
INQUERY System Overview 
John Broglio James P. Callan W. Bruce Croft 

C o m p u t e r  Sc i ence  D e p a r t m e n t  

U n i v e r s i t y  of  M a s s a c h u s e t t s  

Amherst, MA 01003-4610, USA 
{broglio, callan, croft}@cs.umass.edu 

1. D e s c r i p t i o n  o f  F i n a l  S y s t e m  

1 . 1 .  A p p r o a c h  

The T I P S TER  project in the Information Retrieval Lab- 
oratory of the Computer Science Department, University 
of Massachusetts, Amherst (which includes MCC as a 
subcontractor), has focused on the following goals: 

• Improving the effectiveness of information retrieval 
techniques for large, full-text databases, 

• Improving the effectiveness of routing techniques 
appropriate for long-term information needs, and 

• Demonstrating the effectiveness of these retrieval 
and routing techniques for Japanese full text 
databases [5]. 

Our general approach to achieving these goals has been 
to use improved representations of text and information 
needs in the framework of a new model of retrieval. This 
model uses Bayesian networks to describe how text and 
queries should be used to identify relevant documents 
[7, 4, 8]. Retrieval (and routing) is viewed as a proba- 
bilistic inference process which compares text represen- 
tations based on different forms of linguistic and sta- 
tistical evidence to representations of information needs 
based on similar evidence from natural language queries 
and user interaction. Learning techniques are used to 
modify the initial queries both for short-term and long- 
term information needs (relevance feedback and routing, 
respectively). 

This approach (generally known as the inference net 
model and implemented in the INQUERY system [1]) 
emphasizes retrieval based on combination of evidence. 
Different text representations (such as words, phrases, 
paragraphs, or manually assigned keywords) and differ- 
ent versions of the query (such as natural language and 
Boolean) can be combined in a consistent probabilistic 
framework. This type of "data fusion" has been known 
to be effective in the information retrieval context for a 
number of years, and was one of the primary motivations 
for developing the inference net approach. 

Another feature of the inference net approach is the abil- 
ity to capture complex structure in the network repre- 
senting the information need (i.e. the query). A practi- 
cal consequence of this is that  complex Boolean queries 
can be evaluated as easily as natural language queries 
and produce ranked output.  It is also possible to repre- 
sent "rule-based" or "concept-based" queries in the same 
probabilistic framework. This has led to us concentrat- 
ing on automatic analysis of queries and techniques for 
enhancing queries rather than on in-depth analysis of the 
documents in the database. In general, it is more effec- 
tive (as well as efficient) to analyze short query texts 
than millions of document texts. The results of the 
query analysis are represented in the INQUERY query 
language which contains a number of operators, such as 
#SUM, #AND,  # O R ,  # N O T ,  #PHRASE,  and #SYN. 
These operators implement.different methods of combin- 
ing evidence. 

Some of the specific research issues we are addressing are 
morphological analysis in English and Japanese, word 
sense disambiguation in English, the use of phrases and 
other syntactic structure in English and Japanese, the 
use of feature recognizers (for example, company, coun- 
try and people name recognizers) in representing doc- 
uments and queries, analyzing natural language queries 
to build structured representations of information needs, 
learning techniques appropriate for routing and struc- 
tured queries, techniques for acquiring domain knowl- 
edge by corpus analysis, and probability estimation tech- 
niques for indexing. 

The T IP S TER and TREC evaluations have made it clear 
that a lot remains to be learned about retrieval and rout- 
ing in large, full-text databases based on complex infor- 
mation needs. On the other hand, we have made con- 
siderable progress in developing effective techniques for 
this environment, and the evaluations have shown that 
good levels of performance can be achieved. 

1 . 2 .  P r o c e s s i n g  F l o w  

The main processes in INQUERY are document index- 
ing, query processing, query evaluation and relevance 
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feedback. We will give a brief description of these pro- 
cesses. 

In the document indexing process, documents are parsed 
and index terms representing the content of documents 
are identified. INQUERY supports a variety of indexing 
techniques including simple word-based indexing, index- 
ing based on part-of-speech tagging and phrase identifi- 
cation, and indexing by domain-dependent features such 
as company names, dates, locations, etc. The last type 
of indexing is a first step towards integrating detection 
and extraction systems. 

In more detail, the document structure is used to iden- 
tify which parts will be used for indexing. The first step 
of this process is to scan for word tokens. Most types 
of words (including numbers) are indexed, although a 
stopword list is used to remove very common words. 
Stopwords can be indexed, however, if they are capi- 
talized (but not at the start of sentences) or joined with 
other words (e.g. "the The-1 system"). Words are then 
stemmed to conflate variants. We have developed a new 
stemming algorithm that  has a number of advantages 
for operational systems. A number of feature recogniz- 
ers written with the UNIX utility f l e x  are then used to 
identify objects such as company names and mark their 
presence in the document using "meta" index terms. A 
company name such as IBM in the text, for example, 
will result in a meta-term ~COMPANY being recorded 
at that  position in the text. The use of these meta-terms 
extends the range of queries that  can be specified. This 
completes the usual processing for document text. 

The document indexing process also involves building 
the compressed inverted files that are necessary for effi- 
cient performance with very large databases. Since posi- 
tional information is stored, overhead rates are typically 
about 40% of the original database size. 

Query processing involves a series of steps to identify 
the important  concepts and structure describing a user's 
information need. INQUERY is unique in that it can 
represent and use complex structured descriptions in a 
probabilistic framework. Many of the steps in query pro- 
cessing are the same as those done in document indexing. 
In addition, a part-of-speech tagger is to used to identify 
candidate search phrases. Domain-dependent features 
are recognized and meta-terms inserted into the query 
representation. The relative importance of query con- 
cepts is also estimated, and relationships between con- 
cepts are suggested based on simple grammar rules. An 
evaluation of some of the query processing techniques is 
presented in [2]. 

INQUERY is also capable of expanding the query us- 

ing relationships between concepts found by either us- 
ing manually specified domain knowledge in the form 
of a simple thesaurus or by corpus analysis. The 
WORDFINDER system is a version of INQUERY 
that retrieves concepts that  are related to the query. 
WORDFINDER is constructed by identifying noun 
groups in the text and representing them by the words 
that are closely associated with them (i.e. occur in the 
same text windows). Concept "documents" are then 
stored in INQUERY. This technique has shown consid- 
erable promise in retrieval experiments.- 

The query evaluation process uses the inverted files and 
the query represented as an inference net to produce a 
document ranking. The evaluation involves probabilis- 
tic inference based on the operators defined in the IN- 
QUERY language. These operators define new concepts 
and how to calculate the belief in those concepts using 
linguistic and statistical evidence. We are constantly 
experimenting with and refining these operators (for ex- 
ample, the operator defining a phrase-based concept) in 
order to improve retrieval performance. The efficiency 
of retrieval is comparable to commercial information re- 
trieval systems. 

The relevance feedback process uses information from 
user evaluations of retrieved documents to modify the 
original query in ad-hoc retrieval or routing environ- 
ments. The INQUERY system, because it can repre- 
sent structured queries, supports a wide range of learn- 
ing techniques for query modification [6]. In general, new 
words and phrases are identified in the sample of relevant 
documents. These are added to the original query and 
all the terms in the query are then reweighted. With 
the amount of relevance information available in TIP- 
STER, relatively simple automatic techniques appear to 
produce good levels of effectiveness. We are also investi- 
gating the effect of using more limited information and 
more complex learning techniques, such as neural net- 
works. 

The Japanese version of INQUERY only differs from 
the English version in the low-level language process- 
ing and some aspects of the interface. We have carried 
out experiments using both character and word-based 
representations of documents in combination with word- 
based processing of queries that  are represented using 
the INQUERY language. These experiments have shown 
that character-based representations, which are efficient 
to produce, are surprisingly effective. 

1 . 3 .  D e s c r i p t i o n  o f  K e y  S u b s y s t e m s  

As described above, INQUERY has five key subsystems: 
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Document will describe marketing strategies carried 
out by U.S. companies for their agricultural chem- 
icals, report predictions for market share of such 
chemicals, or report market statistics for the chemi- 
cals. pesticide, herbicide, fungicide, insecticide, fer- 
tilizer, predicted sales, market share, stimulate de- 
mand, price cut, volume of sales 

Figure 1: Stemming example: Query text. 

• document indexing, 

• WORDFINDER, 

• query processing, 

• query evaluation, 

• relevance feedback, and routing. 

Each subsystem is described in more detail below. 

D o c u m e n t  I n d e x i n g :  The text-processing modules 
for document indexing are frequently described as docu- 
ment parsers or document parsers and feature recogniz- 
ers. The purpose of all document parsing modules is 
to generate transactions whereby words, or terms, and 
their locations are stored in the document indexes. The 
phases of document parsing and term recognition are (1) 
layout analysis, (2) lexical analysis, (3) syntactic analy- 
sis, and (4) concept identification. Each of these phases 
may generate multiple transactions for each document, 
each transaction recording term, document and the loca- 
tions in the document where term is found. 

INQUERY has a set of default text processing modules. 
We will discuss the default module behavior, but these 
modules can be easily replaced if some behavior other 
than the  default is desired. 

The minimal document layout analysis must identify the 
beginnings and end of documents, and the beginning and 
end of each text segment. Text is distinguished from for- 
matting information, cataloguing information or any in- 
formation to be excluded for retrieval purposes. Option- 

market strateg carr # u s a  compan #company  agri- 
cultur chemic report predict market share chemic re- 
port market statist market agrochem #usa  pesticid 
herbicid fungicid insecticid fertil predict sale stimul 
demand price cut volum sale 

Figure 2: Stemming example: Query text, after stop- 
word and stop-phrase removal, as stemmed by the Porter 
stemmer. 

marketing strategy carry # u sa  company #company 
agriculture chemical report prediction market share 
chemical report market statistic marketing agro- 
chemic # u sa  pesticide herbicide fungicide insecticide 
fertilizer predict sale stimulate demand price cut vol- 
ume sale 

Figure 3: Stemming example: Query text, after stop- 
word and stop-phrase removal, as stemmed by the 
KSTEM stemmer. 

ally, title, document identification code and other special 
fields may be identified, and a document layout format 
may be enforced. The default parser relies on a subset of 
Standardized General Mark-up Language (SGML), but 
any layout analysis module may be substituted in or- 
der to recognize whatever document style is required. 
The only requirements are that the layout analysis mod- 
ule indicate to the indexing system when to begin and 
end indexing for that document, and which section(s) to 
treat as text to be indexed. 

The function of a lezical analysis module is to identify 
and record word boundaries, recognize stopwords and 
stem the words as desired, and generate transactions so 
the words will be indexed for retrieval. In theory, ev- 
ery word in the document collection will be indexed. In 
practice, it is helpful to identify very common words, 
such as operators or closed-class words, which do not 
carry any meaningful information for retrieval purposes 
(although they may offer significant information for text 
or content extraction). These stopwords are not indexed, 
although they are retained in the text so that subsequent 
textual analysis (syntactic analysis, feature recognition) 
may make use of them. Stemming is performed to con- 
flare words that have the same root form or stem, in 
spite of different endings (Figures 1 and 2). The current 
version of INQUERY uses the Porter stemmer. 

A new stemmer, which is more sensitive to the true mor- 
phological word stems, has been developed (Figure 3). 
The KSTEM stemmer has certain advantages over the 
Porter stemmer. The Porter stemmer produces strings 
that are not necessarily English words. Because the 
stemmed representation is sometimes unintelligible, it 
is difficult to get feedback from a human user by pre- 
senting a processed query for modification. In addition, 
the Porter stemmer sometimes conflates words that are 
related by only spelling. Thus the phrases "a conflict 
over foreign policy" and "a conflict between foreigners 
and the police" would produce the same query network 
with the Porter stemmer. 

The KSTEM stemmer always uses English words as its 
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John Davenport,  52 years old, was appointed chief 
executive officer of this international telecommuni- 
cations concern's U.S. subsidiary, Cable & Wire- 
less North America Inc. Mr. Davenport,  who suc- 
ceeds John Zrno, is currently general manager of the 
group's operations in Bermuda. 

Figure 4: Indexing example: Original document text. 

s temming output.  It is more conservative as well, con- 
flaring only words that  are on the same derivational path. 

Concept recognition is an important  step in automatic  
classification and glossary construction. The base set of 
recognizers which are delivered with INQUERY include: 

U.S .  c i t y  r e c o g n i z e r :  For each mention of a U. S. 
city in the text, generates a transaction for 
the special term # C I T Y .  

C o u n t r y  r e c o g n i z e r :  For each mention of a country 
in the text, generates a transaction for either 
# U S A  or # F O R E I G N C O U N T R Y .  

C o m p a n y  n a m e  r e c o g n i z e r :  For each citation of a 
company in the text, generates a transaction 
for the special term # C O M P A N Y .  

P e r s o n  n a m e  r e c o g n i z e r :  For each mention of an 
identifiable person's name in the text, gen- 
erates a transaction in a special person file. 

Figures 4 and 5 illustrate the role that  these recognizers 
play in document indexing. 

W O R D F I N D E R :  W O R D F I N D E R  is a process, 
analagous to document indexing, in which simple noun 
groups are indexed by the words that  occur near them in 
the document  text. The result of this indexing process 
is a database in which one or more words can be used to 
retrieve simple noun groups. This database can be used 
for query expansion, as a method of adding concepts that  
are related to a set of query terms. 

W O R D F I N D E R  is based on the assumption that  con- 
cepts that  have a similar lexical context may be related 
semantically. For example, the words "connectionism" 
and "neural networks" occur in similar lexical contexts, 
but rarely in the same documents. The semantic rela- 
tionship captured is not necessarily synonymy, because 
W O R D F I N D E R  also might relate "connectionism" and 
"back propagation",  which co-occur but have different 
meanings. 

The major  steps in constructing a W O R D F I N D E R  
database are: 

John Davenport  # P E R S O N ,  52 years old, appointed 
chief executive officer international telecommunica- 
tions concern U.S. # U S A  subsidiary, Cable Wireless 
North America Inc. # C O M P A N Y  Mr. Davenport,  
# P E R S O N  succeeds John Zrno, # P E R S O N  cur- 
rently general manager group's operations Bermuda 
# F O R E I G N C O U N T R Y .  

Figure 5: Indexing example: Document text indexed. 

1. Extract  simple sequences of nouns, using part  of 
speech tagging (e.g. [3]). 

2. For each noun sequence, collect the significant words 
that  occur in any document  within a window of n 
words containing the sequence. The words collected 
form a feature vector representing the lexical con- 
text of the sequence. 

3. Queries are expanded by adding noun groups that  
are close in feature space to the words in the original 
query (see Figures 6 and 7). 

In Figures 6 and 7 the floating point numbers to the 
left of each query expansion term are belief values. The 
absolute magnitude of a behef value is not meaningful. 

Query: l l5 .1  : Impact  of the 1986 Immigrat ion Law - 
will report  specific consequence consequences of the 
U.S.'s Immigrat ion Reform and Control Act of 1986. 

0.511462 
0.501936 
0.499120 
0.498964 
0.498054 
0.492453 
0.490993 
0.489448 
0.488754 
0.487762 
0.487187 
0.483245 
0.482687 
0.480449 
0.480222 
0.478625 
0.478437 
0.477798 
0.475995 
0.475995 

illegal immigration 
illegals 
undocumented aliens 
amnesty program 
immigration reform law 
editorial-page article 
naturalization service 
civil fines 
new immigration law 
legal immigration 
employer sanctions 
simpson-mazzoh immigration reform 
statutes  
applicability 
seeking amnesty 
legal s tatus 
immigration act 
undocumented workers 
guest worker 
sweeping immigration law 

Figure 6: Query expansion example: Concepts discov- 
ered automatically for topic 115. 
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Query:132.1 : "Stealth" Aircraft - will provide cost, 
technical, and/or  performance data  on U.S. "stealth" 
aircraft projects. 

0.529560 northrop corp. 
0.528570 tactical fighter 
0.525970 aerospace companies 
0.520621 flying wing design 
0.519889 enemy radar 
0.517714 stealth bomber  
0.517441 development program 
0.515699 radar-evading aircraft 
0.514796 bat-winged aircraft 
0.513967 cost overruns 
0.'512299 expensive plane 
0.508889 stealth fighter 
0.506980 radar-evasion standards 
0.505602 full-scale production 
0.505052 palmdale 
0.503255 radar-evading 
0.503105 pentagon official 
0.500766 flying wing 
0.498029 air force officials 
0.496971 development costs 

Figure 7: Query expansion example: Concepts discov- 
ered automatically for topic 132. 

It is the result of the complex process of query evalu- 
ation combining term weights, document and collection 
frequencies and query network structure. Within in the 
same query expansion set, however, the relative magni- 
tude of belief values is significant, Further research will 
determine if a weighting scheme for expansion terms can 
be developed based on the belief values. 

There is an advantage to using W O R D F I N D E R  for au- 
tomatic query expansion. Since the query expansion 
concepts are derived from the text of the collection it- 
self, W O R D F I N D E R  automatically creates collection- 
specific concept links. Further research will compare the 
value of generic W O R D F I N D E R  databases to collection- 
specific ones. 

W O R D F I N D E R  is sensitive to several parameters,  in- 
cluding the size of the window, decisions about what 
words to include in the window, and whether low 
and/or  high frequency noun groups are removed from 
the database. Experiments have shown that  getting 
these parameters  right is important  to the effectiveness 
of the concepts returned. The current implementation of 
W O R D F I N D E R  shows promise on the T I P S T E R  data, 
but further work is necessary to build a W O R D F I N D E R  
that  would be effective on a variety of document collec- 
tions. 

Q u e r y  P r o c e s s i n g ;  Queries can be made to IN- 
QUERY by using either natural language or a struc- 
tured query language or a mixture of the two. Natu- 
ral language queries are interpreted by text processing 
modules which ensure that  the handling of lexical anal- 
ysis and concept recognition match that  of the index- 
ing subsystem. The resulting modified queries are con- 
verted to the structured query language by applying the 
# S U M  operator to the terms in the query. Equations 
1-6 (below, in the discussion of the Retrieval engine) de- 
scribe # S U M  and the other operators in INQUERY's  
structured query language. Query operators permit the 
text-processing system or the user interface to supply 
structural information with the query, including phrase 
grouping or proximity requirements. Query text is gen- 
erally converted to lower case and checked for stopwords 
and stemmed, if necessary, to produce canonical word 
forms. 

Query text processing must minimally mirror the index- 
ing text processing. But because query texts are much 
shorter than document collections, it is practical to ex- 
periment with more thorough textual analysis at the re- 
search and development stage. All text processing is 
experimental and the sequence of operations is adjusted 
frequently as more is learned about  the effects of this 
processing. Text processing methods which prove suc- 
cessful with queries can then be integrated into the in- 
dexing process. This reduces the need to repeatedly in- 
dex large document collections in order to make small 
experimental adjustments.  

For this reason, much T I P S T E R  query processing is per- 
formed as preprocessing rather than in the body of the 
INQUERY program. Preprocessing stages are made up 
of sed, awk, f l e x  (or l ex )  scripts and C code. Query 
text processing that  has been integrated into INQUERY 
is made up of f l e x  feature analyzers. 

Currently INQUERY has a small number of internal 
query text processors. One handles hyphenated words 
and groups of capitalized words by enclosing them in 
these proximity operators. Orthographic clues such as 
hyphenation and capitalization, when reliable, are very 
good clues to phrasal grouping. Hyphens are generally 
discarded during indexing so that  an expression such as 
Ivan-Contra or voice-activated become Ivan Contra and 
voice activated, respectively. In query processing, the 
symmetrical  procedure is to remove the hyphen and to 
phrase the words as #i  ( I van  Con t ra  ) or #1 ( vo i ce  
a c t i v a t e d  ), requiring that  the two words be found ad- 
jacent in a document for the query operator to be satis- 
fied. Groups of capitahzed words are similarly phrased 
so that  the phrase House of Representatives in a query 
is transformed to #3( House R e p r e s e n t a t i v e s  ). 
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< h u m >  Number: 106 
< d o m >  Domain: Law and Government 
<t i t le> Topic: U.S. Control of Insider Trading 
<desc> Description: 
Document will report proposed or enacted changes to U.S. laws and regulations designed to prevent insider 
trading• 
<con> Concept(s): 
1. insider trading 
2. securities law, bill, legislation, regulation, rule 
3. Insider Trading Sanctions Act, Insider Trading and Securities Fraud Enforcement Act 
4. Securities and Exchange Commission, SEC, Commodi ty  Futures Trading Commission, CFTC,  National 
Association of Securities Dealers, NASD 
< f a t >  Factor(s): 
< n a t >  Nationality: U.S. 

Figure 8: Query processing example: Original query. 

Another of INQUERY's  query text processors removes 
phrases that  discuss the retrieval process rather than the 
desired material,  such as "customer reports t h a t . . . "  or 
"A relevant document must contain•• ." .  This behavior 
is domain dependent, so the program's  rules should be 
modified or augmented for different types of use. 

What  follows is a description of the text preprocessing 
modules that  have been used for T I P S T E R  queries. The 
order of their use is not fixed, but it can be significant• 
For example, it was found useful to phrase a hyphenated 
compound such as wordl-word~ as #1 ( wordl  word2 
• . .  ) and to phrase a group of capitalized words as #3 ( 
wordl word2 . . .  ). We have experimented with remov- 
ing names of countries and some capitalized expressions 
from medium-sized phrases (e.g., 

#PHRASE ( wordl c a p i t a l i z e d - g r o u p  word2 . . . )  

#PHRASE ( wordl  word2 . . . )  c a p i t a l i z e d - g r o u p .  

Obviously, it makes a difference whether you process hy- 
phenated and capitalized words before or after you gen- 
erate the larger # P H R A S E .  

The input and output  description for a processor or pre- 
processor is the same: query text. There are no restric- 
tions. However, text which is tagged with part  of speech 
tags contains more information and more "noise". So, 
for each query text preprocessor, there are two versions, 
one which operates on tagged text and one for untagged 
text. 

There are two main kinds of query styles: a natural  lan- 
guage query and a keyword or key concept query. For 
example, the < d e s c >  and < n a r r >  fields of a T I P S T E R  
topic (see Figure 8) represent natural  language queries 
of varying levels of abstraction. The < con> ,  < t i t l e >  

and < f a t >  fields represent key concepts in the query• 
The main difference between the two types of processing 
is that  the key concept query has more controlled infor- 
mation. The phrasing and emphasis are already given 
and do not have to be conjectured from the language 
structure• It  is valuable to discover how to treat  both 
styles of query, because a good user interface will make it 
easy for a user to input both styles. For example, a user 
may enter a prose query and then highlight the impor- 
tant  words and phrases in the query in some convenient 
manner.  These highlighted words would then be treated 
as key concepts in the query processing• 

Natural  language query fields are tagged for syntactic 
category by a part-of-speech (POS) tagger• Currently 
we use the tagger developed by Ken Church [3]. This 
tagger is proprietary software and not  available with IN- 
QUERY. We have developed our own POS tagger, which 
we are beginning to use now. Additionally, we change 
operator phrases to single words in order to simplify later 
processing• An example of this simplification is replac- 
ing the phrase in order to with the infinitive particle to 
or replacing with respect to with the word regarding. The 
goal of this replacement is to remove phrases which re- 
semble noun phrases syntactically but which are really 
syntactic operators (e.g., phrasal prepositions) with no 
substantive content. 

When the text is tagged and the potentially irrelevant 
material  has been removed, syntactically-based noun 
group capture is performed. Certain kinds of noun 
phrase patterns are enfolded in a # P H R A S E  operator 
(Figure 9): 

1. A noun phrase which contains more than one modi- 
fying adjective and noun is enclosed in a # P H R A S E  
operator; 
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# W S U M  ( 1.0 
!Terms from <ti t le> field: 
2.0 #UW 50  ( Control of Insider Trading ) 
2.0 # P H R A S E  ( #USA Control ) 5.0 # P H R A S E  ( Insider Trading ) 
! Terms from <con> field: 
2.0 # P H R A S E (  securities law) 2.0 bill 2.0 legislation 2.0 regulation 
2.0 rule 2.0 #3 (  Insider Trading Sanctions Act) 
2.0 #3 (  Insider Trading and Securities Fraud Enforcement Act ) 
2.0 #3 (  Securities and Exchange Commission) 2.0 SEC 
2.0 #3(Commodi ty  Futures Trading Commission) 2.0 CFTC 
2.0 #3 (  National Association of Securities Dealers) NASD 
! Terms from <desc> field: 
1.0 proposed 1.0 enacted 1.0 changes 1.0 # P H R A S E  ( #USA laws ) 
1.0 regulations 1.0 designed 1.0 prevent 
2.0 # N O T ( # F O R E I G N C O U N T R Y )  ) 

Figure 9: Query processing example: Automatically processed query. 

2. A head noun with no premodifiers and followed by 
a prepositional phrase is enclosed in a # P H R A S E  
operator with the head noun of the prepositional 
phrase; 

All text in the query is searched for constraint expres- 
sions. Among these expressions are the words company, 
hog U. S. or a restriction in the nationality section of the 
< f a c >  field to U.S. or other nationality. A restriction to 
U.S. nationality as the area of interest is implemented by 
penalizing documents for references to foreign countries. 
A restriction to other nationalities is implemented by 
repeating that country as a term. This asymmetry de- 
pends on the fact that the document collection is drawn 
solely from U.S. sources, and therefore the U.S., as the 
default area of interest, is rarely referred to unless a gov- 
ernment body or foreign policy implementation is under 
discussion (Figure 9). 

There is some recognition of simple time expressions, 
such as since 198$ which are expanded to the set of years 
which might be intended by the phrase in question. 

Countries are recognized as such and are handled so that 
expressions like South Africa are phrased as #1 ( sou th  
a f r i c a  ) even when they appear in the middle of a 
larger group of capitalized words. In addition, proper 
names such as country names are moved out of the scope 
of # P H R A S E  operators, since it generally increases the 
effectiveness of a # P H R A S E  to reduce the number of 
words in it. Nationality constraints can better be main- 
tained within the scope of the larger and more tolerant 
#SUM operator. For example the phrase 

"import ban on South African diamonds" 

becomes by stages, 

#PHRASE ( impor t  ban on #SYN (#I ( so u th  
a f r i c a n )  #I ( so u th  a f r i c a ) )  diamonds) 

and finally 

#SUM (#SYN (#1(south afr ican)  # l ( south  
a f r i c a ) )  #PHRASE(import ban on diamonds)) .  

Key concept query processing is different from prose 
query processing since the concept separation provided 
by the user can presumably be trusted. Instead of using 
a part-of-speech tagger, we rely on comma delimitation 
of concepts, and # P H R A S E  the words found between 
each pair of delimiters (Figure 9: Terms from <con> 
field). 

Additionally, if any constraints were found anywhere else 
in the query, e.g., a mention of the word company or an 
exclusionary geographical constraint (e.g., not USA or 
only USA), the query will be modified according to these 
constraints. For example (Figure 9), 

only U S A ~ # N O T  (#FOREIGNCOUNTE¥ ) 

and 

not USA =~ #NOT ( #USA ). 

If the word company is found in a query, then a second 
copy of the key concepts (the <con>  field), is produced 
where each item in the field appears in an unordered 
window operator with the feature #COMPANY.  For ex- 
ample, if the word South Africa appears as a key concept 
(and company appears somewhere in the query), then the 
preprocessor would produce the term #OWS0( #COMPANY 
#1 ( so u th  a f r i c a ) )  which would match any document 
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#W S UM (1.0 
2.0 #UWS0 (Control of Insider Trading ) 
3.0 # 3  ( Insider Trading ) 
1.0 #3 (  securities law) 1.0 #3 (  Insider Trading Sanctions Act) 
1.0 #3 (  Insider Trading and Securities Fraud Enforcement Act ) 
1.0 # 3 (  Securities and Exchange Commission) 1.0 SEC 
1.0 #3(Commodi ty  Futures Trading Commission) 1.0 CFTC 
1.0 #3 (  National Association of Securities Dealers) 1.0 NASD 
2.0 #uw50( #syn(bill  law regulation rules) insider trading) 
1.0 #3(increasing penalties) 1.0 #3(closing loopholes) 
1.O #NOT(Boesky)  1.0 #NOT(Milken)  
1.0 # N O T ( # 3 ( D r e x e l  Burnham Lambert) 
2.0 # N O T  ( # F O R E I G N C O U N T R Y )  ) 

Figure 10: Query processing example: Manually modified query. 

which had a company name within fifty words of South 
Africa. 

We have experimented with manual modification of pro- 
cessed queries in order to measure the feasibility and 
effectiveness of simple user adjustments to automatic 
query processing output.  We have explored simple mod- 
ifications such as adding a term from the Narrative field, 
deleting a term, and constraining existing teims to ap- 
pear near each other in a document (Figure 10). This has 
proved to be generally effective in increasing the quality 
of retrieval results. 

R e t r i e v a l  Eng ine :  Once a query net is formed, the 
retrieval subsystem can rank documents according to the 
belief that  they are relevant to the query. INQUERY's 
methods of combining evidence are summarized below, 
and are documented more fully in [9]. 

belnot(Q) = 1 - p l  

below(Q) = 1 - ( 1 - p l ) . . . . . ( 1 - p , ~ )  

beland(Q) = P l ' P 2 " . . . . p , ~  

belm~x(Q) = max(pl,p2,...,pn) 
(wlPl + w2p2 + . . .  + wnpn)wq 

be l  . . . . .  . ( Q )  = 
(Wl +w2 + . . . + w ~ )  

beL,,m(Q) = (pl + p z  + - - - + p n )  
n 

and belief in its arguments as presented in Equations 1-6. 

R e l e v a n c e  F e e d b a c k  and Routing: The INQUERY 
system is able to refine queries automatically based upon 
relevance feedback by a user. The general approach is 
for the system to select terms from relevant documents, 
add them to the query, and then reweight all of the query 
terms [6]. Experiments have been conducted with a va- 
riety of algorithms for term selection and weighting. 

Early experiments [6] showed that  ranking terms by the 
product of their frequency in relevant documents (rdf) 
and their inverse document frequency (idf) was best on 
small and medium-sized collections with relatively small 
numbers of relevance judgements. The number of terms 
added was set empirically at 5. Term weights were de- 
termined by their frequency in relevant documents (rtf). 
The INQUERY system still uses this model for interac- 
tive relevance feedback, where the number of relevance 
judgements per query is generally low (e.g. < 15). 

(1) Our approach to the routing portion of our T I P S T E R  
(2) work was based initially upon our existing relevance feed- 
(3) back mechanisms. Routing profiles were constructed by 

a two step process. The first step was to produce auto- 
(4) matically a query representing each T I P S T E R  topic, as 
(5) described in the Query Processing section above. The 

second step was to modify the query, using relevance 
feedback. This modified query was then used as a rout- 

(6) ing profile in the routing experiments. 

Node belief scores are calculated as a combination of 
term frequency (tf) and inverse document frequency 
(idf) weights. The values are normalized to remain be- 
tween 0 and 1, and are further modified by tf  and belief 
default values which the user may define at program in- 
vocation. Calculation of a belief for a given query opera- 
tor is dependent on the type of operator and the number 

Experiments with the creating routing profiles showed 
that  better results could be obtained by replacing the idf 
component of the term selection algorithm with log ~ ,  
where df is the number of documents in which the term 
occurs (document frequency) and t f  is the frequency of 
the term in the collection. The number of terms added to 
the query was also increased, from 5 to 30. This modified 
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#q051 = 
#W S UM(  1.000000 .433963 dougla 30.622835 sub- 
sid 14.105722 mcdonnel 2.856207 spain 22.664160 boe 
30.620134 european 5.776313 g.m.b.h. 8.629494 340 
14.828697 messerschmit 24.899202 industri 7.524240 
jet  28.518532 aerospac 6.187950 unfair 34.157051 air- 
craft 5.245394 construccion 5.942457 330 12.249618 
boelkow 5.435017 west 5.136472 franc 8.268916 
aerospatial 5.439325 aeronautica 6.971968 jetlin 
11.957228 blohm 9.611669 german 10.252533 mbb 
25.656782 consortium 16.704779 british 138.805618 
airbu 10.874762 plane 2.533194 plc 2.73149 #UWS(  
#company  #foreigncountry ) 6.74627 #UWS0(  330 
airbu ) 6.36442 #UWS0(  aid airbu ) 6.03555 
#UWS0(  airbu messerschmit ) 8.87131 #UWS0(  air- 
craft subsid ) 7.39724 #UW5(  british aerospac ) 
11.1438 #UW50(  british airbu ) 3.45497 #UWS0(  
competitor airbu ) 6.27218 #UW50(  cost airbu ) 
20.7534 #UW50(  european airbu ) 4.8756 #UW50(  
g.m.b.h, airbu ) 14.6286 #UWS0(  german airbu ) 
23.6137 #UW50(  govern airbu ) 4.41921 # U W 5 (  
govern european ) p3.63681 #UW50(  help airbu ) 
4.04575 # U W 5 (  mcdonnel boe ) 8.33751 # U W 5 (  mc- 
donnel dougla ) 3.19623 #UWS(  offic u.s. ) 8.1083 
#UW50(  partner airbu ) 4.9825 #UW50(  price airbu 
) 6.19649 #UW50(  project airbu ) 10.3209 #UW50(  
say airbu ) 18.1742 #UW50(  subsid airbu ) 15.8317 
#UW50(  trade airbu ) 25.5183 #UW50(  u.s. airbu 
) 5.23789 # U W 5 (  u.s. trade ) 2.04795 # U W 5 (  
wall street ) 11.3886 #UW50(  west airbu ) 6.19697 
# U W 5 (  west german ) ) 

Figure I l: Routing profile created automatically from 
relevant documents. 

algorithm appears effective even with small numbers of 
relevance judgements. 

The addition of proximity operators further improves the 
average precision of routing profiles. INQUERY consid- 
ers every pair of terms within a distance of n in a relevant 
document as a potential source of a proximity operator 
to add to a query. Experiments with values of n ranging 
from 3 to 50 showed that a range of values is superior 
to any single value. The resulting set of pairs, which 
can be quite large, is filtered to remove pairs that occur 
rarely in relevant documents. The resulting set of pairs 
are ranked by the formula 

[R[ [N RI " rg f 

[R I is the number of relevant documents, ndf is the 
number of non-relevant documents in which the pair co- 
occur, and [NR[ is the number of non-relevant docu- 

ments, In our T I P S T E R  experiments, 10 proximity op- 
erators with n = 5, and 20 proximity operators with 
n : 50, were added to the query. These operators were 
intended to capture phrase-level and paragraph-level co- 
o c c u r r e n c e .  

The T I P S T E R  document collection differs from previ- 
ously available document collections in that it contains 
many more documents and many more relevance judge- 
ments per query. One might expect having more rele- 
vance judgements to improve the reliability of the statis- 
tics obtained by analyzing relevant documents, but it is 
not clear that this is so. Unofficial experiments showed 
that  INQUERY's performance improved steadily as the 
number of relevant documents used was increased to 
about 275-300 documents. After 300 relevant docu- 
ments, performance began to degrade slowly. Further 
work is required to understand this behavior. 

It can be argued that  several hundred relevant docu- 
ments are a better representation of a user's interest than 
the query that  retrieved them along with irrelevant doc- 
uments. We found that  better results were obtained by 
discarding the user's original query and creating a com- 
pletely new routing query using the relevance feedback 
methods described above. Figure 11 shows a query cre- 
ated by this method. 

In addition to the number of relevance judgements, it 
is unusual to have relevance judgements from a diverse 
set of systems. In an operational setting, even over long 
term use, one is likely to only have relevance judgements 
resulting from use with a single system. We found that 
restricting INQUERY's attention to only those relevant 
documents that it retrieved reduced the number of rele- 
vance judgements to reach a given level of performance. 
Using relevant documents retrieved by many systems 
(e.g. the TREC systems) eventually yielded similar per- 
formance, but required analysis of many more relevant 
documents. 

The routing experiments show that it is feasible to au- 
tomatically construct relatively accurate profiles in an 
operational setting. Profiles can be created from a set of 
relevant documents, or from repeated interaction with a 
user. Either approach will yield relatively accurate rout- 
ing profiles. The experiments also showed that, even 
when large numbers of relevant documents are available 
for analysis, a combination of automatic query formation 
and manual query construction by a user is superior to 
either approach alone. 

1 . 4 .  H a r d w a r e / S o f t w a r e  R e q u i r e m e n t s  

INQUERY was developed to run under the UNIX oper- 
ating system, on workstations manufactured by Digital 
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Equipment Corporation (DEC), and SUN Microsystems 
(SUN). It has also been ported to the MS-DOS operating 
system (with and without the Windows graphical user 
interface) on personal computers containing the Intel 386 
and 486 microprocessors. These hardware platforms in- 
clude 16, 32 and 64 bit architectures. Ports to other 
computers and operating systems are not expected to 
present any serious problems. 

The INQUERY system consists of several major  sub- 
systems, as described in Section above. The apph- 
cation programmer ' s  interface (API) for document re- 
trieval applies to all INQUERY document collections, 
whether local or remote (available on another machine 
on a network). An apphcation can be configured for a 
client/server environment with just  a few compile-time 
and hnk-time decisions. Chents can run on any of the 
platforms mentioned above. The server processes are 
constrained currently to run on a UNIX workstation. 
The DecNet and T C P / I P  networking protocols are both 
supported. Additional network protocols can be added 
easily. 

Compile-time and link-time options are also available to 
enable a programmer to use only those modules neces- 
sary for a particular application. For example, if a client 
program will access only remote databases, the code for 
accessing local databases can be eliminated, resulting in 
a substantially smaller executable program. 

The amount  of memory  and disk space required for doc- 
ument retrieval depends on the size of the document 
collection. For a collection of N bytes, INQUERY re- 
quires about  5N bytes of disk space to build its docu- 
ment database. Once the database is built, INQUERY 
requires about  1.5N bytes of disk space to store the docu- 
ment database.  Memory requirements are more difficult 
to predict, because they depend upon the characteristics 
of the document collection, the complexity of the queries, 
and the hardware characteristics of the computer.  For 
UNIX workstations, a very rough estimate is that  IN- 
QUERY requires about  ~ bytes of virtual memory. A 
reasonable amount  of physical memory is ~0" Therefore 
a 2 gigabyte collection would need about  135 MB of vir- 
tual memory and about  32 MB of physical memory. For 
PCs running DOS, about  ~ bytes of physical memory 
is needed. 

Although INQUERY's  appeti te  for memory and disk 
space is not unreasonable when compared with compa- 
rable information retrieval systems, it can be reduced. 
Experiments have been conducted with an in-memory 
approach to document indexing that  eliminates the need 
for a separate sort of the indexing transactions. The ad- 
vantages of this approach are its simphcity for the user, 

and a reduction of the peak disk space usage from about 
5N bytes to 1.9N bytes. The disadvantage is that  per- 
manent  disk usage is increased from 1.5N bytes to 1.9N 
bytes. Experiments are also being conducted with a new 
approach to document retrieval that  will allow a user or 
system administrator to control the amount  of memory 
consumed by INQUERY, essentially trading memory for 
response time. 

INQUERY is implemented in the ANSI standard ver- 
sion of the C programming language. The f l e x  and 
yacc  programs are required to create the lexical scan- 
ners and parsers needed during document  indexing and 
query processing. These scanners and parsers are pro- 
vided with each release of INQUERY, so f l e x  and yacc  
are not needed except to customize the system. 

1 . 5 .  S p e e d  & T h r o u g h p u t  

The INQUERY system builds document  collections au- 
tomatically at about  40-50 megabytes per CPU hour on 
a SUN SPARCserver 690 UNIX system with 128 MB of 
physical memory. Speed varies with the size of the doc- 
ument collection, because transaction sorting takes time 
proportional to n log  ft. 

On the same UNIX system, document  retrieval takes an 
average of about  1 CPU second per query term on a 1 
gigabyte document  collection. The time varies widely, 
depending upon the frequency of the term in the collec- 
tion and the type of query language operators used. 

1 . 6 .  K e y  I n n o v a t i o n s  o f  F i n a l  S y s t e m  

The following are the key innovations developed during 
the course of the T I P S T E R  project: 

1. An inference net retrieval model for large, heteroge- 
neous databases. 

. 

3. 

4. 

Query processing techniques that  transform com- 
plex queries into INQUERY structures. 

Query expansion techniques using WORDFINDER.  

New techniques for handling noun phrases in the 
retrieval model. 

5. Techniques for automat ic  construction of profiles for 
routing. 

6. Techniques for combining document  and paragraph- 
level representations. 

7. Techniques for combining queries. 

8. A new stemming algorithm (KSTEM).  
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9. Techniques for integrating feature extraction and in- 
dexing. 

10. New approaches to word indexing. 

11. Indexing and query processing techniques for 
Japanese. 

2. Original P r o j e c t / S y s t e m  Goals 
The original goal of this project as described in the Uni- 
versity of Massachusetts proposal was to design and im- 
plement algorithms for document detection that would 
achieve significant improvements in retrieval effective- 
ness relative to conventional techniques. We defined sig- 
nificant improvements as at least 10% increases in av- 
erage precision figures. In addition, these algorithms 
should be portable, extensible, trainable, improvable, 
and robust. 

To achieve these goals, we decided to focus on algorithms 
for text representation, acquisition of information needs, 
and retrieval, starting from a basis of statistical retrieval 
techniques. In particular, we emphasized the develop- 
ment of new text representation techniques based on 
natural language processing, coupled with the develop- 
ment of a probabilistic retrieval model using Bayesian 
inference networks. 

We proposed to do work in the following areas: 

1. Text Representation. 

(a) Theories of text representation quality. 

(b) Morphological processing - improving the in- 
dexing technology for English and providing 
basic indexing for Japanese. 

(c) Word senses - reducing ambiguity in text rep- 
resentation by identification of word senses in 
queries and documents. 

(d) Syntactic phrases - indexing by phrases formed 
using syntactic criteria, augmented using clus- 
ter analysis. 

(e) Statistical phrases - indexing by groups of 
index terms formed using statistical criteria, 
both in English and Japanese. 

2. Retrieval Models. 

(a) Theories of retrieval viewed as inference. 

(b) Basic inference networks - implementing and 
evaluating retrieval and routing strategies in 
English and Japanese. 

(c) Combining multiple sources of evidence - using 
inference networks to combine representations 
produced by the text representation research. 

3. Acquisition of Information Needs. 

(a) Query formulation - acquiring additional infor- 
mation to improve t h e  accuracy of queries in 
English and Japanese. 

(b) Relevance feedback - develol~ing feedback algo- 
rithms for inference networks, for both English 
and Japanese. 

(c) Profile formation - investigating strategies for 
effective long-term profile formation using rel- 
evance feedback. 

3. Evolution of Sys tem Over 2 Years 
Over the two years of the project, the project goals and 
the main areas of work (text representation, retrieval 
models, and acquisition of information needs) have not 
changed. The focus of some of the work in those areas 
has shifted somewhat. 

In the text representation area, considerable work has 
been done on morphological processing for both English 
and Japanese. In English, this work has been directed at 
improving the basic indexing and stemming algorithms. 
In Japanese, character-based indexing has emerged as an 
alternative to word-based indexing. There has also been 
substantial work done on phrases. The shift here has 
been from parsing documents to locate phrases at index 
time, to parsing queries to determine which phrases are 
important and then looking for evidence of the presence 
of those phrases in documents. Two major changes have 
been the lowering in priority of word sense disambigua- 
tion algorithms, and a different approach to clustering. 
Our initial experiments with word sense disambiguation 
were not promising and for that reason we have delayed 
the implementation of the algorithm until the end of the 
project. With regard to clustering, we are now group- 
ing nouns and noun phrases by the similarity of their 
contexts in the test collections. The system for concept 
retrieval and comparison that results from this approach 
is WORDFINDER. 

The retrieval model area has been essentially carried out 
as planned. Experiments evaluating retrieval and rout- 
ing have been done on schedule, and the idea of com- 
bining multiple sources of evidence has turned out to be 
central both in our work, and in other aspects of the 
T IP S TER project. One aspect of this that we haye paid 
particular attention to is paragraph-based retrieval. 

In the area of information need acquisition, we have car- 
ried out extensive experiments with relevance feedback 
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and routing as planned. In query formulation, we have 
placed the most emphasis on experiments with simple 
manual modifications to automatically processed queries 
and query expansion. 

4. Accomplishments 
The T I P S TER  evaluations have demonstrated that the 
INQUERY approach to retrieval and routing is both 
effective and efficient. We have shown that the prob- 
abilistic framework is portable, trainable and improv- 
able. The extensibility and robustness of this approach 
are further demonstrated in technology transfer efforts 
involving INQUERY. Apart from these general accom- 
plishments, however, we can be more specific about the 
lessons that have been learned in the major areas of 
work. 

Indexing: 

• Stopwords are sometimes necessary (e.g. Ms. The, 
sit-in). In order to reduce the number of queries 
that fail due to incomplete indexing, we have ex- 
tended the basic indexing algorithms to include in- 
dexing of stopwords when they are capitalized but 
not at the start of sentences, and when they are 
joined to other words. 

• It is sometimes difficult to decide what is a word 
(e.g. numbers, special characters). We have carried 
out a number of experiments to determine the most 
flexible and efficient way of indexing word tokens. 

• "Real" paragraph boundaries often do not indicate 
content shift in documents. Our experiments with 
paragraph-based retrieval indicate that  real para- 
graphs are no more effective than text windows, al- 
though there are collection-specific exceptions, such 
as detecting Wall Street Journal articles that cover 
multiple short topics. 

• Feature recognition can add significant overhead. 
We have done the first experiments on the impact 
of including simple extraction (e.g. company names, 
dates, locations) in the indexing process. We have 
at tempted to reduce the indexing overhead to a min- 
imum in order to support high-volume updates (e.g. 
routing). 

• "Justified" stemming is hard (effective stems vs. 
understandable stems). We have developed a 
new stemming algorithm that produces much more 
understandable stems than the current standard 
(Porter). The effectiveness of the new algorithm 
varies across collections and we are continuing to 
work towards consistent improvements. 

Query processing: 

• Sophisticated query processing produces significant 
improvements. We have developed a variety of 
query processing techniques that  together have im- 
proved the overall system effectiveness considerably. 

• Large queries resulted in less emphasis on word dis- 
ambiguation. The T I P S T E R  topics are much longer 
than typical IR queries and the mutual disambigua- 
tion produced by the presence of so many terms has 
made word sense disambiguation a marginal tech- 
nique. We continue to study this technique with 
other collections. 

• Large queries also makes query expansion difficult. 
Simple query expansion techniques, such as using a 
general thesaurus, are not effective in this environ- 
ment. 

• Automatic query expansion still looks promising. 
Query expansion based on the WORDFINDER sys- 
tem has produced the most significant results of 
their type to date. 

• Extracting query terms/phrases from the narrative 
is hard. The abstract nature of the narrative sec- 
tion of the T I P S T E R  topics makes automatic pro- 
cessing difficult. This is a promising area for future 
research. 

• Feature extraction/recognition is most effective in 
narrow domains. Our experiments with includ- 
ing extraction in the indexing and retrieval pro- 
cess showed only small effectiveness improvements 
in TIPSTER.  Our experience with other collections 
have shown more promise. 

• Manual queries can improve results, but usually 
only in combination with automatically processed 
queries. In general, we have shown that automati- 
cally processed queries are competitive with hand- 
crafted queries. 

Retrieval: 

• Improvements depend heavily on baseline. In gen- 
eral, it is easy to get large percentage improvements 
if a baseline search with poor performance is used. 
The improvements obtained using INQUERY are 
often small, but the overall effectiveness is consis- 
tently better than other approaches. 

• Phrases were not as effective as on other collec- 
tions. Despite considerable efforts on developing the 
phrase model, the overall improvements obtained 
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using phrases are small (but consistent). We are 
continuing to work on this issue. 

• Estimation was a significant problem for large, het- 
erogeneous databases. The estimation functions 
used for previous, smaller test collections proved 
to be inadequate for TIPSTER.  We have developed 
new forms of these functions which have resulted in 
significant improvements. 

• Paragraph-level retrieval can help in combination 
with document-level retrieval. In full-text collec- 
tions, the notion of a local match and a global match 
is important.  We have shown that paragraph- 
level matching can produce significant improve- 
ments in effectiveness in two situations. One is when 
paragraph-level connections between query concepts 
are specified manually, the other is when automatic 
paragraph-level matching is combined (in the IN- 
QUERY framework) with document-level matching. 

Routing: 

• Automatic construction of routing profiles has con- 
sistcntly outperformed manually specified profiles in 
our experiments. Combining these forms of profile 
results in further improvements. 

• Proximity pairs are important in the automatic 
profile. We compared simple word-based learn- 
ing with learning structure in the form of phrase 
and paragraph-level proximities and found that the 
structured profiles perform better. 

• Routing is different than relevance feedback. Tech- 
niques that  were superior in relevance feedback ex- 
periments (small amounts of training data), have 
not been the best in routing experiments (large 
amounts of training data). 

• Amount of training data  has significant, but limited 
effect on performance. We have shown that  good 
performance can be obtained with limited amounts 
of training data  or relevance judgements. This has 
important  implications for practical applications. 

Japanese: 

• INQUERY works well with Japanese with minor 
changes. The only differences between the Japanese 
and English versions of INQUERY are the modules 
for the morphological processing and the interface. 
The operators in the query language are identical, 
although there is some evidence that a Japanese- 
specific phrase operator may be more effective. 

Character-based indexing can be competitive with 
word-based indexing. Indexing all characters is 
much faster than segmenting Japanese into words, 
and our retrieval experiments have shown the effec- 
tiveness levels to be similar. The best performance 
was obtained using combinations of both represen- 
tations. 

Query processing is at least as important in 
Japanese as in English. Parsing a Japanese query 
and constructing the appropriate INQUERY query 
from that parse is a crucial part of getting effective 
performance, particularly with character-based in- 
dexing. Experiments with different approaches to 
query processing are continuing as more topics are 
obtained. 

5. E v a l u a t i o n  S u m m a r y  

In this section we discuss the results obtained in the 24 
month evaluation of the TIPSTER project. 

Table 1 shows the results of the ad-hoc runs. INQ009 is 
the baseline result obtained using automatic query pro- 
cessing on the TIPSTER topics, excluding the Narrative 
field. INQ010 and INQ041 are the results obtained by 
manually modifying the queries produced for INQ009. 
In the case of INQ010, the queries were modified by 
adding natural language structures from the narrative 
that  were judged to be important,  and by deleting terms 
judged to be not relevant. For INQ041, the query mod- 
ifier was allowed to add any structure that  was thought 
to be appropriate. Examples of this type of structure 
are paragraph-level proximity constraints between query 
terms. The results show that manual modification has 
little effect on performance, with the main effect being 
an increase in precision at low recall levels for INQ041. 
In previous evaluations, manual modifications resulted in 
significant improvements. The result reported here may 
be due to the difficulty of the topics in the third set. The 
results for INQ010 also indicate that using NLP tech- 
niques to analyze the Narrative section of a topic may 
not improve the query. The results labelled INQ015 and 
INQ01fi were for an early version of the WORDFINDER 
query expansion system. Although these results show no 
significant differences, other WORDFINDER results are 
presente d later. 

Given that  automatically processed queries had similar 
performance to manually produced queries, the next ex- 
periment combined these two version of the information 
need using the INQUERY framework. The result of this 
combination (INQ044) was significantly better than ei- 
ther of the individual sets of queries, and retained the 
high precision of the manual queries with the high recall 
of the automatic queries. 
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Recall INQ009 
0 82.7 

10 60.0 
20 54.3 
30 48.4 
40 44.0 
50 38.0 
60 33.0 
70 27.4 
80 21.4 
90 14.5 

100 3.3 
avg 38.8 

Table 1: Ad-hoc results. 

INQO09 - baseline 
INQ010 - official manual (simulated NLP) 
INQ015 - Wordfinder 1 
INQ016 - Wordfinder 2 
INQ041 - Unofficial manual  

Precision (% change) - 50 queries 
INQ010 INQ015 INQ016 INQ041 

77.6 (-6.2) 
63.0 (+5.1) 
56.1 (+3.2) 
49.3 (+1.9) 
43.8 (-0.4) 
38.2 (+0.4) 
32.3 (-1.9) 
26.6 (-3.0) 
21.0 (-1.8) 
13.9 (-4.3) 
3.3 (+o.3) 

36.6 (-0.5) 

82.5 (-0.3) 
60.3 (+0.6) 
54.3 (-o.1) 
48.5 (+0.3) 
44.1 (+0.2) 
38.3 (+0.7) 
33.1 (+0.4) 
27.6 (+0.8) 
21.7 (+1.3) 
14.6 (+0.9) 
3.3 (-o.1) 

38.9 (+0.3) 

82.8 (+0.0) 
60.2 (+0.3) 
54.2 (-0.2) 
48.4 (+0.0) 
43.9 (-0.2) 
38.2 (+0.4), 
33.2 (+0.7) 
27.5 (+0.2) 
21.6 (+1.0) 
14.6 (+0.6) 
3.3 (-0.1) 

38.9 (+0.2) 

87.4 (+5.6)  
63.1 (+5.3)  
57.1 (+5.o)  
51.1 (+5.6)  
43.3 (-1.6)  
36.9 (-3.1)  
30.8 (-6.4)  
25.0 (-8.7)  
19.3 (-9.8)  
13.3 (-0.6)  

1.6 (-49.7) 
39.o (+0.5)  

Another set of experiments that  were done with the ad- 
hoc queries was to combine the results of document- 
level representations with paragraph-level representa- 
tions. This was done using the # W S U M  operator in IN- 
QUERY. A significant improvement in performance was 
obtained when the paragraph-level results were weighted 
at 1/2 the importance of the document-level results. The 
performance of the paragraph-level search on its own was 
poor, and we are currently working on improving this. 

Table 4 shows the results of the routing experiments. 
INQ026 is the result of using the automatically processed 
version of the original queries with no relevance feed- 
back. INQ020 is the result of using simple techniques 
for reweighting terms and adding new terms (thirty were 
added) based on feedback from relevant documents in 
the earlier databases. It  can be seen that  these feedback 
techniques result in significant improvements.  INQ022 
shows the result of using the manually modified version 
of the query (no relevance feedback), and INQ021 gives 
the combination of the manual  queries and the queries 
produced using simple relevance feedback. Once again 
the combination results in an improvement,  although 
this is small for this experiment due to the relatively poor 
performance of the manual queries. INQ023 and INQ024 
show the result of using more complex relevance feedback 
techniques in which proximity structures (paragraph and 
phrase level) were extracted from relevant documents as 
well as simple terms. Twenty paragraph-level proximi- 

ties, ten phrase-level proximities and thirty terms were 
added. Both of these produced significant improvements. 
The best result (INQ024) was from a run where the orig- 
inal query was ignored and all terms came from relevant 
documents. 

Tables 5 and 6 show additional results using 
W O R D F I N D E R .  TipC and T ipT  were the results of us- 
ing topics 51-100 expanded using the best 5 concepts 
from W O R D F I N D E R .  These queries were run against 
the first T I P S T E R  disk. For TipC, the query used 
to search W O R D F I N D E R  was the concepts from each 
topic, whereas for TipT,  it was the Description field. 
The results show substantial improvements,  and is one 
of the best results ever obtained for automat ic  query ex- 
pansion. The results also show that  even the relatively 
short Description field retrieved good concepts for ex- 
pansion. These results were all obtained using a training 
set of 250,000 documents from WSJ,  AP and Ziff to build 
the W O R D F I N D E R  database.  The results in T3T, T3C 
and T5C were obtained using a smaller 50,000 document 
collection as the basis for W O R D F I N D E R .  The results, 
although not as good as with the larger database, are 
still significant. It appears  that  a smaller text window 
gives bet ter  performance. 

Table 7 gives an indication of the progress of the IN- 
QUERY system over the 2 year t ime frame of the TIP-  
STER project. The baseline in this case has had all sys- 
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Table 2: Ad-hoc combination results. INQ044 was a combination of baseline automatic  (INQ009) and manual 
(INQ041). Combination done using # S U M  operator. 

Recall 
0 82.7 

10 60.0 
20 54.3 
30 48.4 
40 44.0 
50 38.0 
60 33.0 
7O 27.4 
80 21.4 
90 14.5 

100 3.3 
avg 

Precision (% change) - 50 queries 
INQ009 INQ041 INQ044 

87.4 (+5.6)  
63.1 (+5.3)  
57.1 (+5.o) 
51.1 (+5.6)  
43.3 (-1.6) 
36.9 ( -3 .1)  
30.8 (-6.4) 
25.0 (-8.7) 
19.3 (-9.8) 
13.3 (-8.6) 

1.6 (-49.7) 

88.0 (+6.4)  
64.1 (+6.9)  
58.5 (+7.6)  
52.8 (+9.2)  
46.4 (+5.5)  
4o.8 (+7.2)  
35.7 (+8.3)  
29.5 (+7.6)  
23.5 (+10.0) 
16.0 (+10.2) 
3.5 (+8.3) 

38.8 39.0 ( + 0 . 5 )  41.7 ( + 7 . 5 )  

tem refinements from this period removed. In general, 
these improvements are consistently better than 10%, 
but in the case where W O R D F I N D E R  is included, there 
is nearly a 30% improvement.  

Table 8 shows that  even small changes can still produce 
improvements. We have in general resisted tuning IN- 
QUERY to the T I P S T E R  collection. We have, how- 
ever, had to change the probability estimation formulae 
considerably to produce good results for a large, het- 
erogeneous database. The improvement in Table 8 is 
the result of running experiments on the earlier parts of 
T IPSTER,  and more improvements of this kind can be 
expected. 

Tables 9 and 10 give the results of experiments on a small 
Japanese database using 27 of our own queries and rele- 
vance judgements.  The results compare word-based and 
character-based indexing with different forms of query 
processing. The results show that  word-based indexing 
performs well at low recall levels, but that  averaged over 
all recall levels, it is significantly lower. The best perfor- 
mance has been obtained using a combination of both 
representations (this result is not shown here). 

An overall summary  of what has been learned over the 
two years of the T I P S T E R  project is given in the Accom- 
plishments section. Here, we will very briefly summarize 
the major  results: 

• INQUERY has been shown to be an effective, flexi- 
ble and efficient retrieval a n d  routing engine. 

• T I P S T E R  topics are very different to typical IR 

queries, and new query processing techniques pro- 
duced good results. 

• IR techniques, which are primarily based on words 
and statistics, produced very good results when 
scaled up for the T I P S T E R  database and topics. 

• For ad-hoc queries, automatic  processing produces 
very good results. Manual modification can result 
in significant benefits, but topics 101-150 were dif- 
ferent in that  respect. 

• Paragraph-based retrieval can help performance, 
but only when used in combination with document- 
based results. 

• Automatic query expansion techniques produced 
encouraging results, but more work is needed to re- 
fine the techniques and understand the size of train- 
ing set needed. 

• Automatic relevance feedback produces very good 
results for routing when there are large numbers of 
relevance judgements available. Manual queries are 
not competitive, but can help in combination. 

• Combining document representations and queries, 
for which INQUERY was designed, can result in 
very significant performance improvements. This 
was also shown to be true for Japanese. 
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Table 3: Paragraph-based retrieval 

Queryid (Num): INQ009 INQ011 
(BASELINE) (DOC) (PAR) 
Total number of documents over all queries 
Retrieved: 50000 50000 
Relevant: 11547 11547 
Rel_ret: 8651 7814 
Interpolated Recall - Precision Averages: 

INQ012 
(DOC+PAR/2)  

50000 
11547 
8851 

at 0.00 0.8275 0.7067 0.8400 
at 0.10 0.5945 0.4722 0.6101 
at 0.20 0.5383 0.4218 0.5512 
at 0.30 0.4775 0.3673 0.4985 
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at 0.60 0.3133 0.2055 0.3265 
at 0.70 0.2316 0.1393 0.2482 
at 0.80 0.1388 0.0758 0.1652 
at 0.90 0.0588 0.0293 0.0758 
at 1.00 0.0095 0.0046 0.0082 
Average precision (non-interpolated) over all rel does 
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Table 4: Routing results. 

INQ026 - Automatic basefine 
INQ020 - Relevance feedback 
INQ021 - Relevance feedback + manual query 
INQ022 - Manual query 
INQ023 - Relevance feedback w/prox 
INQ024 - Relevance feedback w/prox and w/o original query 

Precision (% change) - 50 queries 
INQ026 INQ020 INQ021 INQ022 INQ023 INQ024 Recall 

0 

10 

2O 

30 

40 

50 

60 

70 

80 

9O 

100 

avg 

78.7 
55.7 
46.5 
40.5 
35.5 
31.1 
26.9 
22.6 
18.0 
11.2 

1.5 

80.7 (+2.5)  
62.7 (+12.5) 
54.5 (+17.2) 
48.9 (+20.6) 
44.4 (+25.0) 
39.1 (+25.6) 
32.1 (+19.3) 
27.7 (+22.2) 
22.2 (+23.5) 
14.4 (+29.0) 
2.8 (+84.3) 

84.7 (+7.6)  
64.9 (+16.6) 
54.2 (+16.5) 
48.7 (+20.2) 
43.7 (+23.2) 
38.6 (+24.2) 
33.4 (+24.2) 
27.9 (+23.2) 
22.8 (+26.9) 
14.9 (+33.7) 
3.0 (+97.4) 

81.5 (+3.7)  
61.0 (+9.5)  
48.0 (+3.4)  
40.2 (-0.7)  
35.6 (+0.4)  
30.9 (-0.7) 
26.1 (-3.0) 
22.2 (-2.0) 
17.9 (-0.5) 
10.9 (-2.2) 
2.1 (+42.2) 

81.1 (+3.1)  
66.5 (+19.3) 
58.1 (+25.0) 
50.4 (+24.4) 
45.9 (+29.4) 
41.3 (+32.8) 
34.6 (+28.6) 
30.3 (+33.6) 
23.9 ( + 3 3 . 1 )  
15.0 (+34.5) 
2.9 (+91.8) 

82.5 (+4.9)  
65.8 (+18.1) 
57.1 (+23.0) 
50.4 (+24.4) 
44.9 (+26.5) 
40.5 (+30.1) 
35.9 (+33.6) 
31.5 (+39.0) 
25.8 (+43.5) 
17.5 (+56.7) 
3.4 +127.2) 

33.5 39.0 (+16.6) 39.7 (+18.7) 34.2 (+2.3)  40.9 (+22.2) 41.4 (+23.7) 

Set-2: 

TipC: 

TipT: 

Recall 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

avg 

Table 5: Wordfinder results. 

Baseline using set 2 queries on first 
TIPSTER database. 
Queries expanded using concepts to search 
WORDFINDER, first 5 unique concepts 
added to query, WORDFINDER built using 
250,000 documents from WSJ, AP and Ziff. 
Queries expanded using topic and 
description. 

Precision (% change) 
set-2 TipC 
87.5 86.8 
65.8 70.0 
57,4 62.6 
51.4 56.5 
45.8 52.4 
39,7 45.9 
34,5 40.8 
28,6 35.4 
22.1 28.2 
14,2 19.6 
3,4 5.3 

40,9 45.8 

(-0.8) 
(+6.5)  
(+9.1)  
(+10.0) 
(+14.4) 
(+15.4) 
(+18.5) 
(+23.7) 
(+27.8) 
(+38.1) 
(+57.6) 

- 50 queries 
TipT 

87.9 (+0.5)  
68.9 (+4.8)  
61.5 (+7.2)  
56.0 (+9.1)  
51.0 (+11.4) 
46.3 (+16.5) 
41.0 (+19.1) 
35.4 (+24.0) 
29.3 (+32.7) 
19.3 (+35.7) 
4.8 (+41.9) 

(+11.8) 45.6 (+11.4) 
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Set-2: 
T3T: 

T3C: 
T5C: 

Table 6: Wordfinder results. 

Baseline using set 2 queries on first T IP S TER database 
Queries expanded using topic and description to search WORDFINDER,  first 5 unique concepts 
added to query, WORDFINDER built using 50,000 documents from WSJ, AP and Ziff, text 

" window of 3 sentences. 
Queries expanded using concepts 
Text window of 5 sentences 

Recall set-2 
0 87.5 84.9 (-3.0) 

10 65.8 67.9 (+3 .2 )  
20 57.4 59.1 (+3 .1 )  
30 51.4 55.1 (+7 .3 )  
40 45.8 50.6 (+10.6) 
50 39.7 45.5 (+14.5) 
60 34.5 40.1 (+16.3) 
70 28.6 34.6 (+21.0) 
80 22.1 28.3 (+28.0) 
90 14.2 19.4 (+36.2) 

100 3.4 4.6 (+36.5) 
avg 40.9 

Precision (% change) - 50 queries 
T3T T3C T5C 

87.2 (-0.3) 
69.8 (+6.1) 
61.3 (+6.8) 
56.1 (+9.2) 
50.8 (+11.0) 
45.2 (+13.8) 
40.1 (+16.4) 
34.7 (+21.5) 
27.8 (+26.0) 
19.1 (+34.6) 
4.8 (+40.6) 

87.6 (+0.1) 
68.4 ( + 4 . 0 )  
00.4 (+5.4)  
55.2 ( + 7 . 4 )  
50.3 (+9.8)  
45.0 (+13.1) 
39.6 (+15.0) 
34.4 (+20.2) 
27.8 (+25.6) 
19.1 (+34.3) 
4.7 (+39.2) 

44.6 (+8 .8 )  45.2 (+10.4) 44.8 ( + 9 . 4 )  

Table 7: Improvements during T I P S T E R  project. Queries for topics 51-100, run against Volume 1 of the collection. 

Recall 
0 81.8 

I0 56.4 
20 48.1 
30 43.3 
40 38.5 
50 34.3 
60 29.9 
70 25. I 
80 19.5 
90 12.4 

100 2.5 
avg 

Precision (% change) - 50 queries 
set-2-basic TipC 

86.8 (+6.1) 
70.0 (+24.1) 
62.6 (+30.2) 
56.5 (+30.5) 
52.4 (+36.1) 
45.9 (+33.8) 
40.8 (+36.5) 
35.4 (+41.0) 
28.2 (+44.6) 
19.6 (+58.1) 
5.3 (+112.0) 

35.6 45.8 (+28.7) 
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Table 8: Optimizing estimation formulae. 

Recall INQ009 
0 82.7 

10 60.0 
20 54.3 
30 48.4 
40 44.0 
50 38.0 
60 33.0 
70 27.4 
80 21.4 
90 14.5 

100 3.3 
avg 38.8 

Precision (% change) - 50 queries 
INQ009a 

82.8 (+o.1)  
60.0 (+o.1)  
54.9 (+1.0)  
49.1 (+1.5)  
44.6 (+1.4)  
38.8 (+2.1) 
33.9 (+2.7)  
28.0 (+1.9) 
21.7 (+1.4) 
14.9 (+2.5) 
3.3 (+1.0)  

39.3 (+1.2) 

Table 9: Japanese results: Character-based indexing on a database of 1100 documents. 

NLQ(C) 
Short(C) 
Long(C) 
Joined(C) 

Character-based natural language query 
Characters combined at word level 
Characters combined at phrase level 
Characters combined at complex phrase level 

Recall NLQ 
10 i 65.3 67.8 (+3.7) 
20 I 61.6 61.9 (+0.5) 
30 i 54.7 52.5 (-4.1) 
40 49.4 47.3 (-4.3) 
50 47.1 41.6 (-11.6) 
60 42.4 38.0 (-10.5) 
70 38.1 34.0 (-10.7) 
80 34.8 30.3 (-13.0) 
90 29.4 23.4 (-20.6) 

I00 15.5 15.0 ( -3 .2)  
avg 43.8 

Precision (% change) - 27 queries 
Short (C) Long (C) Joined (C) 

71.3 (+9.1) 
62.1 (+0.8) 
54.3 (-0.9) 
47.6 (-3.7) 
41.8 (-11.3) 
37.2 (-12.4) 
33.2 (-12.8) 
29.8 (-14.5) 
24.8 (-15.7) 
14.5 ( -6 .5)  

71.3 (+9.1) 
66.0 (+7.2) 
56.7 (+3.6) 
51.5 (+4.2) 
47.9 (+1.8) 
42.9 (+I.0) 
38.3 (+0.4) 
34.8 (-0.0) 
29.4 (+0.0) 
15.5 (+o.o) 

41.2 ( -6 .1)  41.7 ( -5 .0)  45.4 (+3.6) 
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Table 10: Japanese results: Word-based indexing on a database of 1100 documents. 

NLQ(W): 
Long(W): 
Joined(W): 

Words (from JUMAN) in natural language query 
Words combined at phrase level 
Words combined at complex phrase level 

Recall 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
avg 

Precision (% change ) - 27 queries 
NLQ(W) Long (W) Joined (W) 

75.4 
67.4 
53.2 
44.8 
39.3 
36.5 
31.0 
28.2 
20.9 
13.1 

75.6 (+0.3) 
67.5 (+0.1) 
55.6 (+4.5) 
44.8 (+0.1) 
38.1 (-3.1) 
34.1 (-6.4) 
30.1 (-2.8) 
26.7 (-5.5) 
20.1 (-3.7) 
12.8 (-1.9) 

77.7 (+3.1) 
68.5 (+1.6) 
54.7 (+2.9) 
46.7 (+4.3) 
40.7 (+3.6) 
36.9 (+1.3) 
31.3 (+1.1) 
28.2 (+0.0) 
20.9 (+0.0) 
13.1 (+0.0) 

41.0 40.5 (-1.0) 41.9 (+2.2) 
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