contribute
significantly in retrieving the non-relevant document.
The second approach that utilizes the perceptron network
is the "full context vector" method. The input consists of
a judged document context vector (280 floating point
values) and the relevance judgment. The network returns

9 0

with 280 weights that are directly inputted into the query
context vector. The stem weighting approach performed
better than the "full context vector" approach. This is
most likely due to the fact the "full context vector"
approach required many more training examples (i.e.
relevance judgments) because it was calculating 280
weights while the "stem weighting" was calculating on
average 25 weights. Although there were an abundances
of relevance judgments for each topic there were many
more examples of non-relevant documents than relevant
documents.

The idea of combining different types of query runs (from
the same system as well as from different systems) proved
to be very successful. This idea of "data fusion" was
inspired by the observation that any two TIPSTER
retrieval runs came up with for the most part non-
intersecting sets of documents. Using information about
each retrieval approach's performance (e.g. "stem
weighting" works better than an adhoc query) retrieval
lists were combined in two different ways. The first way
determined the best approach for each topic and used that
approach to retrieve all the documents for that query. For
example, if the context vector only query (no boolean
matching) worked best for topic 51 then that query was
used to retrieve all the documents. The second approach,
which proved to work slightly better, combined document
lists for each topic by taking documents from each
retrieval approach (again, based on the accuracy weights)
and combining them to create a single list. For example,
the top ranked retrieved document from the best approach
("stem weighting") would be chosen first, the top ranked
document for the second best approach would be next,
etc.. An experiment using the latter combining method
showed that by combining the best single retrieval run
from the University of Massachusetts INQUERY system
with MatchPlus's best run the single best performance by
any single participant in TREC and TIPSTER could be
improved 5 %.

5. EVALUATION SUMMARY

5.1 Results

For TIPSTER Phase I 24-month evaluation HNC
submitted 5 adhoc and 5 routing runs. The results for the
adhoc runs which were run on Disks 1 & 2 and used
topics 101-150 are given in Table 14.

Run Relevan Relative Prec. @ Relative
t Docs Perf. 100 Perf.

1 7205 0.0 % .4520 0.0 %

2 7173 -0.4 % .4748 +5.0 %

3 7504 +4.1% .4616 +2.1%

4 7202 0.0 % .4464 -1.2 %
I

5 6926 I -3.9 % .4128 -8.7 %

Table 14. Adhoc Retrieval Results

The total number of relevant documents for the adhoc
was 11,657. For each of the topics 101-150, 1000
documents were retrieved. The 5 different run types are
described as follows:

. Totally automated, use entire topic with a match
threshold of 4 terms on the concepts section (baseline
system). The training size was 320 megabytes of text.

. Use run 1 for first 20 retrievals, read these documents
and mark relevant ones. Add context vectors for
relevant documents to original query context vector
and retrieve remaining 980 documents. The training
size was 320 megabytes of text.

. Same query type as run 1 but the system uses a larger
context vector size (512 dimensions versus 280
dimensions). The training size was 320 megabytes of
text.

. Same as run 3 but a smaller corpus was used for the
learning of the context vectors. The training size was
45 megabytes of text.

5. Context Vector only query (i.e. No boolean match
filter). The training size was 320 megabytes of text.

91

The routing results which were run on Disk 3 and topics
51-100 are given in Table 15.

Run [Relevan Relative Prec. @ Relative
t Docs Perf. 100 Perf.

!

1 5752 0.0 % .4128 0.0 %

2 6531 +11.9 % .4748 +13.1%

3 5966 +3.6 % .4616 +4.9 %

4 6436 +10.6 % .4464 +7.5 %

5 5950 +3.3 % .4520 +8.7 %

Table 15. Routing Retrieval Results

The total number of relevant documents for the routing
was 10,489. For each of the topics 51-100, 1000
documents were retrieved. Runs 1,2 and 4 used a
technique called "data fusion". Multiple query types were
used then the resulting retrieval lists were combined to
produce a single list of documents. The following were
the query types used for combining (refer to section 4,
routing for details of routing techniques):

• Stem weighting (neural network training)

• Full context vector weighting (neural network
training)

• Adhoc automated query, boolean filter (Runs 1 and 2
only)

• Adhoc automated query, context vector only (Run 4
only)

The 5 different run types are described as follows:

1 Stem weighting for entire run.

2. Data fusion 1: combines 4 different types of
retrievals inside each topic.

3. Adhoc query, fully automatic with a match threshold
of 4 terms on the concepts section.

4. Use same approach as Run 1 but include a context
vector only query as one of the query types.

. Data fusion 2: combines 4 different types of adhoc
and routing approaches by topic (i.e. the same query
approach is used for retrieving all the documents for
a particular topic).

5.2 Interpretation of Results

Increasing the size of the vector training set improves
performance. Adhoc run 3 was trained on 320 megabytes
of data while run 4 was trained on 45 megabytes. There
is nearly a 5% improvement with the increased amount of
training data.

Increasing the vector size from 280 dimensions to 512
dimensions helps performance. For the larger vector size
MatchPlus performed 5% better on the number of
relevant documents and 8% better for precision at I00
documents. The increased dimensionality provided more
distinguishability between document context vectors thus
fewer non-relevant documents were retrieved.

A probabilistic combination of multiple runs gives
superior performance to any single query formation
technique. The best combination run (Route run 2) gave
over a 10% improvement for both precision and recall
over the best single routing method (Route run 1).

For further details regarding "unofficial" results from
numerous experiments refer to the section on
"Experiments and Performance".

92

