
NODALIDA ’99

\ t hProceedings from the 12
'Nordiske datalingvistikkdager

Trondheim, 9-10 December, 1999.

Torbjørn Nordgård, editor

Trondheim

Department of Linguistics, NTNU

2000

This volume and the conference were sponsored by:
Telenor
Faculty of Arts, NTNU
Department of Linguistics, NTNU

Published by
Department of Linguistics
Norwegian University of Science and Technology
N-7491 Trondheim, Norway

Printed by
NTNU

ISBN 82-92225-00-5

Contents

Tore Amble
BusTUC - A natural language bus route adviser in Prolog 1

Antti Arppe
Developing a grammar checker for Swedish .. 13

Juhani Bim
Detecting grammar errors with Lingsoft’s Swedish grammar checker 28

Lars Borin
Pivot Alignment .. 41

Rickard Domeij, Ola Knutsson, Johan Carlberger & Viggo Kann
Granska - an efficient hybrid system for Swedish grammar checking 49

Kristofer Franzén
Adapting an English Information Extraction System to Swedish 57

Kristin Hagen, Janne Bondi Johannessen & Anders Nøklestad
The shortcomings o f a tagger ... 66

Anette Hulth & Lars Asker
Merging Classifiers for Improved Information Retrieval 76

Anna Jonsson
Extracting Keywords from Digital Document Collections 83

Atanas K. Kiryakov & Kiril Iv. Simov
Ontologically Supported Semantic Matching 91

Janne Lindberg
Automatic Detecting o f Lexicalised Phrases in Swedish 103

Beäta Megyesi & Sara Rydin
Towards a Finite-State Parser for Swedish ... 115

Costanza Navaretta
Semantic Clustering o f Adjectives and Verbs Based on Syntactic Patterns 124

Anne Neville
An HPSG Account o f Danish Pre-nominals ... 134

Arild Noven, Per Arne Larsen, Bente Moxness & Kolbjørn Slethei
Tonem 1 eller 2 eller 1,5? .. 143

Patrizia Paggio
Syntactic Analysis and Error Correction for Danish in the SCARRIE
Project .. 152

Botond Pakucs & Björn Gambäck
Designing a System fo r Swedish Spoken Document Retrieval 162

Stina Nyländer
Statistics and Phonotactical Rules in Finding OCR Errors 174

Paulo Quaresma & Irene Pimenta Rodrigues
An Information Retrieval System with Co-operative Behaviour 183

Diana Santos & Signe Oksefjell
An Evaluation o f the Translation Corpus Aligner, with special
reference to the language pair English-Portuguese 191

Koenraad de Smedt & Victoria Rosén
Automatic proofreading fo r Norwegian: The challenges o f lexical and
grammatical variation ... 206

Jörg Tiedeman
Word Alignment Step by Step ... 216

Heli Uibo
On Using the Two-level Model as the Basis o f Morphological Analysis
and Synthesis o f Estonian ... 228

Andy Way
LEG-DOT: Combining Constraint-Based and Empirical Methodologies
for Robust M T ... 243

BusTUC - A natural language bus route
adviser in Prolog

Tore Amble
Knowledge Systems Group

Departm ent of Computer and Information Science
NTNU

amble@idi.ntnu.no

25. april 2000

Sam m endrag

The paper describes a natural language based expert system route
adviser for the public bus transport in Trondheim, Norway. The sy­
stem is available on the Internet, and has been installed at the bus
company’s web server since the beginning of 1999. The system is bilin­
gual, relying on an internal language independent logic representation.

1 Introduction
A natural language interface to a computer database provides users with
the capability of obtaining information stored in the database by querying
the system in a natural language (NL). With natural language as a means
of communication with a computer system, the users can make a question
or a statement in the way they normally think about the information being
discussed, freeing them from having to know how the computer stores or
processes the information.

The present implementation represents a a major effort in bringing na­
tural language processing into practical use. A system is developed that can
answer queries about bus routes, stated in natural language texts, and made
public through the Internet World Wide Web (www. i d i . n tn u . n o /b u s tu c /).

Trondheim is a small city with a university and 140000 inhabitants. The
central bus system in Trondheim has 42 bus lines, serving 590 stations, with

mailto:amble@idi.ntnu.no

1900 departures per day (in average). That gives approximately 60000 sche­
duled bus station passings per day, which is somehow represented in the route
data base.

The starting point is to automate the function of a route information
agent. The following example of a system response is taken from an actual
request over telephone to the local route information company:

Hi, I l iv e in N idarvo ll and to n ig h t I must
reach a t r a i n to Oslo a t 6 oclock.

A typical answer would follow quickly:

Bus number 54 passes by N idarvo ll school a t 1710
and a r r iv e s a t Trondheim Railway S ta tio n a t 1725.

In between the question and the answer is a process of lexical analysis,
syntax analysis, semantic analysis, pragmatic reasoning and databcise query
processing and answer generation.

One could argue that the information content could be solved by an in­
terrogation, whereby the customer is asked to produce 4 items: d ep artu re
s t a t io n , a r r iv a l s ta t io n , e a r l i e s t and l a t e s t a r r iv a l time. It is
a myth that natural language is better way of communication because it
is “natural language” . The challenge is to prove by demonstration that an
NL system can be made that will be preferred to the interrogative mode.
To do that, the system has to be correct, user friendly and almost complete
within the actual domain.

2 Previous Efforts, CHAT-80, PRAT-89 and
HSQL

The system, called BusTUC is built upon the classical system CHAT-80
([WP82]). CHAT-80 was a state of the art natural language system that was
impressive on its own merits, but also established Prolog as a viable and
competitive language for Artificial Intelligence in general. The system was
a brilliant masterpiece of software, efficient and sophisticated. The natural
language system was connected to a small query system for international
geography. The following query could be analysed and answered in less than
half a second:

Which country bordering th e M editerranean borders a
country th a t i s bordered by a country whose p o pu la tion
exceeds th e p o pu la tion of Ind ia?

{The answer 'Turkey’ has become incorrect as time has passed. The irony
is that Geography was chosen as a domain without time.)

The ability to answer ridiculously long queries is of course not the main
goal. The main lesson is that complex sentences are analysed with a proper
understanding without sacrificing efficiency. Any superficial pattern matching
technique would prove futile sooner or later.

2.1 Making a Norwegian CHAT-80, PRAT-89
At the University of Trondheim (NTNU), two students made a Norwegi­
an version of CHAT-80,called PRAT-89 ([TV88],[TV89]). (Also, a similar
Swedish project SNACK-85 was reported).

The dictionary was changed from English to Norwegian together with
new rules for morphological analysis. The change of grammar from English
to Norwegian proved to be amazingly easy. It showed that the langauges were
more similar than one would believe, given that the languages are incompre­
hensible to each other’s communities.

After changing the dictionary and grammar, the following Norwegian que­
ry about the same domain could be answered correctly in a few seconds.

Hvilke a frik an sk e land som har en befo lkn ing s tø r r e
enn 3 m illio n e r og mindre enn 50 m illio n e r og e r nord
fo r Botswana og ø s t fo r Libya h ar en hovedstad som
har en befo lkn ing s tø r re enn 100 tu sen ?

(“Which African countries that have a population greater than 3 millions
and less than 50 millions and is north of Botswana and east of Libya has a
capital which has a population greater than 100 thousands ?”)

2.2 HSQL - Help System for SQL
A Nordic project HSQL (Help System for SQL) was accomplished in 1988-89
to make a joint Nordic effort interfaces to databases.

The HSQL project was led by the Swedish State Bureau (Statskontoret),
with participants from Sweden, Denmark, Finland and Norway [AKL"''90].
The aim of HSQL was to build a natural language interface to SQL databa­
ses for the Scandinavian languages Swedish, Danish and Norwegian. These

languages are very similar, and the Norwegian version of CHAT-80 was eas­
ily extended to the other Scandinavian languages. Instead of Geography, a
more typical application area was chosen to be a query system for hospital
administration. We decided to target an SQL database of a hospital admi­
nistration which had been developed already.

The next step was then to change the domain of discourse from Geo­
graphy to hospital administration, using the same knowledge representation
techniques used in CHAT-80. A semantic model of this domain was made,
and then implemented in the CHAT-80 framework.

The modelling technique that proved adequate was to use an extended
Entity Relationship (ER) model with a class (type) hierarchy, attributes
belonging to each class, single inheritance of attributes and relationships.

Connecting the system to an SQL database.

After the remodelling, the system could answer queries in “Scandinavian” to
an internal hospital database as well as CHAT-80 could answer Geography
questions. HSQL produced a Prolog-like code EOL (Eirst Order Logic) for
execution. A mapping from FOL to the data base Schema was defined, and
a translator from FOL to SQL was implemented. The example

Hvilke menn lig g e r i en kvinnes seng?

(”Which men lie in a woman’s bed?”)

was translated dryly into the SQL query:

SELECT DISTINCT T3.name,T1. sex ,T 2 .reg_no ,T 3 . sex,
T4 . reg_no,T4 .bed_no,T5 .hosp_no,T5 .ward_no

FROM PATIENT Tl,OCCUPANCY T2,PATIENT T3,
OCCUPANCY T4.WARD T5

WHERE (T l.sex = ’fO AND (T 2.reg_no=T l.reg .no) AND
(T 3.sex=’mO AND (T4.reg_no=T3.reg_no) AND
(T4.bed_no=T2.bed_no) AND (T5.hosp_no=T4.hosp_no) AND
(T5.ward_no=T4.ward_no)

2.3 The Understanding Computer
The HSQL was a valuable experience in the effort to make transportable
natural language interfaces. However, the underlying system CHAT-80 re­
stricted the further development.

After the HSQL Project was finished, an internal reseach project TUC
(The Understanding Computer) was initiated at NTNU to carry on the re­
sults from HSQL. The project goals differed from those of HSQL in a number
of ways, and would not be concerned with multimedia interfaces. On the ot­
her hand, portability and versatility were made central issues concerning the
generality of the language and its applications. The research goals could be
summarised as to

• Give computers an operational understanding of natural language.

• Build intelligent systems with natural language capabilities.

• Study common sense reasoning in natural language.

A test criterion for the understanding capacity is that after a set of defi­
nitions in a Naturally Readable Logic, NRL, the system’s answer to queries
in NRL should conform to the answers of an idealised rational agent.

Every man th a t l iv e s loves Mary. John i s a man. John l iv e s .
Who loves Mary?
==> John

NRL is defined in a closed context. Thus interfaces to other systems are in
principle defined through simulating the environment as a dialogue partner.

TUC is a prototypical natural language processor for English written
in Prolog. It is designed to be a general purpose easily adaptable natural
language processor. It consists of a general grammar for a subset of English,
a semantic knowledge base, and modules for interfaces to other interfaces like
UNIX, SQL-databases and route information services.

2.4 The TABOR Project
It so happened that a Universtity project was starteded in 1996, called
TABOR (“Speech based user interfaces and reasoning systems"), with the
aim of building an automatic public transport route oracle, available over
the public telephone. At the onset of the project, the World Wide Web was
fresh, and not as widespread as today, and the telephone was still regarded
as the main source of information for the public. Since then, the Internet has
become the dominant medium, and it is as likeley to find a computer with
Internet connection, as finding a telephone, or a local busroute booklet for
that matter.

It was decided that a text based information system should be built,
regardless of the status of the speech rocgnition and speech synthesis effort,
which proved to lag behind after a while.

The resulting system BusTUC grew out as a natural application of TUC,
and an English prototype could be built within a few months ([Bra97]).
Since the summer 1996, the prototype was put onto the Internet, and has
been developed and tested more or less continually since then. The most
important extension was that the system was made bilingual (Norwegian
and English) during the fall 1996.

In the spring 1999, the BusTUC was finally adopted by the local bus com­
pany in Trondheim (A/S Trondheim Trafikkselskap), which set up a server
(300 MHz PC with Linux).

Until today, over 150.000 questions have been answered, and BusTUC
seems to stabilize and grow increasingly popular.

3 Anatom y of the bus route oracle
The main components of the bus route information systems are;

• A parser system, consisting of a dictionary, a lexical processor, a gram­
mar and a parser.

• A knowledge base (KB), divided into a semantic KB and an application
KB

• A query processor, containg a routing logic system, and a route data
base.

The system is bilingual and contains a double set of dictionary, morpho­
logy and grammar. Actually, it detects which language is most probable by
counting the number of unknown words related to each language, and acts
accordingly. The grammars are surprisingly similar, but no effort is made to
coalesce them. The Norwegian grammar is slightly bigger than the English
grammar, mostly because it is more elaborated but also because Norwegian
allows a freer word order.

T h e B u s T U C s y s te m

3.1 Features of BussTUC
For the Norwegian system, the figures give an indication of the size of the
domain: 420 nouns, 150 verbs, 165 adjectives, 60 prepositions, etc.

There are 1300 grammar rules (810 for English) although half of the rules
are at a low lexical level.

The semantic net described below contains about 4000 entries.

A big name table of 3050 names in addition to the official station names,
is required to capture the variety of nameings. A simple spell correction is
part of the system (essentially 1 character errors).

The pragmatic reasoning is needed to translate the output from the parser
to a route database query language. This is done by a production system
called Pragma, which acts like an advanced rewriting system with 580 rules.

In addition, there is another rule base for actually generating the natural
language answers (120 rules).

The system is mainly written in Prolog (Sicstus Prolog 3.7), with some
Perl programs for the communication and CGI-scripts.

At the moment, there are about 35000 lines of programmed Prolog code
(in addition to route tables which are also in Prolog). Sicstus Prolog proved
to be extremely efficient and reliable for the application.

Average response time is usually less than 2 seconds, but there are queries
that demand up to 10 seconds.

The error rate for the single, correct, complete and relevant questions is
about 2 percent.

3.2 The Parser System
The Grammar System

The grammar is based on a simple grammar for statements, while questions
and commands are derived by the use of movements. The grammar formalism
which is called Consensical Grammar, (CONtext SENSItive CompositionAL
Grammar) is an easy to use variant of Extraposition Grammar ([PW80]),
which is a generalisation of Definite Clause Grammars. Semantically, a phrase
is composed of the semantics of the subphrases; the basic constituents being
generalized verb complements. As for Extraposition grammars, a grammar
is translated to Definite Clause Grammars, and executed as such.

A characteristic syntactic expression in Consensical Grammar may define
an incomplete construct in terms of a “difference ” between complete con­
structs. This implements various kinds of movements by using the subtracted
parts instead of reading from the input, immediately or after a gap.

The effect is the same as for Extraposition grammars, but this format
allows a more intuitive reading. Examples of grammar rules:

statem ent(P) ---->
noun_phrase(X,VP,P),
verb_phrase(X ,V P).

statem ent(Q) ---->

verb_complementsO(VC) , */. i n i t i a l o p tio n a l verb_complements
statem ent(Q) . '/, may be in s e r te d a f te r a gap

verb_complementsO(VC).

w h o seq (P)----> */, whose dog barked?
[whose],
noun(N),
whoq(P) - ([who] , [has] , [a] ,noun(N), [t h a t]) . '/, w ithout gap

whoq(P) ---->
[who] ,
whichq(P) - ([w hich], [p erso n]) .

whichq(whichCX): :P) ---->
[w hich],
sta tem ent(P) - the(X).

Example:

Whose dog barked?

is analysed as if the sentence had been

Who has a dog th a t barked?

which is analysed as

Which person has a dog th a t barked?

which is analysed as

fo r which X i s i t tru e th a t
th e (X) person has a dog th a t barked?

where the Icist line is analysed as a statem ent.
Movement is easily handled in Consensical Grammar without making

special phrase rules for each kind of movement. The following example shows
how TUC manages a variety of analyses using movements:

Max sa id B i l l thought Joe b e liev ed Fido Barked.

Who sa id B i l l thought Joe b e liev ed Fido barked? ==> Max
Who d id Max say thought Joe b e liev ed Fido barked? ==> B il l
Who d id Max say B i l l thought b e liev ed Fido barked? ==> Joe

The experiences with Consensical grammars are a bit mixed however. The
main problem is the parsing method itself, which is top down with back­
tracking. Many principles that would prove elegant for small domains turned
out to be to costly for larger domains, due to the wide variety of modes
of expressions, the incredible ambiguity and the sheer size of the covered
language.

These problems also made it imperative to introduce a timeout on the
parsing process of embarassing 10 seconds. Although most sentences would
be parsed within a second, some legal sentences of moderate size actually
need this time.

The disambiguation is a major problem for small grammars and large
languages, and was solved by the following guidelines:

• a semantic type checking was integrated into the parser, and would
help to discard semantically wrong parses from the start.

• a heuristics proved almost irreproachable: The longest possible phrase
of a category that is semantically correct is in most cases the preferred
interpretation.

• due to the perplexity of the language, some committed choices (cuts)
had to be inserted into the grammar at strategic places. As one could
fear however, this implied that wrong choices being made at some point
in the parsing could not be recovered by backtracking.

T h e p arser

3.3 The semantic knowledge base
Adaptability means that the system does not need to be reprogrammed for
each new application.

The design principle of TUC is that most of the changes are made in a
tabular semantic knowledge base, while there is one general grammar and
dictionary. In general, the logic is generated automatically from the semantic
knowledge base.

The nouns play a key role in the understanding part as they constitute
the class or type hierarchy. Nouns are defined in an a -k in d -o f hierarchy.
The hierarchy is tree-structured with single inheritance. The top level also
constitute the top level ontology of TUC’s world.

In fact, a type check of the compliances of verbs, nouns adjectives and
prepositions is not only necessary for the semantic processing but is essen­
tial for the disambiguation in the syntax analysis. In TUC, a declaration

10

of the legal combinations are carefully assembled in the semantic network,
which then serves a dual purpose. These semantic definitions are necessary
for disambiguating prepositional attachments, for instance in the following
sentences

The dog saw a man w ith a te le sc o p e .
The man saw a dog w ith a te le sc o p e .

to be treated differently because w ith te le sc o p e may modify the noun man
but not the noun dog, while w ith te le sc o p e modifies the verb see, restric­
ted to person.

3.4 The Query Processor
Event Calculus

The semantics of the phrases are built up by a kind of verb compelements,
where the event play a central role.

The text is translated from Natural language into a form called TQL
(Temporal Query Language/TUC Query Language) which is a first order
event calculus expression, a self contained expression containing the literal
meaning of an utterance.

The formalism TQL that was defined, inspired by the Event Calculus by
Kowalski and Sergot ([KS86]). The TQL expressions consist of predicates,
functions, constants and variables. The textual words of nouns and verbs
are translated to generic predicates using the selected interpretation. The
following question

Do you know whether th e bus goes to N idarvo ll on Saturday ?

would give the TQL expression below. Typically, the Norwegian equivalent

Vet du om bussen går t i l N idarvo ll på søndag ?

gives exactly the same code.

test::

isafreal.program,bustuc),

isa(real,bus,A),

isa(real,Saturday,B),
isaCreal,place,nidarvoll),
event(real,D),

know(id,whether,bustuc,C ,D)

event(C,E),

’/. Type of question

*/, bustuc i s a r e a l program
'/, A i s a r e a l bus
'/, B i s a Saturday
7, n id a rv o ll i s a p lace
7. D is an event
7i C is a statem ent known a t D
7. E is an event in C

11

a c tio n (g o ,E) ,
a c to r(A .E),
s r e l (t o , p la c e ,n id a rv o l l .E) ,
s re l(o n ,t im e ,B ,E) .

'/, the ac tio n of E i s ’go ’
'/, th e a c to r of E i s A
y, E i s re la te d to n id a rv o ll
y. E is related on the Saturday B

The event parameter plays an important role in the semantics. It is used
for various purposes. The most salient role is to identify a subset of time and
space in which an action or event occured. Both the actual time and space
coordinates are connected to the actions through the event parameter.

Pragmatic reasoning

The TQL is translated to a route database query language (BusLOG) which
is actually a Prolog program. This is done by a production system called
Pragma, which acts like an advanced rewriting system with 580 rules.

4 Conclusions
The TUG approach has as its goal to automate the creation of new natural
language interfaces for a well defined subset of the language and with a
minimum of explicit programming.

The implemented system has proved its worth, and is interesting if for
no other reason. There is also an increasing interest from other bus compa­
nies and route information companies alike to get a similar system for their
customers.

Further work remains to make the parser really efficient, and much work
remains to make the language coverage complete within reasonable limits.

It is an open question whether the system of this kind will be a preferred
way of offering information to the public.

If it is, it is a fair amount of work to make it a portable system that can
be implemented elsewhere, also connecting various travelling agencies.

If not, it will remain a curiosity. But anyway, a system like this will be a
contribution to the development of intelligent systems.

Referanser
[AKL+90] Tore Amble, Erik Knudsen, Aarno Lehtola, Jan Ljungberg, and

Ole Ravnholt. Naturlig Språk och Grafik - nya vägar inn i databa­
ser. Statskontoret, 1990. Rapport om HSQL, ett kunskapsbaseret
hjälpsystem för SQL.

12

[Bra97] Jon S. Bratscth. BusTUC - A Natural Language Bus Traffic
Informations System. Master’s thesis, The Norwegian University
of Science and Technology, 1997.

[KS86] R. Kowalski and M. Sergot. A logic based calculus of events. New
Generation Computing, 8(0):67-95, 1986.

[PW80] F.C.N. Pereira and D.H.D. Warren. Definite clause grammar for
language analysis. Artificial Intelligence, 0(3), 1980.

[TV88] J. Teigen and V. Vetland. Syntax analysis of norwegian language.
Technical report. The Norwegian Institute of Technology, 1988.

[TV89] J. Teigen and V. Vetland. Handling reasonable questions beyond
the linguistic and conceptual coverage of
natural language interfaces. Master’s thesis. The Norwegian In­
stitute of Technology, 1989.

[WP82] D.H.D Warren and F.C.N. Pereira. An efficient and easily adap­
table system for interpreting natural language queries. Computa­
tional Linguistics, 8(3-4), 1982.

DEVELOPING A GRAMMAR CHECKER FOR SWEDISH*

Antti Arppe
Lingsoft, Inc. / University of Helsinki

antti. arppe@iki.fl

A grammar checker for Swedish, launched on the market as Grammatifix, has been developed at Lingsoft
in 1997-1999. This paper gives first a brief background of grammar checking projects for the Nordic
languages, with an emphasis on Swedish. Then, the concept and definition of a grammar checker in
general is discussed, followed by an overview of the starting points and limitations that Lingsoft had in
setting up the Grammatifix development project. After this, the initial product development process is
described, leading to an overview of the error types covered presently by Grammatifix. The error
treatment scheme in Grammatifix is presented, with a focus on its relationship with the error detection
rules. Finally, the error types included in Grammatifix are compared to those of two other known projects,
namely SCARRIE and Granska.

1. Introduction
Software programs designated as grammar checkers have been developed since the
1980’s, first and foremost for English, but also for other major European languages
(Bustamante & Léon 1996). Similar endeavors for the Nordic languages have been
scarce, the notable exception being the Virkku system for Finnish. Virkku was
developed and launched on the market in 1991 by Kielikone Ltd
<http://www.kielikone.fi> as a side-kick of the company’s long-term efforts in
developing a machine translation system from Finnish to English. Despite this technical
background, Virkku does not use the fiall-scale deep-syntactic parser developed for
Kielikone’s machine translation system, but is instead based on a lighter, unification-
based approach.^ Unfortunately, the Virkku system remains publicly undocumented.

In the case of Swedish, some level of checking of noun phrase internal agreement, based
on shallow parsing, was incorporated into the Swedish version of the former Inso’s
International ProofReader proofing tools software, developed in cooperation with IBM
in the early 1990’s.̂ Nevertheless, it was not until the middle 1990’s that several
independent projects were initiated, more or less within the same timeframe, with the
intent of developing a full-fledged grammar checker for Swedish, namely Granska,
SCARRIE, and Grammatifix. The Granska project
<http://www.nada.kth.se/theory/projects/granska/> was originally initiated in 1994 at
the Department of Numerical Analysis and Computer Science (NADA) at the Royal
Institute of Technology (KTH) in Stockholm, and has been continued on several
occasions (Domeij et al 1996, 1998). The SCARRIE project <http://www.scarrie.com>,
which in addition to Swedish also aimed at covering the two other main written
Scandinavian languages, Danish, and Norwegian Bokmål, was started in 1996, and was
scheduled to end in 1999. In the SCARRIE project, the main responsibility for the
Swedish component was undertaken by the Department of Linguistics at the University
of Uppsala (Sågvall Hein 1998). Grammatifix is the result of a product development
project initiated in 1997 and completed in 1999 at Lingsoft, Inc., a Finnish language
engineering company <http://www.lingsoft.fi>. Lingsoft has licensed Grammatifix to
Microsoft as the grammar checking component of the Swedish version of Microsoft
Office 2000, launched on the market in the year 2000, and has also released
Grammatifix on the Swedish market as a stand-alone product under the Grammatifix
brand name. Actually, there is a fourth Swedish proofing tool on the market that covers
some error types traditionally associated with grammar checkers, namely Norstedts’

mailto:arppe@iki.fl
http://www.kielikone.fi
http://www.nada.kth.se/theory/projects/granska/
http://www.scarrie.com
http://www.lingsoft.fi

14

Skribent <http://www.norstedts.se>, but since it does not include any syntactic error
detection, it was left outside the scope of this paper.

This paper outlines the development process of Grammatifix undertaken at Lingsoft.
The emphasis of this paper is on general product definition and product development
issues associated with such linguistic tools as a grammar checker, whereas the actual
mechanism for detecting Swedish grammar errors and its linguistic principles are
covered in a separate paper by Bim in the same volume. Furthermore, this paper gives
an overview of the features of Grammatifix, and compares these with the other known
and documented Swedish grammar checkers, namely SCARRIE and Granska.

2. What is a grammar checker - really?
In developing a grammar checker for any language, the first issue to be tackled is what
type of a proofing tool is indeed going to be developed. Firstly, one must choose what
types of linguistic features are going to be included in the tool. Secondly, one must
design the functionality of the tool and its interaction with the user and with other
software applications.

Concerning the linguistic features, the general notion is that grammar checkers, by
virtue of their name, attempt to locate syntactic errors."' Though it may some day be
possible with the development of our knowledge of linguistic structure and consequent
computerized models, present grammar checkers do not and cannot check or validate
the overall linguistic correctness of text, or syntactic for that matter. In practice,
grammar checkers are limited to checking only a small subset of all possible syntactic
structures. The first and obvious criterion on what these structures are depends on the
syntactic character of the language, i.e. what types of syntactic interdependencies and
consequent syntactic “rules” exist in the language. Thus, syntactic interdependencies
which exist and can be analyzed in one language, such as subject-verb agreement in
English, are, at least as far as concerns grammar checking, irrelevant in other languages
that lack such a dependency, for instance Swedish, where noun phrase internal
agreement is much more central as a syntactic feature.

A second but no lesser limitation on the structures that a grammar checker can attempt
to cover are the linguistic formalisms available for the analysis and syntactic error
detection of the language. It should be quite obvious that only such linguistic features
that can be described and analyzed efficiently and broadly with existing linguistic
formalisms and their technical implementations are worth spending limited
development effort on. Even here, the choice of the type of computational linguistic
analysis strategies, such as between rule-based versus statistical methods, or various
combinations of these or other strategies, can produce varying results in different
linguistic error categories. Finally, it must be noted that a grammar checker can
presently only judge syntactic correctness or incorrectness. As long as a sentence or
phrase is syntacticly well constructed, a grammar checker does not possess the capacity
to assess the tmthfulness of the utterance, especially so in the case of unrestricted,
general language.

There is somewhat of a confusion or at least vagueness in the general consciousness of
what grammar checkers are as proofing tools. Grammar checkers are often not, despite
their name, only limited to purely grammatical or, to be specific again, syntactic
features. In addition to these errors, grammar checkers typically address violations of or
non-conformances with established conventions in punctuation, word capitalization, and
number and date formatting. Furthermore, word-specific stylistic assessments are often

http://www.norstedts.se

15

included in grammar checkers. There is a historical reason for these non-syntactic errors
to be included in grammar checkers, which is a result of the development of word
processing software within the last decade or so, and how linguistic support features
were integrated into these applications. The first practical proofing tools to come on the
market were hyphenators and spell checkers, and their client applications were designed
to interact with these tools on a single word basis, i.e. with one word interpreted as a
string of characters between two white-space characters. Thus, a spell checker would
not receive any information about the context of the word which it was checking, even
though such information would sometimes have been necessary to make the correct
decisions, for instance in the case of capitalization of a word at the beginning of the
sentence. The practical solution for resolving such orthographical issues has been to
move them up to grammar checkers, to be developed later. Consequently, at least in the
parlance of international software companies, the difference between a grammar
checker and spell checker is that whereas a spell checker is limited to verifying the
correctness of a single string of characters between two white-space characters, a
grammar checker is able to take into account longer sequences of such strings, typically
sentences or paragraphs (cf Sågvall Hein 1998). Thus, a string may be accepted by a
spell checker but identified as erroneous in its context by a grammar checker.

Finally, one could very well ask whether such a dichotomy into grammar and spell
checkers indeed is any longer necessary. At least in principle one could fully integrate
the functionality of a traditional spell checker, i.e. orthographical verification, within a
grammar checking tool, and this is most probably the direction into which the language
industry is heading. The practical obstacle here, at least in the case of the proofing tools
integrated within internationally available word processors, such as Microsoft’s Word,
is that different proofing tool components for a particular language have been licensed
from different suppliers at different times, and can in such a case, of course, not be fully
integrated in a straight-forward manner.

3. Lingsoft-speciflc starting points and limitations in the development
process
Thus, there is, at least in principle, quite some level of freedom of choice or alternatives
in defining and developing a grammar checker. On the other hand, it seems that the
tradition of mopping all types of non-syntactic verifications which a spell checker
cannot reliably cover under the umbrella of grammar checking is a self-reinforcing
process - one only has to take a look at the sortiment of error types included in the three
tools covered in this paper. Nevertheless, the general nature and goals of the
organization undertaking a project also has an effect on the end product and project
definition. For Lingsoft, being a commercial company, there were three fundamental
starting points.

Firstly, the ultimate purpose of the project was to develop a finished and functioning
software product that could be either licensed as such to third party organizations or
sold as a stand-alone product directly on the market - a prototype would not suffice.
This meant that the software had to be both designed and fully implemented to function
properly and consistently, without crashing, halting or falling into a loop, not only with
the well-formed demonstration cases but in any - reasonably foreseeable - situation,
such as with unexpected combinations of user commands or client application function
calls, or with unexpected input. To guarantee this, a systematic, and consequently
tedious, specifically functional testing procedure, including the compilation of extensive
testing material for this purpose had to be set up alongside the testing of the linguistic

16

error detection rules (cf. Bim in this volume). Furthermore, the goal was to develop the
end-product within a preset timeframe, which required the prioritization in the
implementation of possible error types.

Secondly, it seemed the obvious choice to base the detection of grammar errors on the
Constraint Grammar technology in general and its Swedish implementation, Swedish
Constraint Grammar (SWECG) (Bim 1998), and benefit from the accompanying
linguistic know-how. SWECG had been developed in-house as a part of the company’s
basic technology portfolio for some time, but had not yet been financially exploited on a
larger scale. In the end, one should never underestimate the value of tested technology,
even though some doubts lingered in the beginning on how successfully a formalism (or
components of it) and accompanying tacit knowledge that had mainly been used
primarily for descriptive morphological analysis, disambiguation and shallow syntactic
analysis of a priori well-formed sentences could be adapted towards the normative ends
of discovering badly-formed constmctions.

Thirdly, the market situation on the Swedish software market in the end of the 1990’s,
with Microsoft Word as the dominant leader in the field of word processing, and the
possibility of using Microsoft’s at that time publicly available Common Grammar 1 .x
API (referred hereafter MS-CGAPI), led Lingsoft to choose to integrate Lingsoft’s
Swedish grammar checking tool directly with this word processor - an indirect form of
interaction between the grammar checker and end-user. With direct integration to MS
Word with MS-CGAPI, Lingsoft did not have to allocate (always) scant resources into
creating an independent user interface for the grammar checker, though on the other
hand we would have to adapt the general functional feature selection of the grammar
checker to those that were indeed supported by the API. These functions were actually
those functions that were supported in the implementation of the MS-CGAPI in the
software code of the client applications that use MS-CGAPI, i.e. Microsoft Word.

A crucial, though not directly obvious consequence of this choice was that traditional
spelling errors as described above would not fall under the scope of this grammar
checking project. In this aspect it differs from both SCARRIE and Granska. On the
other hand, Lingsoft had already developed a spell checker for Swedish which had been
licensed to Microsoft and integrated in Microsoft Office 97 Service Release 1 (SRI) and
subsequent versions of this product. Thus, in all phases of product development, the
product development team could readily observe the interaction of the existing spell
checker and the grammar checker under development in the actual environment in
which they were eventually going to be used. Furthermore, since MS-CGAPI is
interactive both in principle and in practice - contrary at least to the original
specifications of e.g. Granska where proofing of text had originally been planned to be
done in batch mode (Domeij et al 1996:2)^ - the design of the discourse and interaction
of Grammatifix through MS-CGAPI and Microsoft Word with the end-user would have
to be take this interactivity into account from the very beginning. In addition,
interactivity set minimum demands on the program’s speed.

4. How were the features of the grammar checker eventually defined
The development of Grammatifix was originally started out as an exploratory project.
At the very beginning, existing grammar checkers for other languages were
investigated, both for the linguistic features that they covered and how well they
performed their tasks, an activity that seems to have been undertaken by other projects
(e.g. SCARRIE)*. After this, a general classification of linguistic error types, writing
style violations and non-recommended word usage that were judged worth finding was

17

compiled, using the linguistic intuition or personal observations of project members^
and generally acknowledged guide and reference books of Swedish grammar and
writing conventions. All reference works consulted at this phase were of Sweden-
Swedish (i.e. "riksvensk") origin. From the very beginning, Swedish material that the
company or individual project members had access to, ranging from personal
observations of errors in newspapers to actual corpora of Swedish texts at the
company’s disposal, was used to support this classification work by providing a source
of genuine evidence for the existence and character of hypothesized error types, and for
the discovery of new ones. These genuine examples would grow to form the kernel of
the error corpus later used in the development and testing of the linguistic error
detection rules (cf Bim in this volume). After this stage, each error type in this
classification was evaluated along two criteria. Firstly, the existence of a Lingsoft-
proprietary technology (e.g. SWECG) or a public one (such as regular expression
matching techniques), or any known technology or technique for that matter that could
be used to detect the particular error type was assessed. Secondly, the perceived benefit
and consequent priority of detecting a particular error type was evaluated.

Based on this preliminary work, a subset of error types was chosen to be pursued in
earnest as a part of the actual product development project, and indeed this subset
remained more or less the same until completion. However, a back door was left open to
add new error types later, if a clear need would arise. The criteria for the selection of the
error types were manifold. Firstly, detection of error types should be performed by or
based on existing Lingsoft technology, or with a public technique available to Lingsoft.
This was in practice a repetition of the previous evaluation of error types, but the
underlying motivations were different. In the original classification we wanted to create
a broad picture of what we and others could conceive of in a Swedish grammar checker,
so that we could later see in the right perspective the set of error types we could actually
cover. * Secondly, the errors should be truly relevant for Swedish and not merely be
localizations of foreign grammar error types. Last but not least, the probability of
success in discovering errors as perceived by the development group by using the
chosen technologies should be judged high at the very beginning of the development
process, so that the most could be made with the existing (personnel) resources within
the preset timeframe, leading to the choice of error types evident with close contexts,
i.e. adjacent or nearly adjacent words. From experience with SWECG it was known that
the Constraint Grammar formalism showed best results in close interdependencies, and
furthermore Swedish as a language exhibits a high amount of word interdependency in
close contexts. As an arbitrary working goal a precision of over 67 percent for each
error type was chosen, i.e. two-thirds of flaggings for each error type should be justified
in order for the error type to be included in the final product. This general aim at high
precision - for a grammar checker - was in line with Bemth’s observations on end-user
valuations, in which satisfaction was specified as high precision, i.e. few false recalls,
even at a noticeable loss of recall. Even though users expect a proofing tool to find as
many errors as possible, they prefer easing up on this expectation if the proportion of
correct error flaggings is relatively high (Bemth 1997).

The list of the error types addressed by Grammatifix should consequently be of no great
surprise, and is rather similar to those of the other projects, which can naturally be
attributed to the language in question. Thus, checks on noun phrase internal agreement
and verb chain consistency have a central place in the error type portfolio. All in all,
Grammatifix covers 43 error type checks, of which 26 are syntactic in nature (of which
17 belong either to the noun phrase internal or to verb chain consistency error types), 14
address punctuation, number and date formatting conventions, and 3 cover word-

18

specific non-standard stylistic usage. A more specific listing of these error types with
example errors is given in Table 1 (syntactic errors) and Table 2 (non-syntactic errors).
Since Grammatifix is under constant development, an up-to-date version of its error
types is available on the Internet (Arppe et al 1999).

Different techniques were selected for detecting various error types. The Constraint
Grammar formalism is used for the detection of syntactic errors, and this is described in
depth in a separate paper by Bim in this volume. Regular expression based techniques
are used for the detection of punctuation and number formatting convention violations.
Word-specific stylistic marking is covered by style-tagging individual lexeme entries in
the underlying Swedish two-level lexicon (SWETWOL: Karlsson 1992), which was
revised and augmented in this respect for the purpose of this project. It must be noted
here that even though these three different techniques form the linguistic core of
Grammatifix, a substantial amount of programming work was needed to adapt and
combine them into a single, consistently functioning software entity.

These error types in general seem to reflect the influence of the use of word processors
in the writing process (Severinsson Eklundh 1993). In the case of syntactic errors it has
been observed that, contrary to common assumptions, also mother tongue writers of a
language have agreement errors in their texts. Example studies on this exist at least for
Spanish (Bustamante & Leon 1996) and Swedish (Domeij et al 1996: 6). These types of
syntactic errors have been explained as a result of the ease of editability of text using
copy-paste techniques in word-processors, and sloppy manual proof-reading of the
resultant text. Even more can syntactic errors be expected in texts written by non­
mother-tongue writers of a language, of which, in the case of Swedish, there are
substantial numbers in both Sweden, as a result of long-term immigration, and in
Finland, due to the official bilingual status of the country. A more traditional source of
agreement errors is probably still to some extent words of foreign origin, where English
has become the dominant source in the last decades. Increasingly international contacts
through the Internet and otherwise can also be seen as a source of potential errors, since
orthographical and formatting conventions vary from language to language. Here the
influence of English is, of course, again obvious. As far as concerns non-syntactic errors
in general, these can for the most part be attributed to the same reasons as the syntactic
ones: non-linear text production without careful, if any, scrutiny afterwards.

19

Table 1; Syntactic error types in Grammatifix (Swedish translations of error types in
parentheses; words or segments involved in the error underlined in the examples)
1. Definiteness form of noun (Bestämdhetsform
hos substantiv)

Det är i samhällets utvecklings bort frän detta
som Arbetsdomstolen inte hängt med.

2. Definiteness form of adjective
(Bestämdhetsform hos adjektiv)

Barnen får använda ^ egna energi.

3. Number agreement: determiner and noun
(Numeruskongruens: determinerare och
substantiv)

I protest mot ^ statliga monopolet började han
sälja sprit pä Drottninggatan i Stockholm.

4. Number agreement; adjective and noun
(Numeruskongruens: adjektiv och substantiv)

Hur skapa s synliga hand som återigen är
jämbördig med den osynliga?

5. Gender agreement: determiner and noun
(Genuskongruens: determinerare och substantiv)

I maj i fjol genomgick Brolin ytterligare ett
operation.

6. Gender agreement: adjective and noun
(Genuskongruens: adjektiv och substantiv)

Detta är alltid ett nvtt regims ödesfräea fNB. ‘ett’
is marked separately as erroneous under error type
5].

7. Masculine form of adjective (Maskulinform
hos adjektiv)

Dä frestade han ditt kött och sände dig den
rödhårige kvinnan.

8. Gender agreement: pronoun and noun
(Genuskongruens: pronomen och substantiv)

Vattenfall har hittills lagt gasturbinen i Arendal i
malpåse och vill sälla en av de tre aggregaten i
Trollhättan.

9. Subject complement agreement
(Predikativkongruens)

Då hade läget i bvn redan blivit outhärdlig för
gruppen.

10. Supine without the "ha" auxiliary verb
(Supinum utan "ha”)

De kunde fått bilderna på begravningsgästerna ftån
danska polisen.

11. Double supine (Dubbelt supinum) Vi hade velat sett en större anslutningstakt. säger
Dennis.

12. Double passive (Dubbelt passiv) Saken har försökts att tvstas ner.
13. S-passive after certain verbs (S-passiv efter
vissa verb)

Huset ämnar byggas.

14. Infinitive after preposition (Infinitiv efter
preposition)

Vidare ska pengar omfördelas till bland annat
satsningar oå Internet för stödia myndigheters och
företags miljöarbete.

15. Infinitive without an expected "att" [after a
verbl (Infinitiv utan "att")

Han kunde inte undvika möta hennes blick.

16. Infinitive with unexpected "att" (Infinitiv
med "att")

Axelstöd och gymnastik är bästa motmedlen om
man inte vill att ha förändringar i nacken och
käken som gör spelet stelt.

17. Number of finite verbs (Antalet finita verb) I Ryssland är betalar nästan ingen någon skatt.
18. No verb (Inget verb) Ingenting här.
19. No finite verb (Inget finit verb) Hon böria soela cello.
20. Position of adverb in subordinate clauses
(Placering av adverb i bisats)

Den har setts av sä få personer på biograferna att
den lär knappast gå över den magiska
miljongränsen.

21. Position of negated element in subordinate
elauses (Plaeering av negerat led i bisats)

En del håller pä den gamla goda tiden och påstår
att lite stryk gör ingen skada. [... inte gör någon
skada.1

22. Constituent order in subordinate
interrogative elauses (Ledföljd i indirekt
frågesats)

Jag undrar vad gör de unga männen i Finland.

23. Double negation (Dubbel negation) Det kan bli svårt att fä jobb och om man inte har
varken oengar eller familj att stöda en.

24. Use of preposition with two-part
conjunctions (Prepositionsbruk vid tväledad
konjunktion)

Det är utbildning som idag inte erbjuds vare sig i
Lund eller Malmö. I ... vare sig i Lund eller i
Malmö.l

25. Form of pronoun after preposition
(Pronomenets form efter preposition)

Vi siöng för de.

26. The construction "möjligast" + adjective
(Konstruktionen "möjligast" -i- adjektiv)

Han körde med möiligast stora snabbhet.

20

Table 2: Non-syntactic error types in Grammatifix (Swedish translations of error types
in parentheses; words or segments involved in the error underlined in the examples)

27. Quotation marks (Citattecken) Vi tror att det är ”möjligt att klara detta.
28. Date expressions (Datumuttryck) Stockholm 1998.5.19
29. Several spaces in a row (Flera mellanslag i
rad)

Det största är_arbetslösheten.

30. Multipart abbreviations (Förkortningar) Han läste sidor med b la börskurser.
31. Spaces in conjunction with quotation marks
(Mellanslag vid citat)

Men Sverige har också " goda möjligheter att "lösa"
problemen "snabbt.

32. Spaces in conjunction with parentheses
(Mellanslag vid parenteser)

De nämnde ytterligare några exemoeK fascinerande
eller hur).

33. Spaces in conjunction with punctuation
marks (Mellanslag vid skiljetecken)

Såg du :hörde du?

34. Spaces in conjunction with special
characters (Mellanslag vid specialtecken)

Enligt §2 i bolagsordningen skall stämma
sammankallas årligen.

35. Parentheses (Parenteser) Detta hus (rött (och fiilt) är gammalt.
36. Number formatting (Sifferformatering) Summan uppgick till 2.453.995.000.23 dollar.
37. Punctuation marks (Skiljetecken) Hur kom du hit.
38. Uppercase and lowercase (Stor och liten
bokstav)

I alla fall kommer jag i September.

39. Dashes and hyphens (Tankstreck och
bindestreck)

Genom det nya samarbetsklimat som Per Olsson
eftersträvar “ och som vi fömtsätter omfattas av hela
regeringen — bör riksdagsarbetet kunna bli stabilare.

40. Phone numbers (Telefonnummer) Vi nås pä tfn 050 - 524096 efter klockan 19.
41. Colloquialism (Talspiikligt ord) Enligt filosofien åt direktörn plättar mot vederlag.
42. Archaism (Alderdomligt ord) Enligt filosofien åt direktörn plättar mot vederlag.
43. Bureaucratic word (Byråkratiskt ord) Enligt filosofien ät direktörn plättar mot vederlag.

One could very well discuss whether a smaller number of more general error types
could suffice, for instance in the case of syntactic errors, i.e. should one group all the
seven or so noun phrase internal error types or the ten verb chain error types each under
one single error type. Since each different error type represents a different type of
linguistic feature and a different error detection strategy on the part of the grammar
checker, it was our assessment that providing more information gives the end-user a
better understanding of the inner workings of the grammar checker, which renders the
tool less irritating and school-masterly. Furthermore, each error type represents an
option that the user can either select in the setup of Grammatifix to be either active or
inactive during the grammar checking process. This can be useful either when an end-
user deliberately decides to violate certain syntactic, punctuation or number formatting
conventions, or when the end-user produces a text type which contains some specific
error types that prove to be difficult for the grammar checker to scrutinize with at an
acceptable level of precision.

5. Should something happen after error detection?
In principle, it must be said that error detection - with both respectable recall and
precision rates - is the theoretically most demanding challenge in creating a grammar
checker. In practice, however, error detection, even with a reliable algorithm, must be
integrally followed up by support in the treatment of the assumed error to be of real use
to a standard end-user (e.g. Domeij et al 1996: 8). First and foremost, the detected error
must be diagnosed in such a way that the end-user can understand why a portion of the
text has been marked as dubious or erroneous by the grammar checker, so that the end-
user may make his or her own educated judgment on the issue, and how this potential
error can consequently be corrected. It is the manner in which a grammar checker

21

communicates its linguistic findings to the end-user that the quality of the grammar
checker is ultimately perceived by him or her. In the section below, emphasis is put on
the treatment of syntactic errors, though the same principles have been applied to the
other error types, too.

In the case of Grammatifix, the construction of the error detection algorithms provides a
good basis for giving the necessary feedback to the user. As is described by Bim in this
volume, the number of Constraint Grammar based error detection rules is manifold to
the number of error types, being over 650 rules to the present 26 syntactic error types.
Each of these individual error detection rules operate for only one specific error type,
and is activated, i.e. the rule flags a detected error, only by a certain sequence of
combinations of words and their morphological analyses. Consequently, a rule in fact
identifies the specific erroneous word and the erroneous morphosyntactic feature in that
word at the same time as the rule detects the entire erroneous construction. As Bim
further describes, numerous corpus-based constraints are added to the error detection
mles to ensure that an interdependency indeed exists between the words in the assumed
construction, so that some particular morphosyntactic characteristic may be validly
expected of one of the words that the rule covers, a characteristic which is lacking or
wrong when an error is flagged. Thus, the treatment of an error flagging is integrally
connected with and determined by the error detection rules. Each error mle can be and
is mapped to a specific, formalized error treatment scheme. Several rules, however, may
have the same error treatment scheme. Each such error treatment scheme consists of 1)
an error heading; 2) a terse error diagnosis text; and 3) an error correction scheme.

The error headings are in fact the same as the names of the error types presented in
Tables 1 and 2, and are entry points to the error diagnosis texts. An error diagnosis text
conveys the suspect word form, the reason for the suspicion together with the other
words involved in the assumed syntactic construction, and finally a description of the
necessary correction, if the error detection is indeed judged by the end-user to be
correct. The error diagnosis text packs the above information tightly in plain Swedish
sentences, which can in free translation be exemplified in the following form: "Check
the word form X. I f an A, such as Y, governs a B, then the A should also be in the C
form The variable words X and Y above can be directly extracted from the grammar
checked text with the help of the error detection rules, whereas the variable words A, B
and C are linguistic categories or features, such as noun or genitive, or combinations of
these, determined by the detected error type. Since the underlying linguistic analysis
presupposes sentence delimitation, the suspect words can be in addition be presented as
marked in their full sentential context.

The error diagnosis texts might be considered relatively heavy and overtly linguistic in
wording, but it was found difficult to generate “lighter” phrasings which would have
been both accurate enough in describing precisely the intended construction, and
relatively short in length. Being concerned with grammar checking, we deemed it
natural to use grammatical terms (which are associated with an example word in the
error diagnosis text, or explained in a longer explanation text, mentioned below).
Nevertheless, the error diagnosis texts are an important part of how end-users perceive
Grammatifix and cannot be considered insignificant - quite the contrary. Consequently,
research is presently being undertaken at Lingsoft on user reactions to this and other
information provided in Grammatifix’ user interface.

Finally, a suggestion for the correction of the suspected erroneous word is provided,
when practically feasible. In most error types, the suggestion is generated by applying
the error correction scheme, representing the spirit of the error diagnosis text, to the

22

morphological analysis of the erroneous word, in its essence meaning a substitution of
the appropriate morphological tags, and then generating the respective new word form.
In other error types, the error correction scheme may delete the erroneous word,
substitute it with another, generate an erroneously missing word, or reorder an incorrect
sequence of words. The basic guideline in the error treatment schemes is to establish a
single erroneous component or word, when possible. This works for error types such as
gender disagreement where it is self-evident that the head word cannot in practice be
erroneous, but for others, such as number disagreement, such a judgement would be
fairly difficult without extralinguistic knowledge. In such cases, typically two words are
marked as suspect, and consequently two phrases are given as suggestions for
correction. Table 3 gives examples of the different types of suggestions for correction
that Grammatifix provides. As can be noted, sometimes some non-erroneous words in
the context of the erroneous word are included in the suggested change in order to make
it easier for the end-user to visualize the suggestion.

Table 3: Examples of the different types of suggestions for the correction of syntactic
errors provided by Grammatifix

Suggestion type Erroroneous sentence (actual
error[s| or error contexts
underlined)

Suggested change (as it is
presented to the end-user)

One suggested change I maj i fjol genomgivk Brolin
ytterligare ett operation.

ett -> en

Two suggested changes I protest mot de statliea monooolet
böljade han sälja sprit på
Drotminggatan i Stockholm.

de statliga monopolet
det statliga monopolet
de statliga monopolen

Deletion Axelstöd och gymnastik är bästa
motmedlen om man inte vill att ha
förändringar i nacken och käken som
gör spelet stelt.

vill att vill

Generation of missing word Vidare ska pengar omfördelas till
bland annat satsningar på Internet för
stödia myndigheters och företags
miljöarbete.

för stödja -> för att stödja

Reordering of sequence Den har setts av så iå personer på
biograferna att den lär knappast gå
över den magiska miljongränsen.

lär knappast -> knappast lär

The aforementioned two stages of Grammatifix’ implementation, namely error detection
and error treatment, with their substages, would seem to correspond to a four-level
framework presented by Uszkoreit and adopted in SCARRIE, namely 1) detection; 2)
recognition; 3) diagnosis; and 4) correction (where Uszkoreit’s ‘recognition’ rougly
corresponds to Grammatifix’ error headings) (Uszkoreit 1996, S^vall Hein 1998).
However, Uszkoreit’s framework seems to lead to a modular implementation with clear
transfer of data from one level to the next, and with different viewpoints or methods at
different levels. In contrast, Grammatifix aims at integrating all the stages in one level,
i.e. an error detection rule specifies deterministically and thus contains implicitly the
corresponding error recognition (heading), the error diagnosis and the error correction
information. Consequently, after the error detection stage, Grammatifix has all the
necessary information to be relayed to the end-user, and no further observation or
treatment of the erroneous phrase is necessary.

In addition to the error detection and error treatment modules, a set of longer
explanation texts are incorporated into Grammatifix, covering concisely the central
syntactic and non-syntactic issues related with the targeted error types. Furthermore,

23

each time after Grammatifix has gone through a selected text, it provides some general
statistics, including the number of characters, words, sentences and paragraphs, the
average number of characters per words, the average number of words per sentence, and
the average number of sentences per paragraph in the checked text. In conjunction with
these statistics, Grammatifix also provides a so-called LIX value ("Ldsbarhetsindex ”),
which is a readability index developed for Swedish.’ It should be noted that when used
as an integrated module it is up to the client application which components, that have
been described in this section and that are provided by Grammatifix, are indeed
conveyed to the end-user.

6. Comparison with the other known grammar checkers for Swedish
A comparison of the different error types covered by Grammatifix and the two other
publicly known projects, namely SCARRIE and Granska, is presented in Tables 4, 5
and 6 below. The classification is based on Grammatifix in the order as its error types
are presented in Tables 1 and 2 above. No qualitative or restrictive judgement has been
made on the basis of the example sentences which are provided in the specifications of
the other tools. If a description of a particular tool exhibits even a single but clear
example of the detection of a particular error type, that error type is marked as covered
by the tool. Furthermore, the error types listed in the documentation of the different
projects are taken bona fide. Consequently, this comparison should be taken with a
grain of salt, since the error classifications are not exactly similar, and most certainly
have been implemented with varying depth and breadth in the different projects (e.g.
Granska; Domeij and Knutsson 1998: 2).

Thus, even though the projects may report exactly the same error type on their feature
lists, the individual tools may either detect differing subsets of phrases containing the
erroneous feature, and with different levels of syntactic complexity, or may detect these
subsets of erroneous phrases in different positions within a sentence. Furthermore, one
must note that since neither Grammatifix nor SCARRIE include an integrated spell
checking component, purely orthographical errors are lacking from their error types. In
the end, this comparison serves probably best as an indication of the varying
development foci of the different tools rather than as a definitive evaluation of their
coverage or general “goodness”.

As an overview it appears that all the tools aim at covering the basic noun phrase
internal and verb chain consistency error types. Granska appears to specialize in a wide
range of stylistic evaluation of word use. Compared to Grammatifix, both SCARRIE
and especially Granska address the problem of mistakenly writing compound words
separately. Grammatifix, on the other hand, seems to have the widest coverage in the
punctuation and number formatting errors. Furthermore, even though all the three tools
aim in their error treatment schemes at similar goals, i.e. generating replacement
suggestions for erroneous words, they differ in their present level of implementation of
this function. Presently, Grammatifix and Granska have proceeded the furthest of the
three, and have fully implemented error treatment schemes, including correction
generation for most error types.

24

Table 4; A comparison of the syntactic error types of Grammatifix, SCARRIE'® and
Granska'' (X = evident in example sentences or documentation; x = evident in the

Error type Grammatifix SCARRIE Granska
Definiteness form of noun X X X
Definiteness form of
adjective

X X X

Number agreement:
determiner and noun

X X X

Number agreement:
adjective and noun

X X X

Gender agreement:
determiner and noun

X X X

Gender agreement: adjective
and noun

X X X

Masculine form of adjective X - X

Gender agreement: pronoun
and noun

X - X

Subject complement
agreement

X X X

Supine without the "ha"
auxiliary verb

X X X

Double supine X X X
Double passive X X X
S-passive after certain verbs X X X

Infinitive after preposition X X X
Infinitive without an
expected "att"

X X X

Infinitive with unexpected
"att"

X X X

Number of finite verbs X X X

No verb X X X
No finite verb X X X
Tense harmony - - X
Position of adverb in
subordinate clauses

X - X

Position of negated element
in subordinate clauses

X X X

Constituent order in
subordinate interrogative
clauses

X X

Constituent order in the
beginning of an inverted
main clause

X

Double negation X - X

Use of preposition with two-
part conjunctions

X - X

Form of pronoun after
preposition

X X X

The construction
"möjligast" adjective

X X X

Repeated words (spell checker) X X

Compound words
mistakenly written
separately

X X

Words written mistakenly
together

(spell checker) - X

Incorrect preposition in
conjunction with a fixed
expression

X

25

Table 5: A comparison of the punctuation and number formatting violation error types
of Grammatifix, SCARRIE™ and Granska" (X = evident in example sentences or

Error type Grammatiflx SCARRIE Granska
Quotation marks X - -

Date expressions X X X
Several spaces in a row X X -

Multipart abbreviations X X X
Spaces in conjunction with
quotation marks

X - •

Spaces in conjunction with
parentheses

X X -

Spaces in conjunction with
punctuation marks

X X X

Spaces in conjunction with
special characters

X X X

Parentheses X - -

Number formattinE X X X
Punctuation marks X - X
Uppercase and lowercase X X -

Dashes and hyphens X - X
Phone numbers X X -

Mixing of uppercase and
lowercase within words

(spell checker) (spell-checker) X

Table 6: A comparison of the stylistic evaluation error types of Grammatifix,
SCARRIE'® and Granska'' (X = evident in example sentences or documentation; x =

Error type Grammatifix SCARRIE Granska
Colloquialisms X - X
Archaisms X - X
Bureaucratic word X - X
Abstract words ? (“bureaucratic) X

(Long verb forms,
compound verbs and
long verb forms are
included here under

archaisms)
N on-recommended
computer terms

- - X

Tautological expressions - - X
Contaminated constructions - - X
Foreign words with difficult
inflection

X X X

Conjunctions as first words
in sentences

- - X

Use of impersonal subject - - ? (“ inactivated)
Unnecessary nominalization - - ? (“ inactivated)
Difficult words according to
SprScklyftan

- - ? (“ inactivated)

Words which have a
different meaning in
standard vs. bureaucratic
contexts

? (“ inactivated)

26

This overview is not, of course, a check list that can as such be used to select one
solution over another or argue for or against one solution at the present time. It should
be remembered that many of the error types listed in the overview have only been
partially implemented in the various solutions. Furthermore, there are numerous
possible error types that are not listed in the overview, which might nevertheless be of
considerable value to end-users, even more than some of the error types presently on the
list. Taking into consideration the sheer magnitude of possibilities in grammar checking
as laid forth in section 2, and personal experience of how much effort has gone into
getting only a single solution, Grammatifix, at the level it now is, it is indeed a very
interesting question in what directions these three, and possibly some other, new
solutions will develop in the coming years.

Notes

' I am indebted to the entire product development team who undertook the man-months of practical work
to make this project happen: Jussi Bim, Mathias Creutz, Era Eriksson, Risto Kankkunen, Ari Paavilainen,
Alexander Paile Pasi Ryhanen, and Fredrik Westerlund. Furthermore, I am thankful for Jussi Bim for
proof-reading this paper on several occasions and providing insightful comments.
 ̂Personal communications from Petteri Suoranta and Kaarina Hyvonen, successive product development

managers at Kielikone Ltd.
’ Personal communication from Peter Bursell, formerly of Norstedts Publishers, who participated in the
project
* The term syntactic (syntax) is chosen here instead of grammar, since syntax specifically refers to
relationships and constructions between words whereas grammar (grammatical) is often used to cover the
general structure of a language, including morphology.
 ̂Granska has since abandoned this principle and is presently designed as an interactive tool.

* As set forth in the section ‘Basic Functions’ of the Project Summary of the SCARRJE project:
http://www.scaiTie.com/
’ Two of the project members had Swedish as their mother tongue.
* Examples of error types that were deemed difficult to detect in general were error types that would seem
to require a full sentential analysis or even more in order to be reliable, such as ambiguity or unclear
reference of pronouns or prepositions within or between sentences, errors in ellipses, and analysis of
sentential integrity.
’ The LIX value, attributed to be developed by Erik Bjomsson in the 1960’s, is calculated with the
formula LIX = average(N(i)) + 100 x average(L(i)/N(i)), where N(i) the number of words in sentence i
and L(i) is the number of words with more than seven characters in sentence i, calculated for all the
sentences i in the text.

The sources of the error type listing for SCARRIE are
<http://stp.ling.uu.se/~ljo/scairie-pub/scarTie_examples_sv.html> and the Internet demo
<http://stp.ling.uu.se/~ljo/scarrie-pub/scarrie_sv.html>, visited on 10.2.2000.
'' The sources of the error type listing for Granska are
<http://www.nada.kth.se/theory/projeets/granska/rapporter/grammatikregler.html>, the Internet demo
<http://www.nada.kth.se/theory/projects/granska/demo.html>, visited 10.2.2000 and Domeij & Knutsson
1998.

References:

Arppe, A; Bim, J; Westerlund, F. 1999. Lingsoft’s Swedish Grammar Checker.
http://www.lingsoft.fi/doc/swegc/
Bemth, A. 1997. EasyEnglish: A Tool for Improving Document Quality. The
Proceedings o f the Fifth Conference on Applied Language Processing, Washington,
159-165.

http://www.scaiTie.com/
http://stp.ling.uu.se/~ljo/scairie-pub/scarTie_examples_sv.html
http://stp.ling.uu.se/~ljo/scarrie-pub/scarrie_sv.html
http://www.nada.kth.se/theory/projeets/granska/rapporter/grammatikregler.html
http://www.nada.kth.se/theory/projects/granska/demo.html
http://www.lingsoft.fi/doc/swegc/

27

Bim, J. (this volume). Detecting grammar errors with Lingsoft’s Swedish grammar
checker.
Bim, J. 1998. Swedish Constraint Grammar: A short presentation,
http ://www. lingsoft. fi/doc/swecg/
Bustamante, F. R. & and Léon, F. S. 1996. GramCheck: A Grammar and Style Checker.
The Proceedings o f the 16''' International Conference on Computational Linguistics,
Copenhagen, 175-181.
Domeij, R; Knutsson, O; Larsson, S. 1996. Datorstöd for språklig granskning under
skrivprocessen: en lägesrapport. Report number IPLab-109. Stockholm: Interaction
and Presentation Laboratory, Department of Numerical Analysis and Computer Science,
Royal Institute of Technology.
Domeij, R; Knutsson, O; Larsson, S; Severinsson Eklundh, K; Rex, Å 1998.
Granskaprojektet 1996-1997. Report number IPLab-146. Stockholm: Interaction and
Presentation Laboratory, Department of Numerical Analysis and Computer Science,
Royal Institute of Technology.
Domeij, R; Knutsson, O. 1998. Granskaprojektet: Rapport från arbetet med
granskningsregler och kommentarer. Internal subreport 26.8.1998. Stockholm:
Interaction and Presentation Laboratory, Department of Numerical Analysis and
Computer Science, Royal Institute of Technology.
Karlsson, F. 1992. SWETWOL: Comprehensive Morphological Analyzer for Swedish.
Nordic Journal o f Linguistics, volume 15, 1992, 1-45.
Severinsson Eklundh, K. 1993. Skrivprocessen och datom. Contribution to Människor-
Datateknik-Arbetsliv (Ed. Lennart Lennerlöf).
S^vall Hein, A. 1998. A Chart-Based Framework for Grammar Checking: Initial
Studies. Proceedings o f i f ' ' Nordic Conference on Computational Linguistics,
Copenhagen, 68-80.
Uszkoreit, H. 1996. Grammar Checking. Theory, Practice and Lessons learned in
LATESLAV. Concluding oral presentation at the final review meeting of the Lateslav
Project (PECO 2824), Prague, August 1996. As presented in S^vall Hein, Anna 1998.

DETECTING GRAMMAR ERRORS WITH LINGSOFT’S
SWEDISH GRAMMAR CHECKER

Juhani Bim
Lingsoft, Inc.

jbim@lingsoft.fl

Abstract

A Swedish grammar checker (Grammatifix) has been developed at Lingsoft. In Grammatifix, the Swedish Constraint
Grammar (SWECG) framework has been applied to the task of detecting grammar errors. After some introductory notes
(chapter 1), this paper explains how the SWECG framework has been put to use in Grammatifix (chapter 2). The
different components of the system (section 2.1) and the formalism of the error detection rules (section 2.2) will be
overviewed, and the relationship between grammar errors and disambiguation will be discussed (section 2.3). Work on
the avoidance of false alarms is also described (chapter 3). Finally, test results are reported (chapter 4).

1. Introduction

The purpose of this paper is to explain how Grammatifix goes about its task of detecting grammar
errors. The paper by Arppe (this volume) addresses the more general level design principles in the
development of Grammatifix, and provides also a background to the field of Swedish grammar
checking in general.

Grammatifix has checks on three kinds of phenomena; grammar errors, graphical writing
convention errors, and stylistically marked words.' For these phenomena different detection
techniques are used; SWECG, matching of regular expressions against character sequences, and
lexical tagging, respectively. This paper is concerned with grammar error detection.

Prototypical grammar errors can be understood to be norm violations that are to be identified in
contexts larger than the word (cf spell-checking) where the contexts are morphosyntactically
explainable. Of errors so defined, no computational grammar checker is able to control more than a
(more or less) modest part. A realistic grammar checker concentrates on central categories of the
language’s grammar, and, within those categories, on common, simple patterns that allow precise
descriptions. The error categories targeted by Grammatifix are presented in Arppe & al. (1999), for
a listing with examples see also Arppe (this volume).

2. Constraint Grammar as a framework for grammar error detection

Constraint Grammar (CG) is a fiamework for part-of-speech disambiguation and shallow syntactic
analysis, as originally proposed by Karlsson (1990). The basic principles and the formalism of CG
are fully explained in Karlsson & al. (1995). A short presentation of SWECG is given in Bim
(1998). In Grammatifix, the CG framework is used for the purposes of grammar error detection.

2.1. Overview of the error detector’s components

The CG-based error detection system consists of five sequential eomponents as listed below (1-5).
In a formal sense the componets are the same as in SWECG, but, contentwise, the components of
the two systems are not identical. There are some differences even in components (1,2), some more
in component (3), and components (4, 5) are wholly application-specific.

(1) Preprocessing
(2) Lexical analysis
(3) Disambiguation

(4) Assignment of the tags @ERR and @OK to each word
(5) Error detection rules, i.e. rules for the selection of @ERR

mailto:jbim@lingsoft.fl

29

Preprocessing. The preprocessor (or tokeniser) identifies words, abbreviations, punctuation marks,
and fixed syntagms. A fixed syntagm is a multi-word expression identified as a lexical unit, e.g. the
words till hands are identified as a unit, tilljiands, analysed as an ADV^. This treatment entails that
the error detector avoids false alarms that might follow (in unexpected contexts, e.g. funnits till
hands dygnet om) if a genitive feature was present in the analysis of till hands.

The tasks performed by componets (2-5) will be illustrated with a stepwise analysis of the
relevant (here boldfaced) parts of the example sentence given below. The error to be detected is the
definite form stavningen as governed by the genitive vilkas. The analysis of the sequence många
engelska also illustrates a relevant point.

Del firms mänga engelska lånord vilkas diskontinuerliga stavningerinte tycks bereda språkbrukarna n^ra problem.
(From Spräret lever. Festskrift till Margareta Westman. Norstedts 1996:68.)

Lexical analysis. The main module here is the SWETWOL analyser (Karlsson 1992; c f also Bim
1998). As illustrated below each word is here given one or more readings. For example, många has
two readings, DET (implying modifier status) and PRON (implying head word status), and engelska
has three readings, one of them N SG. The sequence många engelska illustrates why it was obvious
from the start that disambiguation should be used: många is PL and engelska is N SG (inter alia),
but flagging this as a number agreement error would be a false alarm, of course. Disambiguation is
needed for the sake of precision.

"<många>"
"mängen" <ID> DET UTR/NEU INDEF PL NOM
"mängen" PRON UTR/NEU INDEF PL NOM

"<engelska>"
"engelsk" A UTR/NEU DEF SG NOM
"engelsk" A UTR/NEU DEF/INDEF PL NOM
"engelska" N UTR INDEF SG NOM

"<länord>"
"län_ord" N NEU INDEF SG/PL NOM

"<vilkas>"
"vilken" <WH> <CLB> <MD> DET UTR/NEU INDEF PL GEN
"vilken" <WH> <CLB> PRON UTR/NEU INDEF PL GEN

"<diskontinuerliga>"
"diskontinuerlig" A UTR/NEU DEF SG NOM
"diskontinuerlig" A UTR/NEU DEF/INDEF PL NOM

"<stavningen>"
"stavning" N UTR DEF SG NOM

Disambiguation. The disambiguation rules of SWECG have been adopted to a large extent as such
in Grammatifix, but, importantly, there are differences. The differences are a consequence of the
efforts, in Grammatifix, to overcome certain disambiguation disturbances due to grammar errors
(for more on this point see section 2.3). Full disambiguation is not a goal as such for Grammatifix,
and some of the error detection rules are formulated so as to tolerate ambiguities or even incorrect
disambiguations (section 2.3). In the example sentence of this section, the disambiguator selects the
appropriate reading for each word, e.g. engelska is disambiguated as A PL as shown below.

"<mänga>"
"mängen" <ID> DET UTR/NEU INDEF PL NOM

"<engelska>"
"engelsk" A UTR/NEU DEF/INDEF PL NOM

"<länord>"
"län_ord" N NEU INDEF SG/PL NOM

Assignment of the tags (^ERR and @OK to each word. In ordinary CG the component called
’Morphosyntactic mappings’ assigns a number of syntactic tags (subject, object, premodifier, etc.)

30

to each remaining reading. In Grammatifix this component performs a trivial task; each reading is
assigned two more tags, @ERR (error) and @OK (no error), as shown below for många.

"<mänga>"
"mängen" <ID> DET UTR/NEU INDEF PL NOM @ERR @OK

Error detection rules, i.e. rules for the selection of @ERR. In ordinary CG the component called
’Syntactic constraints’ performs syntactic disambiguation, i.e. there are rules that try to select the
contextually appropriate syntactic tags. In Grammatifix this component contains error detection
rules, i.e. rules for the selection of the tag @ERR for those words where an error can be located. In
the example, @ERR lands on stavningen, and all other words get @OK. The words with @ERR,
possibly together with some of the surrounding words, are flagged to the user.

"<mänga>"
"mängen" <ID> DET UTR/NEU INDEF PL NOM @OK

"<engelska>"
"engelsk" A UTR/NEU DEF/INDEF PL NOM @OK

"<länord>"
"lån_ord" N NEU INDEF SG/PL NOM @OK

"<vilkas>"
"vilken" <WH> <CLB> <MD> DET UTR/NEU INDEF PL GEN @OK

"<diskontinuerIiga>"
"diskontinuerlig" A UTR/NEU DEF SG NOM @OK

"<stavningen>"
"stavning" N UTR DEF SG NOM @ERR

The selection of @ERR is performed by rules which use the CG disambiguation rule formalism
(section 2.2). For the above case the rule is in basic outline as shown below. This formulation, a
formally valid CG rule, is simplified in the sense that here are not included any of the additional
conditions used for the avoidance of false alarms (chapter 3).

Error detection rule (simplified):
(@w =s! (@ERR) ;Read: For a word (@w), select (=s!) the error tag (@ERR),

(0 N-DEF) ;if the word itself is a noun in definite form (0 N-DEF), and
(-2 GEN) ;if the second word to the left is a genitive (-2 GEN), and
(-1 A-DEF)) ;if the first word to the left is an adjective in definite form (-1 A-DEF).

The current description contains 659 @ERR rules. After all the @ERR rules have been tried, there
is one final ”rule” that picks @OK for all the remaining words. (No word has the feature DUMMY
referred to in the rule.)

(@w =s! (@OK)
(NOT 0 DUMMY))

;Read: For a word (@w), select (=s!) the @OK tag,
;if the word does not have the feature DUMMY.

What the actual CG components are used for in Grammatifix has been explained above. - To each
@ERR rule is attached (a number that refers to) an error message. An error message consists of an
error title, a short explanation, a correction scheme (when possible), and (behind a button) a longer
explanation of the grammar point mentioned in the title. Below is given the error message, except
for the longer explanation, attached to the @ERR rule presented above. Triggered by the above
example sentence, the position slots (0) and (-2) in the explanation are filled by the words
stavningen and vilkas, respectively. The correction means that the DEF form of the noun in position
(0) is transformed into INDEF, so the correction suggested to the user is stavning.

Error title: Substantivets bestämdhetsform
Explanation: Kontrollera ordformen (0). Om ett substantiv styrs av en genitiv, t.ex. (-2), bör det ståi obestämd form.
Correction: (ONDEF) => (ONINDEF)

31

2.2. Overview of the error detection rule formalism

As noted, Grammatifix error detection (i.e. @ERR selection) rules use the CG rule formalism. For a
full explication of the CG rule formalism see chapter 2 in Karlsson & al. (1995) - as a companion to
the study of that chapter 2, below is given a convenient overview of the rule formalism as applied to
@ERR selection. The example rule is already familiar (see section 2.1). After the overview follow
some more examples of the ways in which the formalism can be used for error detection.

A Constraint Grammar error detection rule consists of four parts:
Domain Operator Target Context condition(s)

Example: (@w =s! (@ERR) (0 N-DEF) (-2 GEN) (-1 A-DEF))
Where:
Domain: @w (any word-form) or ”<...>” (a specific word-form, e.g. ”<ett>").
Operator: =s! (select) or =s0 (remove)
Target: @ERR or @OK.
Context condition: Polarity Position(Carefiil-mode) Set (Linked-position).

Polarity: Positive or negative (NOT). Examples:
(1 N) = the word in position 1 is N (i.e. has a N reading).
(NOT 1 N) = the word in position 1 is not N (i.e. does not have a N reading).

Position:
Target: 0.
Absolute: 1, 2.3 etc., and -1, -2, -3 etc., in relation to the target. Examples:

(1 V) = the first word to the right from the target is V.
(-2 V) = the second word to the left from the target is V.

Unbounded: *1, *2, *3 etc,, and *-l, *-2, *-3 etc., in relation to the target. Examples:
(* 1 V) = a V one or more words rightwards from the target.
(*-2 V) = a V two or more words leftwards from the target.

Linked: R-H, R+2, R-i-3 etc. and *R, and L-1, L-2, L-3 etc. and *L, starting from a word found in
some unbounded position. Examples:
(*1 V R-H) (R-Hl N) = somewhere to the right (*1) from the target is found a V, and the next
word to the right (R-H) from that V is an N (R-H N).
(*1 V L-1) (L-1 N L-1) (L-1 A) = somewhere to the right (*1) from the target is found a V,
and the next word to the left (L-1) from that V is an N (L-1 N), and the next word to the left
(L-1 again) from that N is an A (L-1 A). (Several linkings are possible.)
(*-l AUX *R) (NOT *R INF) = somewhere to the left (*-l) from the target is found an AUX
and to the right (*R) from that AUX there is no INF preceding the target (NOT *R INF).

Careful mode: A position may have C for ’careful mode’, meaning that the condition is satisfied only in an
unambiguous context. Example:
(1C N) = the word in position 1 has no other readings than N.

Set: Anything referred to in the context conditions must initially be declared as a set. Examples:
Set
(GEN
(N-NEU
(A-DEF
(MOD-AUX

Set elements
GEN)
(N NEU))
(A DEF) (A DEF/INDEF))
”kunna" ("vilja” V) ...)

Below are given four more illustrations of the error detection properties of the rule formalism. The
mles here are simplified in the same sense as the (gERR rule in section 2.1, i.e. we ignore here the
additional (sometimes highly specific) context conditions used for false alarm avoidance in the real
mles. - The first mle below illustrates that the domain of a rale can be a specific word form, in
this case ”<ett>”. The C as in 1C stands for careful mode (unambiguous analysis required), used in
a majority of the (§ERR rale context conditions.

Example: £«((§ERR) hogtrycksrygg Jorsiguts norrut.

Error detection rule (simplified):
(”<ett>” =s! (@ERR) ;Read: For the word-form Ett/ett, select (=s!) the error tag (@ERR),

(1C N-UTR)) ;if the next word to the right is an unambiguous utrum noun (1C N-UTR).

32

The above rule uses a (maximally) close context. The following rules show that you can also refer
to more comprehensive contexts. You may want to check e.g. that the whole sentence lacks some
feature, e.g. the feature ’finite verb’ as in the rule below. The rule illustrates unbounded positions,
in this case *-l (anywhere leftwards starting from position -1) and *1 (anywhere rightwards starting
from position 1). Negative conditions (NOT) are often crucial.

Example: Pulsen A//(@ERR)för kraftig.

Error detection rule (simplified);
(@w =s! (@ERR)

(OC V-INF)
(NOT *-l V-FIN)
(NOT *1 V-FIN))

Read: For a word (@w), select (=s!) the error tag (@ERR),
if the word itself is anunambiguous infinitive (OC V-INF), and
if there is no finite verb to the left (NOT *-l V-FIN), and
if there is no finite verb to the right (NOT * I V-FIN).

A common situation is that you want to restrict a search to some specified portion of the sentence.
This is illustrated by the last two examples. In the next example, the rule checks that there is no
verb (especially, no instance of ha) between skulle and skrivits? The mle illustrates the use of
linked conditions, the link provided by an identical hook in the conditions, in this case by *R.
Starting from a supine (skrivits) the first search here is for a modal auxiliary to the left and, when
the first instance (skulle) is found, the second search starts for the non-occurrence of verbs between
the modal auxiliary and the supine.

Example: Såkorn en flicka, som Göran höll av, in på Bibliotekshögskolan i Borå och hade hon inte gjort det skulle
kanske denna artikel aldrig j /?’/vi<j (@ERR).

Error detection rule (simplified):
(@w =s! (@ERR)

(OC V-SUPINE)
(*-l AUX-MOD*R)
(NOT *R V))

;Read: For a word (@w), select (=s!) the error tag (@ERR),
;if the word itself is un unambiguous supine (OC V-SUPINE), and
;if there is a modal auxiliary (AUX-MOD) to the left (*-I) and if to the right (*R) of it
;there is no verb preceeding the word itself (NOT *R V).

In the last example, the word inte gets (@ERR because of its placement after the finite verb in a
subordinate clause."* The mle illustrates that you can link several conditions. The four conditions in
the chain make three pairs of linked conditions, the first pair hooked together by *R, the second pair
by R+1, and the third pair by *R. The sets in the mle are: ADV-CLAUSAL = clausal adverb,
covering a number of common adverbs (e.g. inte, aldrig, alltid) used typically as ”satsadverbial”
(rather than as ”särskilda satsadverbial”); SC = subordinating conjunction; NP-HEAD = nominal
phrase head, e.g. N; V-FIN = finite verb; V = verb.

Example: Söndagens lopp bevisade också att det spelar /nfe(@ERR) n ̂ on roll hur väl förberedd man är.

Error detection rule (highly simplified):
(@w =s! (@ERR) ;For a word (@w), select (s=!) the error tag (@ERR),

(0 ADV-CLAUSAL) ;if the word itself is an ADV-CLAUSAL (i.e. belongs to this set), and
;if there is a SC to the left (*-l) and if to the right (*R) of the SC
;there is a NP-HEAD and the next word to the right (R+1) from the NP-HEAD
;is a V-FlN and if to the right (*R) of the V-FIN
;there is no V preceeding the word itself (NOT *R V), and
;if the next word to the left from the word itself is V-FIN (-1C V-FIN).

(»-1CSC ‘ R)
(*RC NP-HEAD R+1)
(R+IC V-FIN *R)
(NOT *R V)
(-1C V-FIN))

In more complex cases there are several chains of linked conditions, both leftwards and rightwards
from the target, and there may also be any number of conditions on the words in absolute positions.

It is generally assumed, and it would seem to be an uncontroversial point, that grammar error
detection has to be based on syntactic parsing, not necessarily of whole sentences but at least of
those parts where errors are anticipated by the system - for instance, in order to be able to find noun
phrase internal errors, the system would first have to parse noun phrases. (For systems that build on

33

some measure of syntactic parsing see e.g. Sågvall Hein 1998, Knutsson 1998, Cooper 1998, Cornu
& al. 1996, Bustamante & Leon 1996.) It is therefore a noteworthy feature of the Grammatifix error
detection system that it does not build on the output of a syntactic parser. What takes the place of
syntactic parsing as such are the context conditions in the @ERR selection rules; in a way, each rule
does its own syntactic analysis of a specific sequence of elements and, typically, of the context
where it occurs. This is perhaps a burdensome way of writing error detection rules, but, on the other
hand, we are saved the trouble of working on parsing rules and their relaxations (cf Bustamante &
Leön 1996). Anyhow, the conditions for the avoidance of false alarms often being pattern-specific
(cf chapter 3), it is convenient to have pattern-specific error detection rules where to incorporate
such conditions. The more local a phenomenon is, the easier it is to control with CG rules.

2.3. Grammar errors and disambiguation

The relationship between disambiguation and grammar error detection is intricate. On the one hand,
it is obvious that disambiguation is a prerequisite for any effort at precise error detection. On the
other hand, a grammar error may disturb the disambiguation, with either a disambiguation error or
remaining ambiguity as a consequence, and this in turn may disturb the error detection.

This section illustrates the methods we use in Grammatifix in order to overcome effects of
disambiguation disturbances caused by grammar errors. You can either take the disambiguator’s
disturbed output as it is and write error detection rules based on that (methods 1 and 2 below), or
you can make changes in the disambiguation rules as used by the error detector (method 3).
Considering the kinds of Grammatifix rules involved we can speak of three methods: (1) word-
form-specific @ERR rules, (2) @ERR rules for ambiguous words, and (3) adjustment of the
disambiguation rules. The methods are illustrated in turn below.

Word-form-specific @ERR rules. In the following example (used earlier in chapter 2.2), the
correct analysis of the word ett would be DET, so in the Grammatifix analysis shown below we
have a disambiguation error: PRON instead of the intended DET.

Example: £«(@ERR) högtrycksryggjorsiguts norrut.

Lexical analysis of ell:
"ett" <NUM/ART> <ID> DET NEU INDEF SG NOM
"ett" <NUM> PRON NEU INDEF SG NOM

;Coirect analysis in modifler use.
;Coirect analysis in head use.

Grammatifix analysis:
"<ett>"

"*ett" <**c> <NUM> PRON NEU INDEF SG NOM @ERR
"<högtrycksrygg>"

"högtrycksrygg" N UTR INDEF SG NOM @OK

The grammar error in the above example is - using the grammatically proper terms to describe it -
that a neuter determiner (DET) is combined with an utrum noun. In the @ERR rule we can not
describe the error in those terms, however, because the disambiguator discards the DET reading.
What we have here instead is an @ERR rule with the word-form domain ”<ett>” (for the rule
formulation see chapter 2.2). Grammatifix tolerates the disambiguation error (PRON) simply by
ignoring it. Word-form-specific rules are used especially with many common determiners.

Word-form-specific rule can also be formulated so as to cover a set of word forms. In this case
the domain of the rule is @w, and the set is used in e.g. the target position (0). For example, in the
formulation (@w =s! (@ERR) (0 POSS-UTR) ...), the set POSS-UTR covers utmm forms of
possessive determiners, e.g. sin. In the sentence Han har j /m(@ERR) företag att tänka på, the
disambiguator leaves sin three-way ambiguous (DET|PRON|ABBReviation). The ambiguity does
not disturb the error detection because the @ERR rule refers to the set POSS-UTR, i.e. ultimately to
the word form sin in this case.

34

@ERR rules for ambiguous words. When developing the @ERR rules we noticed cases
where words remained ambiguous in some systematic way in certain targeted patterns, and rules
were then formulated so as to accept the ambiguity. The following example illustrates the idea.
When combined with certain verbs (e.g. uppges below) and not preceeded by ha, the word (orsakat
below) whose correct analysis would be supine remains ambiguous between supine and past
participle (<PCP2>, with A as part-of-speech tag). (For the message cf note 3.)

Example: Slarv uppges orsakat{@EKK) branden

Grammatifix analysis:
"<slarv>"

"*slarv" <**c> N NEU INDEF SG NOM @OK
"<uppges>"

"uppge” V PASS PRES @OK
"<orsakat>"

"orsaka" V ACT SUPINE @ERR
"orsaka" <PCP2> A NEU INDEF SG NOM @ERR

"<branden>"
"brand" N UTR DEF SG NOM @OK

What we in this case want to refer to in the @ERR rule is precisely the ambiguity of the target
word. This is done with the description (@w =s! (@ERR) (OC SUPINE/PCP2) (0 SUPINE) ...),
where the sets are (SUPINE/PCP2 SUPINE <PCP2>) and (SUPINE SUPINE). According to the
condition (OC SUPINE/PCP2) the target word must have a SUPINE reading or a <PCP2> reading
or both, and according to the condition (0 SUPINE) it must have at least a SUPINE reading. This
excludes words that are disambiguated unambiguously as <PCP2>, e.g. premodifiers of nouns. The
above target description accepts also words that are unambiguously SUPINE (e.g. skrivit).

Adjustment of the disambiguation rules. It was noted in section 2.1 that the disambiguation
rules of SWECG have been adopted to a large extent as such in Grammatifix, but, importantly,
there are differences. (At present there are some 50 points of difference; if it was not for the two
methods discussed above, there would have to be many more.) The most important ones of the
differences involve the following scenario. Using the original SWECG disambiguation rules we
noticed that certain common open-class words, lexically ambiguous in some systematic way,
regularily lost their intended reading in a certain error pattern where the intended reading would
have been needed for the @ERR rule to apply. Disambiguation rules were then adjusted in
Grammatifix for the recovery of the needed reading. An illustration follows.

It was noticed that common indefinite adjective forms (e.g. kali ”cold”) with a competing
indefinite noun reading (kail ”vocation”) regularily lost their adjective reading in the error pattern
GEN + A-INDEF(@ERR) + N-INDEF. In the @ERR rule for this pattern, the target word is
described as (@w =s! (@ERR) (OC A-INDEF) ...). The rule detected the error e.g. in Hennes
vflc^e/-(@ERR) hand, where vacker is A-INDEF, but in the following example the mle did not
detect the error because the disambiguator selected the N reading of kail instead of the A reading
presupposed by the rule.

Example: Hennes kali hand

Original SWECG disambiguation:
"<*hennes>"

"hon" <**c> <PERS-SG3> DET UTR DEF SG GEN
"<kall>"

"kail" N NEU INDEF SG/PL NOM
"<hand>"

"hand" N UTR INDEF SG NOM

35

In SWECG the N analysis above is understandable because Hennes + N-INDEF does, whereas
Hennes + A-INDEF does not, make grammatical sense. In Grammatifix, in order to detect the error,
we did the following. First, we defined a set, KALL-ETC, covering words that are ambiguous
between A and N in the same way as kail, e.g. besk, briljant, kall, intern, sval, all in all some 60
common adjectives. Then (with due attention to additional details), we wrote a rule specifically for
the disambiguation of the KALL-ETC words as A in the context (-1C GEN) (1C N-INDEF). The
same @ERR rule that detected the error in Hennes vacker hand, now detected the error also in
Hennes kall hand, as shown below.

Grammatifix analysis:
"<hennes>"

"*hon" <*‘c> <PERS-SG3> DET UTR DEF SG GEN @OK
"<kall>"

"kail" A UTR INDEF SG NOM @ERR
"<hand>"

"hand" N UTR INDEF SG NOM @OK

Using the methods illustrated above we have come to grips with a number of disambiguation
disturbances caused by grammar errors, but we are also aware that there are many cases that we
have not tackled yet. Some amount of disambiguation errors, be they due to grammar errors or other
factors, will always remain a feature of the output of a computational analyser.

3. Notes on the process of refining the error detection rules

The challenge for an error detector is not only to detect errors but also to avoid false alarms. This
chapter describes work done in Grammatifix on the avoidance of false alarms.

The issue can be introduced by way of a two-point example. (1) You want to detect the error in
the phrase vilkas diskontinuerliga itav«/«ge«(@ERR), so you write the rule (@w =s! (@ERR) (0
N-DEF) (-2 GEN) (-1 A-DEF)), presented in chapter 2.1. (2) You become aware of cases where
you want to avoid false alarms, e.g. Strindbergs Röda rummet(@OK) and Dostojevskijs berömda
Idioten(@OK), so you add conditions to the @ERR rule to the effect that it does not apply in these
cases. The two simple conditions added to the above rule due to these two cases are (NOT -1 CAP)
and (NOT 0 CAP), respectively. The set CAP refers to words written with an initial capital letter,
e.g. Röda and Idioten. It is not feasible to list all proper names (e.g. titles of literary works).

The two points in the above introduction correspond to two stages in the process of developing
the @ERR rules: (1) constructing a set of basic, rather unconstrained rules, and, based on corpus
testing, (2) refining the basic rules. The basic rules were ”rather unconstrained” in the sense that
they might flag (almost) all instances of a potential error pattern - say, all instances of a noun in
definite form preceeded by a genitive, or all instances of detta in front of an utrum noun. It was
obvious even prior to testing that, of those instances, quite a number would be false alarms. False
alarm cases are often so marginal structurally that they easily escape the rule writer’s intuitive
attention. The purpose of corpus testing was to bring false alarm cases more effectively into our
attention, the task then being to refine the rules so that false alarms be eliminated.

The main corpus we used for the purpose explained above was a 1.6 million word collection of
published texts, mainly from newspapers and periodicals. (The corpus was compiled by Fredrik
Westerlund.) The testing procedure was as follows: the corpus was divided into five parts, and with
each part we ran through the same three steps as described below for part 1, except that after part 5
there was no ”next part of the corpus” to apply the refined mles to.

The basic rule set applied to part 1 of the cotpus
• Each @ERR alarm studied; good or false?
• False alarms eliminated as far as reasonable
• Result: a refined rule set, applied to the next part of the corpus

36

The main point here is that we eliminated false alarms, for examples see below. The reason for
treating the corpus in parts was that we wanted to verify that the precision of the rules (ratio of good
alarms to all alarms) was improving after each round of rule refinements. It may be noted that when
the basic rule set, prior to any refinements, was applied to part 1 of the corpus, the precision was
38%. The precision of the current rule set is reported on in chapter 4.

Below are given some examples (1-9) where a Swedish error detector, if not careful enough in
assuming NP internal error patterns, might be tempted into giving false alarms. As for Grammatifix,
this is a small sample of cases where the unconstrained rules initially gave a false @ERR alarm but
where the refined rules now give @OK (no false alarm). Some notes follow. What these examples
signify is an atomistic kind of work process, i.e. cases to be taken into account individually.

(1) Sveriges Televisions Antikrundan(@OK) harslagit...
(2) ... Carlos Menem beordrade i fredagsflottan{@OY^) att avföra ...
(3) ... till dess éarn«f(@OK) fyller 18 cr.
(4) ... har ett slags konstnärlig{@OK) frihet a tt...
(5) ... som inte tyckte om sin fore </cffa(@OK) flickväns nye man.
(6) ... presenterat en (@OK) handfuil(@OK) program med samma ...
(7) Obetaid(@OK.) omslags- eller sällskapsflicka ...
(8) Walters far är gammelkommunisten för vilken demokratin(@OK) börjar utanför dörren.
(9) Fråi början var det storaproblem(@OK) att få i Johan tillräckligt med mat.

Notes on (1-9);
- The potential false alarm sources in (1-9) are: a noun in definite form is preceeded by a a word in

genitive form (1-3); an adjective in indefinite form is preceeded by a word in genitive form (4);
an utrum noun is preceeded by detta (5); a neuter noun is preceeded by en and an utrum adjective
{handfull) (6); a neuter noun is preceeded by an adjective in utrum form (7); a noun in definite
form is preceeded by vilken (8); a noun in indefinite form is preceeded by det and a potential
definite form of an adjective (9).

- Example (2). The best way to avoid a false alarm in (2) is probably to treat i freadgs as a fixed
syntagm, i.e. "i_Jredags" ADV, cf the notes on preprocessing in chapter 2.1.

- Example (3). This example can be used to illustrate a kind of chain reaction that may occur as a
consequence of adding a condition to a rule. First, a general rule for GEN + N-DEF(@ERR)
detects the error e.g. in Onsdagens ftnalen{@ERR) visas i TV. In that general mle we have added
the condition (NOT -1 DESS) in order to avoid a false alarm in (3). Then, in order to detect the
error e.g. in Dess framtiden{@ERR) är osäker, we have written a rule specifically for dess + N-
DEF(@ERR), and (only) in that rule we use the condition (NOT -2 TILL), again in order to avoid
a false alarm in (3). This kind of chains may sometimes be the only way of achieving the desired
pattern- or word-specific effects.

- Example (6). The word handfull, classified as an adjective in SWETWOL, was excluded from the
adjective slot in the relevant @ERR rules for the avoidance of false alarms in cases like (6) (quite
frequent in texts). A syntactically more perceptive solution would have been to provide handfull
with a noun reading (cf ett antal program).

- Example (8). In (8) and (9), more than in the previous examples, the false alarm conditions are
clause-structurally oriented. (8) can be compared with the following sentence where Grammatifix
properly detects the error: Saab var riktmärket for vilken bilmodellen{@ERR) var och en skulle
ha. In this sentence the sequence vilken + N-DEF is followed by a NP boundary {var och en),
whereas this is not the case in (8), this distinction taken into account in the mle conditions.

- Example (9). The single most problematic word for Swedish (agreement) error detection cum false
alarm avoidance is det. This is because of the many uses of det as an independent clausal element
particularily in a position after the finite verb. Let us consider one of the potential error patterns,
viz. the one exemplified by det stora problem in (8) {det + A-DEF/INDEF-SG/PL -i- N-NEU-
INDEF-SG/PL). The relatively safest clausal position for assuming an error, i.e. the position with
the least chances for false alarms, is the initial pre-finite-verb position (= PRE-FV), e.g. Det stora

37

;jroZ)/e/M(@ERR) har lösts. The next safest position for assuming an error is the post-non-finite-
verb position (= POST-NONFV), e.g. Hon har löst det stora proi)/e/w(@ERR). More conditions
are pertinent in POST-NONFV than in PRE-FV. You need to check that the non-finite verb is not
ditransitive, cf. Ni har vållat det stora problem(@OK), and also that no relative clause follows, cf
löst det stora problem(@OK) som ni funderat på. The least safe position for assuming an error is
the post-finite-verb position (= POST-FV). In addition to the possibilities in POST-NONFV, in
POST-FV you have to consider that det may function as subject, e.g. Här framkallar det stora
problem(@OK), or as formal subject, e.g. (8) and Här finns det stora />rofc/e/«(@ERR). Because
such POST-FV uses of det are so common, and in any case much more frequent than erroneous
uses, it would seem to be motivated to prevent the @ERR rules here concerned from applying in
POST-FV. However, not all POST-FV contexts are equal. For instance, it is relatively safe to
assume an error if the finite verb is an auxiliary and a non-finite verb follows, e.g. Nu har det
stora pro6/e/n(@ERR) lösts. This is more or less as far as we have come with the description of
the det pattern here discussed. - A clause construction where Grammatifix at present misses an
error is exemplified by Hennes assistanter löste det stora problem(@OK, missed error). Crucial
factors here are that the clause-initial constituent is a (non-adverbial) noun phrase {Hennes
assistanter), and that the finite verb is monotransitive {löste). On the basis of that information it
would be motivated to flag problem as @ERR in the above example, but, as noted, this has not yet
been worked into the Grammatifix rule set.

Users soon get tired of a language checker that makes a lot of false alarms. In a practical grammar
checker it is therefore motivated to make false alarm avoidance a priority even at the expense of
errors being missed - but there is a limit, of course. It was noted above that, in the corpus used for
rule refinement purposes, we tried to eliminate false alarms ”as far as reasonable”. This eludes exact
definition, but the flexible idea is that we do not insist on conditions for false alarm avoidance if
they would unduly compromise the rule’s error detection power in unintended contexts. To
illustrate, below are given two examples of a problematic construction, ellipsis of the verb gapping
type. Grammatifix makes here false alarms: it believes that de andra medlemmar is a phrase with a
definiteness form error, and that den andra hormonet is a phrase with a gender agreement error.

Nitton av dem ska ha varit medlemmar av Umma-partiet och de andra me(//emmar(@ERR, false alarm) av det
förbjudna arabsocialistiska Baathpartiet.
Ena kammaren inneh åler destillerat vatten, och r/en(@ERR, false alarm) andra hormonet.

It would be possible to eliminate many of the false alarms due to ellipsis, e.g. by using conditions
that refer to a coordinator or a comma in the left context. However, such conditions would not be
precise enough - they would prevent the rules from making valid detections in many contexts that
have nothing to do with ellipsis. False alarms due to ellipsis are not reasonably to be avoided, the
ultimate reason being that ellipsis is too elusive for us to identify exclusively.

A grammar checker is a compromise between error detection and false alarm avoidance. One
way of describing such a compromise is to provide test results on precision and recall (see the final
chapter). In the end, the user is the arbiter of whether the compromise is acceptable or not.

4. Performance tests

Introduction. For this presentation, we tested our set of grammar error detection rules (i.e. @ERR
selection rules) for overall precision and recall with texts new to the system. Precision and recall
can here be defined as follows (cf Bemth 1997:159, Paggio & Music 1999:278).

Precision: the ratio ’good alarms / all alarms’
Recall: the ratio ’detected errors / all errors’

38

Precision is a measure of how good the checker is at avoiding false (unintended, irrelevant) alarms,
and recall is a measure of how good the checker is at identifying the errors in a text - the higher the
recall and the precision, the better. As the term ’error’ is used here it covers, in addition to
undisputable grammar violations (e.g. the verb chain kan + blir in Då kan bland annat så kallade
utbildningskonton blir aktuella.), also constructions targeted by Grammatifix which, acceptable to
some, are not regarded as impeccable by everybody (e.g. the verb chain kommer + sätta in De
kommer sätta stenhårt tryck på oss.). We are here concerned with grammatical errors, so nothing
will be said about e.g. spelling errors (the concern of a spell-checker) and writing convention errors
(the concern of a separate set of Grammatifix rules, cf chapter 1).

There is no standard for how the performance of a (Swedish) grammar error detector should be
evaluated. One issue here is the kind of test data used. Research groups often seem to use their error
corpuses, i.e. collections of sentences containing errors of the types the system is concerned with
(cf Domeij & Knutsson 1999, Paggio & Music 1998, Comu & al. 1996, Bolioli & al. 1992). In the
tests here reported we used running newspaper text. Results based on such data are not comparable
to results based on a collection of errors. Especially, running newspaper text, with a high proportion
of grammatically correct sentences, puts precision to a hard test. - A fundamental kind of problem
is also that there are no agreed-upon criteria for what should count as a grammar error or as a good
alarm (in border-line cases). A fcrther factor that would complicate comparative evaluation is the
variation in the error types targeted by different systems, e.g. where one system tries to detect only
easiest-to-identify errors while another system tries to detect also more-difficult-to-identify errors.

In anticipation of more carefully planned and documented test schemes - schemes that would
address open issues such as the ones noted above - we present below our precision and recall tests.

Precision. The test data is a 1,000,504 word extract from the Swedish newspaper Göteborgs­
posten 1998. Of the grammatical categories that Grammatifix has checks on (presented in Arppe &
al. 1999, listed also in Arppe in this volume) two were excluded from the test. These two are ’no
verb’ (e.g. Ungefär som en kansler.) and ’no finite verb’ (e.g. Göra independentfilm till exempel).
Grammatifix points out these properties of sentences, but in almost all cases no error is involved.
These properties are rather frequent and easy to detect reliably.^

The test data was analysed by the @ERR selection rules (in Unix); each alarm was studied as
to whether it was good or false; the numbers of good and false alarms were used for calculating the
precision rate. The result is given below, both as a percentage and as absolute figures.

Precision of Grammatifix in a 1,000,504 word extract from Göteborgs-Posten 1998:
Good alarms False alarms Precision

374 160 70% (374/374+ 160)

Is 70% a good or a bad overall result? It is hard to say as we have not found similar test reports to
compare with. What the result would be with other types of text remains an open question, too.

Perhaps the most relevant point to make concerning the 374 good alarms is, simply, that simple
grammar errors do occur even in published texts produced by native writers. We may illustrate with

^some noun phrase internal agreement errors (1-9 below) detected by Grammatifix in the test data. ̂
These are typical agreement violations in the sense that each of them involves only one agreement
feature, gender in (1-3), number in (4-6), and definiteness in (7-9).

(1) ... som beskriver världen utifråx e/i(@ERR) annan(@ERR) paradigm än till exempel Newton och Descartes.
(2) ... blev i stället en stort(@ERR) besvikelse för Pernilla Wiberg.
(3) Det är ju utlänningar i nästan varenda(@ERR) b i nuförtiden.
(4) Men påde{@ERR) mest framskjutna platsen i montrarna stå- det mer rustika porslinet...
(5) Mir har under d£f(@ERR) senaste å-en drabbats av flera svåa olyckor.
(6) Polisen gjorde förre fordonskontroll(@ERR) förra å e t ...
(J) 1 g å häktades den 32-åige stockholmare(@ERR) vid Stockhoms tingsrätt, misstänkt för grovt häleri.
(8) ... inte hade lyckats uppnå samma ekonomisk(@ERR.) utveckling.
(9) ... utan att n^ondera familj{@ERR) förstod varför katten blev allt fetare.

39

The general-level sources for the 160 false alarms in the test data are: lexical gaps or errors (46 out
of 160); disambiguation errors (18); not accurate enough @ERR selection rules (96). Some of these
false alarms will be easy to eliminate, the easiest ones being among those due to a lexical source,
e.g. the word partnerskap, treated as SG in the current SWETWOL (and in SAOL), could be tagged
as SG/PL for the elimination of the false number agreement alarm in Humankapitalet skyddas
lämpligen genom n>’a(@ERR) partnerskap vid företagande (...). On the other hand, some of the
false alarms are such that we do not consider it reasonable even to try to avoid them, e.g. the
ellipsis-induced (cf chapter 3) false number agreeement alarm in Antal toaletter: tre, varav två
tjeJ(@ERR) och en kill.

Recall. The test data is a 87,713 word extract from Göteborgs-Posten 1998. Two linguists (the
present author and Eva Orava, also at Lingsoft) read the extract, marked all the grammar errors they
found, and discussed problem cases. What they ended up with was 135 grammar errors distributed
over different categories as follows: agreement errors (31), most of them NP-intemal (22), the rest
(9) involving complements, postmodifiers, and anaphoric pronouns; verb form compatibility errors
(28), especially violations of verb chain internal constraints; preposition errors (26); missing or
superfluous endings (21), e.g. genitive, passive, or adverb endings; compounds written as separate
words (8); sentence structure errors (8); word order errors (3); others (10).

Of the 135 grammar errors found by the linguists in the test data, 55 belong to the categories
targeted by Grammatifix^. Any computational grammar checker is, of course, only a partial
grammar checker; no current systems have anything like comprehensive checking of, say, sentence
structure, anaphoric pronoun agreement, missing endings, and even preposition use (in other than
some types of fixed phrases perhaps). Now, is it more to the point to calculate recall in relation to
’all errors in all the error categories’, or in relation to ’all errors in the error categories targeted by
the system’? The results of both calculations are given below. Recall in relation to the targeted
categories is an overall measure of how well the rule set does what it tries to do.

Recall of Grammatifix in a 87,713 word extract from Göteborgs-Posten 1998:
All errors Detected

in text errors Recall
Targetted error categories; 55 47 85Vo (47/55)
All error categories: 135 47 35% (47/135)

The general-level sources for missed errors in the targeted categories (in the test data, 55-47 = 8)
are the same as those for false alarms, i.e. lexicon, disambiguation, and @ERR rules (cf above).
’Not accurate enough’ @ERR rules means here that errors are missed due to overly prohibitive
conditions for the avoidance of false alarms (in the test data, 5 of the 8 misses). One of the problems
associated with the recall test here reported is the small size of the test data.

Notes

' For spell-checking Lingsoft has a separate program (Orthografix).
 ̂The part-of-speech tags referred to in this paper are: A = adjective, ADV = adverb, DET = determiner, N = noun,

PRON = pronoun, SC = subordinating conjunction, V = verb. Nominal minor feature tags include; DEF = definite,
GEN = genitive, INDEF = indefinite, NOM = nominative, NEU = neutrum, PL = plural, SG = singular, UTR =
utrum. Other tags and set names, if not transparent, will be explained when referred to.

’ The construction ’modal auxiliary -i- supine without ha' (e.g. skulle ... skrivits) is not regarded by everybody as
recommendable in polished style. The Grammatifix message is that, in polished style, a modal auxiliary is combined
rather with ha + supine than with supine alone. Cf Wellander (1973:139).

'' There are differences between subordinate clauses as to the usability of the word order ’finite verb -i- clausal adverb’
(Teleman & al. 1999:537-9). In formal written Swedish, however, the order ’clausal adverb -i- finite verb’ can be
regarded as recommendable in all types of subordinate clauses. Cf Reuter (1996:8), Aberg (1995:34), Dagens
Nyheters Skrivregler (1997:30).

’ In the precision test data, the rules made 7145 ’no verb’ alarms, and 321 ’no finite verb’ alarms. The latter ones were
studied more in detail: of the 321 alarms, 312 were good, i.e. cases where the sentence included a non-finite verb but

40

no finite verb. The precision for this alarm type was 97% (312/321). A few real errors detected by the rules (e.g.
Pulsen bli för kraftig) were ignored in the precision test as a consequence of excluding the alarm types.

‘ Of the 374 good alarms, 134 were concerned with noun phrase internal agreement. The other big group was verb form
compatibility with 176 good alarms; 99 of these were supines without ha, e.g. kunde den/dtr(@ERR) (cf note 3).

’ Among these 55, the two big groups were noun phrase internal agreement violations (22) and verb chain internal
compatibility violations (21).

References

Arppe, Antti (this volume). Developing a grammar checker for Swedish.
Arppe, Antti, Juhani Bim, and Fredrik Westerlund 1999. Lingsoft’s Swedish Grammar Checker.

http://www.linEsoft.fi/doc/swegc/.
Bemth, Arendse 1997. Easy English: A Tool for Improving Document Quality. Proceedings o f the

Fifth Conference on Applied Language Processing, Washington, 159-165.
Bolioli, Andrea, Luca Dini, and Giovanni Malnati 1992. JDII: Parsing Italian with a Robust

Constraint Grammar. Proceedings o f the 15''' International Conference on Computational
Linguistics, Nantes, 1003-1007.

Bustamante, Flora Ramiréz and Fernando Sanchez Leon 1996. GramCheck: A Grammar and Style
Checker. Proceedings o f the 16''' International Conference on Computational Linguistics,
Copenhagen, 175-181.

Bim, Juhani 1998. Swedish Constraint Grammar: A Short Presentation. httD://www.lingsoft.fi/doc/
swece/.

Cooper, Robin 1998. Finite state grammar for finding grammatical errors in Swedish text, http://
www.linE.BU.se/~svlvana/FSG/.

Cornu, Etienne, Natalie Kubler, Franck Bodmer, Francois Grosjean, Lysiane Grosjean, Nicolas
Léwy, Cornelia Tschichold, and Corinne Tschumi 1996. Prototype of a second language
writing tool for French speakers writing in English. Natural Language Engineering 2, 211-
238. Cambridge University Press.

Domeij, Rickard and Ola Knutsson 1999. Granska - ett effektivt hybridsystem for svensk
grammatikkontroll. http://www.nada.klh.se/theorv/Droiects/granska/rapporter/nodalidaabstrakt.html.

Karlsson, Fred, Atro Voutilainen, Juha Heikkilä, and Arto Anttila (eds.) 1995. Constraint
Grammar. A Language-Independent System for Parsing Unrestricted Text. Berlin and New
York: Mouton de Gruyter.

Knutsson, Ola 1999. Granskas regelspråk. At: http://w\vw.nada.kth.se/theorv/Droiects/granska/.
Paggio, Patrizia and Bradley Music 1998. Evaluation in the Scarrie project. Proceedings o f the First

International Conference on Language Resources & Evaluation, Granada, 277-282.
Reuter, Mikael 1996. Reuters rutor 2. Esbo: Schildts.
SAOL, Svenska Akademiens ordlista över svenska språket. Tolfte upplagan. 1998. Norstedts.
Sågvall Hein, Anna 1998. A Chart-Based Framework for Grammar Checking. Initial Studies.

Proceedings o f the 11''' Nordic Conference on Computational Linguistics, Copenhagen, 68-80.
Teleman, Ulf, Staffan Hellberg, and Erik Andersson 1999. Svenska Akademiens grammatik 4.

Norstedts.
Wellander, Erik 1973. Riktig svenska. Stockholm: Esselte studium.
Åberg, Gösta 1995. Hur ska det heta? Tidens lilla språkriktighetslexikon. Stockholm: Tidens förlag.

http://www.linEsoft.fi/doc/swegc/
http://www.lingsoft.fi/doc/
http://www.linE.BU.se/~svlvana/FSG/
http://www.nada.klh.se/theorv/Droiects/granska/rapporter/nodalidaabstrakt.html
http://w/vw.nada.kth.se/theorv/Droiects/granska/

Pivot alignm ent

Lars Borin
Department of Linguistics

Uppsala University
Lars.Borin@ling.uu.se

Abstract
Word alignment of parallel texts is typically carried out using many kinds of knowledge,
or information sources, in concert, i.e., it is profitably viewed as a kind of cooperative
process, where e.g. distribution, string similarity, cooccurrence statistics, and other in­
formation sources are used together. We investigate a novel such information source in
this paper, namely the use of a third language as a ‘pivot’ to increase alignment recall,
hence the name pivot alignment. The results of the preliminary experiments reported here
indicate that pivot alignment increases word alignment recall, without sacrificing preci­
sion. We conclude that the method is well worth exploring further, by examining more
languages and language combinations.

1 Introduction
Parallel texts aligned on the word level have a number of potential uses. Given suitable
browsing and search tools, linguists can use aligned parallel corpora in the same way
that they already use monolingual corpora, i.e. as a rich source of authentic language
data, in this case data on translation equivalence (see, e.g., Olsson & Borin forthcom­
ing). Bilingual lexicography, translator training, and foreign language instruction all
stand to benefit from the use of such corpora. In computational linguistics, the applica­
tion which springs to mind first is the automatic or semi-automatic extraction of trans­
lation equivalents for machine translation systems from word-aligned parallel texts, but
there are also possible applications in the fields of computer-assisted language learning
and cross-lingual information retrieval.

The ETAP project is a parallel translation corpus project funded by the Bank of
Sweden Tercentenary Foundation. The aim of this project is to create an annotated and
word-aligned multilingual translation corpus, which will be used as the basis for the
development of methods and tools for automatic extraction of translation equivalents
on the word and phrase levels (see Borin forthcoming a).

2 Word alignment as a cooperative process
Sentence alignment is a fairly well-understood problem, with state-of-the-art sentence
alignment algorithms routinely achieving accuracies close to a hundred percent,' even

mailto:Lars.Borin@ling.uu.se

42

without the use of language-specific information. The best word alignment systems, on
the other hand, typically achieve a recall in the 25 to 45 percent range in the language-
independent case (but with high precision, typically over ninety percent).^

In common with many other nontrivial linguistic tasks, the decisions of which
words to link up with each other, i.e. the ability to make correct word alignments,
seem to draw on many different knowledge sources simultaneously. The word align­
ment system that we use in the ETAP project, the UWA (Uppsala Word Aligner; see
Tiedemann this volume), uses several kinds of information in an iterative word align­
ment process, where a text-specific translation dictionary is accumulated, and aligned
units are removed after each step. The following kinds of information are used to align
words (this is an extremely simplified account of how the UWA works; see Tiedemann
this volume for details).

• single-word ‘sentences’, which may be the result of previous removals of words
from multi-word sentences^

• identical and highly similar words

• distributionally similar words

Additionaly, language-internal cooccurrence statistics are used to find multi-word units
(‘phrases’) in both languages, which can then be aligned in the same way as single
words, while lowercasing and stemming reduce the number of types, thus increasing
the average type frequency, making statistical methods more effective.

Thus, we see that the UWA uses many kinds of knowledge to achieve its objective.
In the same spirit, we have explored the possibilities of combining word alignment
and part-of-speech (POS) tagging (Borin forthcoming c), as well as combining differ­
ent POS taggers using linguistically motivated rules, so that the combination achieves
greater accuracy than the best individual tagger (Borin forthcoming d).

All this have led us to a view of word (and phrase and sentence) alignment, and
also POS tagging, as a cooperative process, where many independent ‘experts’, using
various kinds of information sources, access and modify the same, increasingly richer
linguistic representation, performing POS tagging, alignment, and possibly other kinds
of linguistic analysis and annotation as well, utilizing the relevant information that
other experts have left there.^

We already know that distributional parallelism, language-internal and cross­
language coocurrence, string similarity (also both between and within languages), and
part of speech are useful information sources for word alignment (Tiedemann 1998,
this volume, forthcoming; Melamed 1995,1998; Borin forthcoming c).

The view of word alignment as being achieved by the use of many (mutually inde­
pendent) kinds of knowledge in concert naturally makes one look for additional such
kinds of knowledge, information sources that could be used to further improve word
alignment. This paper discusses one such source which to the best of my knowledge
has not been considered earlier, namely the use of a third language in the alignment
process. Perhaps the reason that it has not been considered earlier is that it is possible
only with mu/f/lingual parallel corpora, and—for obvious reasons—not with bilingual

43

corpora, which has been the kind of parallel corpus that has received most attention
from researchers in the field.

3 Pivot alignment
Since the third language acts as, as it were, a pivot for the alignment of the two other
languages, we refer to the method as pivot alignment, and it works as follows, with
three languages, e.g. Swedish (SE), Polish (PL) and Serbian-Bosnian-Croatian (SBC),
where the aim is to align Swedish with the other two languages on the word level.

1. Perform the pairwise alignments SE—>PL, SE—»SBC, PL^SBC, and
SBC—PL;^

2. Check whether there exist aligned words on the indirect ‘alignment path’
SE—>SBC—>PL, which are not on the direct path SE—*PL. If there are, add them
to the SE—PL alignments;

3. Do the same for the indirect path SE—PL—SBC and the direct path SE—SBC.

In order for this procedure to work, we must believe that

1. there will be differences in the SE—PL and SE—SBC alignments, and

2. that these differences will ‘survive’ the PL—SBC and SBC—PL alignments.®

In other words, the indirect alignment path must add information to the one yielded
by the direct path. If we can conceive of some plausible reason for this to happen,
we may believe in the first hypothesis. One such good reason could be the fact that,
as mentioned earlier, the word alignment system used, UWA, utilizes several kinds of
information to align the words in the two texts. Thus it is fully conceivable, e.g., that
distributional information will provide one of the links and word similarity the other in
a three-language path, such as SE—PL—SBC, while synonymy or polysemy (i.e., dis­
tributional differences) prevents the first link to be made on the direct path SE—SBC.
Intuitively, this is perhaps the most likely situation in this particular example, since
Polish and Serbian-Bosnian-Croatian are fairly closely related Slavic languages which
share many easily recognizable cognates, while both are much more remotely related
to Swedish.

4 An experiment with pivot alignment
To test these hypotheses, we performed a small experiment with pivot alignment, as
follows.

1. The ETAP IVTl corpus was used for the experiment. This is a five-language
parallel translation corpus consisting of text from the Swedish newspaper for
immigrants (Invandrartidningen-, the English version is called News and Views).
Swedish is the source language, and the other four languages are English
(EN), Polish, Serbian-Bosnian-Croatian and Spanish (ES). The IVTl corpus has
roughly 100,000 words of text in each language;

44

2. The PLUG Link Annotator (Merkel 1999; Merkel et al. forthcoming), was used
to produce evaluation standards for the following alignment directions: SE—>PL,
SE—»SBC, PL—»SBC, SBC—»PL in one group, and SE—»EN, SE—»ES, EN—»ES,
ES—»EN in the other. A total of 500 words were sampled randomly from the full
Swedish source text, and the standards with Swedish as the source were made
manually by me from this sample. The target units of these standards were then
used as the basis for the manual establishment (again by me) of the various target
language alignment evaluation standards. Because of null links, misaligned or
differently aligned sentences, etc., the size of the evaluation standards varies
from 366 to 500 words;

3. In addition to the already word aligned SE—»{EN,ES,PL,SBC), we aligned the
other language pairs necessary for the experiment;

4. The word link evaluation tool of the Uplug system, a parallel corpus tool­
box of which the UWA is one component (see Tiedemann forthcoming),
was used to calculate recall and precision for each language pair (i.e.,
SE^{EN,ES,PL,SBC}) word alignment. In addition to this, we manually ex­
tracted the additional links, if any, that would be found on the indirect path
through the third language.

The results of the experiment are shown in Table 1.

languages found links in recall correct partly not precision, precision
aligned links Standard (C) corr. {PC) corn correct C + PC

se-sbc 82 429 19.11% 57 17 8 69.51% 90.24%
+ se-pl-sbc 1 1

= 83 19.35% 58 17 8 69.88% 90.36%
se-pl 57 370 15.41% 37 14 6 64.91% 89.47%

+ se-sbc-pl 4 4
= 61 16.49% 41 14 6 67.21% 90.16%

se-es 87 454 19.16% 65 14 8 74.71% 90.80%
+ se-en*es 8 7 1

= 95 20.92% 72 14 9 75.79% 90.53%
se-en 95 442 21.49% 70 14 11 73.68% 88.42%

+ se-es-en 4 2 2
= 99 22.40% 72 14 13 72.73% 86.87%

Table I: Pivot alignment experiment results (null links in standard not counted)

The “partly correct” alignments are those where part(s) of a multi-word-unit, but not
all of it, have been correctly aligned. As you can see in Table 1, the potentially thorny
issue did not arise of how to count a partially correct link added by pivot alignment.

We see that only a few units survived the trip through two languages, but out of
those that did, most contributed positively to the total result. SE^ES and SE—»PL
were the alignments which benefitted most from pivot alignment (through EN and
SBC, respectively), while the result was insignificant for SE—»SBC and perhaps even
slightly detrimental in the case of SE—»EN.

45

5 Discussion
The material examined is fairly small, and it would be fair to say that the results pre­
sented above are best treated as suggestive, rather than conclusive. I think we may be
said to have made a case for the usefulness of pivot alignment, as it tended to increase
the overall recall, without lowering precision. In other words, the links added by pivot
alignment tend to be good links.

Several ways suggest themselves in which the research presented here could be
extended to see whether the case holds upon closer scrutiny.

In the results, there are differences between languages, even in this small material,
but not exactly those that we had expected. Recall that we speculated (at least implic­
itly) that using a language closely related to the target language as a pivot would be
more effective than using a combination of relatively more remote languages. Thus,
we would have predicted that SE—>PL and SE—»SBC would come out on top in Table
1, which obviously was not the case. This could be due to chance, but also to some
other factor. There is also the circumstance that English is actually very close to the
Romance languages (of which Spanish is one) in its vocabulary, so that we may in fact
have been comparing two quite similar cases.

To investigate this, we intend to perform the same kind of experiment with the
other possible pivot languages in the IVTl corpus, still using Swedish as the source,
e.g. aligning Swedish and Polish, using Spanish as pivot. In this way, genetic factors
should be more clearly discernible. We will also include at least Finnish in future
experiments, as a representative of another language family (all the languages in the
experiment were Indo-European languages; Finnish is the only non-Indo-European
language included in the IVT corpus at present).

The planned experiments where the same language pair will be aligned with dif­
ferent pivot languages will make it possible to investigate whether pivot alignment is
‘cumulative’, i.e., whether

1. each pivot language contributes positively to the alignment, and

2. different pivot languages contribute different additional alignments.

In this case, we would have, not only pivot alignment in general as an additional ‘ex­
pert’, but each new language in a multilingual parallel corpus could then, potentially,
make the annotation of all the other languages in the corpus richer.

The Plug Link Annotator is a very useful tool, without which the experiments de­
scribed here could not have been carried out. It was originally developed with another
goal in mind, however, that of evaluating word alignment systems. Hence, it is not
surprising that we found, in the course of our work, that the PLA could be made even
more useful for our purposes. Two modifications in particular would facilitate further
experiments with pivot alignment, one more trivial and one more fundamental:

1. The sampling procedure should be modified to exclude function words. They
tend to have a high text frequency, and thus make up a sizeable part of any ran­
dom sample. Most of the null links in the experiment reported here resulted from
function words, the typical case here being that of personal pronouns in Swedish,

46

where the equivalent information is normally expressed by person marking on
the verb in Polish, Serbian-Bosnian-Croatian and Spanish, and only rarely by a
separate pronoun.

2. At the moment, at most one word is sampled in each sentence alignment unit.
For our purposes, it would be better if sentences were sampled, instead of words,
and that the annotator be allowed to link as many words as desired in the sen­
tence alignment unit of the sampled sentence. This would allow us to follow
up on the misaligned source language units, which at present cannot be tracked
through the pivot language, because the ‘sample’ for the pivot language is made
up of the correct target words only. As the UWA aligns words only within sen­
tence alignment units, working with sentences instead of words as sampling units
would hopefully make it possible to follow up also on incorrect alignments.

A simple approximation in the first case would be to exclude high-frequency items
from the sampling, if it is deemed desirable to avoid introducing language-specific
information. This is a comparatively simple measure to take, and certainly one that we
will take in the next round of experiments with pivot alignment.

The second problem requires for its solution a major redesign of the Plug Link
Annotator, which is something that might be worth undertaking in case further experi­
ments confirm the preliminary conclusions reached here.

It would seem that pivot alignment is suited mainly for parallel translation corpora,
and not for the kind of corpora sometimes called simply parallel corpora, sometimes
comparable corpora, i.e., corpora, where ‘the same kind’ (comparable with regard to
topic, style, etc.) of text material has been collected in several languages, and mainly
statistical (distributional) methods are used to locate equivalent items in the different
language versions. It is possible that (a kind of) pivot alignment could be used also
with comparable multilingual corpora, and this is certainly an idea worth pursuing.

6 Conclusion
In conclusion, we may say that the results of the experiments presented here are encour­
aging, although not conclusive. It turned out that the links added by pivot alignment
were largely correct links, i.e. pivot alignment could be expected to make a positive
contribution in a word alignment system using many independent information sources.

We saw that the sampling procedure and annotating program used could be opti­
mized for this kind of investigation. The results also pointed to natural ways of extend­
ing the work reported here, by the investigation of •

• more language combinations and more pivot languages, including non-Indo-
European ones

• the effect of using two or more pivot languages in parallel

• the possibilities of using (a procedure similar to) pivot alignment also on com­
parable (parallel non-translation) corpora

47

Notes
“The research reported here was carried out within the ETAP (Etablering och aniioieriiig av

parallellkorpus för igenkänning av översällningsekvivalenler, in English: “Creating and annotating a
parallel corpus for the recognition of translation equivalents") project, supported by the Bank of Sweden
Tercentenary Foundation as part of the research programme Translation and Interpreting—a Meeting
between Languages and Cultures. See http://www.translation.su.se/. Leif-Jöran Olsson, who is res­
ponsible for systems development in the ETAP project, wrote most of the software which made the
experiment reported here possible. I wish to thank the members of the PLUG project (see Ahrenberg
et al. 1998; Sågvall Hein forthcoming) for generously letting us use the Uplug system, including the
Uppsala Word Aligner, and the PLUG Link Annotator.

'Although there are still some unresolved issues even in sentence alignment (see McEnery & Oakes
1996; Borin forthcoming b). Our empirical experience shows that its accuracy is dependent upon many
factors, such as text type, the quality of the translation, the tokenization algorithm used, etc.

^By the recall of a word alignment system, we here mean the number of (total or partial) alignments
(or links) returned, divided by the number of alignments established in the text pair by a human annotator
(i.e., we work with a manually established evaluation standard; see below, and also Merkel 1999; Merkel
et al. forthcoming), while precision is the number of correct alignments returned divided by the total
number of returned links. Thus, if the human annotator has established a standard containing 200 links
in a text corpus, and the word alignment system returns links for 80 of the source language words in the
standard, its recall is 40% (80/200). If 74 of those 80 links are correct (according to the standard), the
precision becomes 92.5% (74/80). In this paper, we disregard the question of how to count null links—
source language words in the standard which explicitly should remain unlinked—when calculating recall
and precision, not because it is unimportant, but because we cannot see that it bears directly upon the
issues discussed here.

“The UWA presupposes a sentence-aligned input corpus, and performs word alignments only within
the existing sentence alignment units (thus, if the sentence alignment is wrong, for some reason, the
word aligner will not be able to correct it).

'*Our picture of what the ideal word alignment system would look like has much in common with
the “blackboard model”, which was once popular in Artificial Intelligence (see, e.g., Patterson 1990).

“It may seem strange that we make both the PL—*SBC and the SBC—*PL alignments. Intuitively,
one would think that the direction would not matter, i.e., that these two alignments would result in the
same set of word links. However, we have not checked whether the alignment system used (the Uppsala
Word Aligner; see Tiedemann this volume) actually works in this way (this could be the topic of an
interesting investigation in its own right). Thus, in order not to introduce a possibly confounding extra
variable in the experiment, we decided to treat the alignment as directional (guilty until proven innocent,
as it were), and to use both alignments.

“Incidentally, the indirect path could be extended with more languages, e.g. Swedish—»Polish—*
English—»Spanish, etc., but we have not investigated this possibility.

References
Ahrenberg, L., Merkel, M., Miihlenbock, K., Ridings, D., Sågvall Hein, A. & Tiede­

mann, J. 1998. Automatic Processing of Parallel Corpora. A Swedish Perspec­
tive. Linköping: Electronic University Press.

Borin, L. 1998. Linguistics Isn’t Always the Answer. Word Comparison in Compu­
tational Linguistics. NODALIDA ’98 Proceedings. Center for Sprogteknologi &
Dept, of General and Applied Linguistics, University of Copenhagen. 140-151.

http://www.translation.su.se/

48

Borin, L. forthcoming a. The ETAP Project - a Presentation and Status Report.
ETAP Technical Report etap-rr-01. Dept, of Linguistics, Uppsala University.

Borin, L. forthcoming b. ... and Never the Twain Shall Meet? Parallel Corpora,
Parallel Worlds, ed. by Lars Borin. Dept, of Linguistics, Uppsala University.

Borin, L. forthcoming c. Alignment and Tagging. Parallel Corpora, Parallel
Worlds, ed. by Lars Borin. Dept, of Linguistics, Uppsala University.

Borin, L. forthcoming d. Something Borrowed, Something Blue: Rule-Based Com­
bination of POS Taggers. Proceedings of the 2nd International Conference on
Language Resources and Evaluation (LREC2000), Athens, Greece, 31 May-2
June, 2000.

Melamed, I. D. 1995. Automatic Evaluation and Uniform Filter Cascades for Induc­
ing N-Best Translation Lexicons. Proceedings of the Third Workshop on Very
Large Corpora. Boston, Massachusetts.

Melamed, I. D. 1998. Word-to-Word Models of Translational Equivalence. IRCS
Technical Report #98-08. Dept, of Computer and Information Science, Univer­
sity of Pennsylvania.

Merkel, M. 1999. Understanding and Enhancing Translation by Parallel Text Pro­
cessing. Dept, of Computer and Information Science, Linköping University.

Merkel, M., Andersson, M. & Ahrenberg, L. forthcoming. The PLUG Link Anno­
tator - Interactive Construction of Data from Parallel Corpora. Parallel Corpora,
Parallel Worlds, ed. by Lars Borin. Dept, of Linguistics, Uppsala University.

McEnery, T. & Oakes, M. 1996. Sentence and Word Alignment in the CRATER
Project. Using Corpora for Language Research. Studies in Honour of Geoffrey
Leech, ed. by Jenny Thomas and Mick Short. London: Longman. 220-230.

Olsson, L.-J. & Borin, L. forthcoming. A Web-Based Tool for Exploring Transla­
tion Equivalents on Word and Sentence Level in Multilingual Parallel Corpora.
Paper to be presented at the VAKKI Symposium, 12-13 February, 2000, Vaasa
University, Finland.

Patterson, D. W. 1990. Introduction to Artificial Intelligence and Expert Systems.
Englewood Cliffs, N.J.: Prentice-Hall.

Sågvall Hein, A. forthcoming. The PLUG Project: Parallel Corpora in Linköping,
Uppsala, Göteborg: Aims and Achievements. Parallel Corpora, Parallel
Worlds, ed. by Lars Borin. Dept, of Linguistics, Uppsala University.

Tiedemann, J. 1998. Extraction of Translation Equivalents from Parallel Corpora.
NODALIDA '98 Proceedings. Center for Sprogteknologi & Dept, of General
and Applied Linguistics, University of Copenhagen. 120-128.

Tiedemann, J. this volume. Word Alignment Step by Step.
Tiedemann, J. forthcoming. Uplug - a Modular Corpus Tool for Parallel Corpora.

Parallel Corpora, Parallel Worlds, ed. by Lars Borin. Dept, of Linguistics,
Uppsala University.

Granska
an efficient hybrid system for Swedish grammar checking

Rickard Domeij, Ola Knutsson, Johan Carlberger, Viggo Kann
Nada, KTH, Stockholm

Dept, of Linguistics, Stockholm University
{domeij, knutsson, jfc, viggo}@nada.kth.se

Abstract
This article describes how Granska - a surface-oriented system for checking Swedish grammar - is
constructed. With the use of special error detection rules, the system can detect and suggest corrections for a
number of grammatical errors in Swedish texts. Specifically, we focus on how erroneously split compounds
and noun phrase agreement are handled in the rules.

The system combines probabilistic and rule-based methods to achieve high efficiency and robustness.
This is a necessary prerequisite for a grammar checker that will be used in real lime in direct interaction with
users. We hope to show that the Granska system with higher efficiency can achieve the same or better results
than systems that use rule-based parsing alone.

1. Introduction
Grammar checking is one of the most widely used tools within language technology.
Spelling, grammar and style checking for English has been an integrated part of common
word processors for some years now. For smaller languages, such as Swedish, advanced
tools have been lacking. Recently, however, a grammar checker for Swedish has been
launched in Word 2000 and also as a stand-alone system called Grammatifix (Arppe 2000,
this volume; Bim 2000, this volume).

There are many reasons for further research and development of grammar checking for
Swedish. First, the need for writing aids has increased, both concerning the need for more
efficiency and quality in writing. Secondly, the linguistic analysis in grammar checking
needs further development, especially in dealing with special features in Swedish grammar
and its grammatical deviations. This is a development that most NLP-systems will benefit
from, since they often lack necessary methods for handling ungrammatical input. Thirdly,

50

there is need for more sophisticated methods for evaluating the functionality and usability
of grammar checkers and their effect on writing and writing ability.

There are two research projects that focus on grammar checking for Swedish. These
projects have resulted in two prototype systems: Scarrie (Sagvall-Hein 1998; Scarrie 2000)
and Granska (Domeij, Eklundh, Knutsson, Larsson & Rex 1998). In this article we describe
how the Granska system is constructed and how grammatical errors are handled by its error
rule component. The focus will be on the treatment of agreement and split compound
errors, two types of errors that frequently occur in Swedish texts.

2. The Granska system
Granska is a hybrid system that uses surface grammar rules to check grammatical
constructions in Swedish. The system combines probabilistic and rule-based methods to
achieve high efficiency and robustness. This is a necessary prerequisite for a grammar
checker that runs in real time in direct interaction with users (e.g. Kukich 1992). Using
special error rules, the system can detect a number of Swedish grammar problems and
suggest corrections for them.

In figure 1 the modular structure of the system is presented. First, in the tokenizer,
potential words and special characters are recognized as such. In the next step, a tagger is
used to assign part of speech and inflectional form information to each word. The tagged
text is then sent to the error rule component where error rules are matched with the text in
order to search for specified grammatical problems. The error rule component also
generates error corrections and instructional information about detected problems that are
presented to the user in a graphical interface. Furthermore, the system contains a spelling
detection and correction module which can handle Swedish compounds (Kann, Domeij,
Hollman & Tillenius 1998). The spelling detection module can be used from the error rules
for checking split compound errors.

Text

Figure 1. An overview o f the Granska system.

51

The system is implemented in C++ under Unix and there is also a web site where it can be
tested from a simple web interface (see
www.nada.kth.seAheory/projects/granska/demo.html). There is ongoing work for designing
a graphical interface for PC which can be used interactively during writing. The PC system
will be used as a research tool for studying usability aspects with real users.

3. Tagging and lexicon
The Granska system uses a hidden Markov model (Carlberger & Kann 1999) to tag and
disambiguate all words in the input text. Every word is given a tag that describes its part of
speech and morphological features. The tagging is done on the basis of a lexicon with 160
000 word forms constructed from SUC, a hand tagged corpus of one million words
(Ejerhed, Källgren, Wennstedt & Åström 1992). The lexicon has been further
complemented with words from SAOL, the Swedish Academy’s wordlist (Svenska
akademien 1986). The Markov model is based on statistics from SUC about the occurrence
of words and tags in context. From this information the tagger can choose the most
probable tag for every word in the text if it is listed in the lexicon. Unknown words are
tagged on the basis of probabilistic analysis of word endings.

4. Error rules
The error rule component uses special error rules to process the tagged text in search for
grammatical errors. Since the Markov model also disambiguates and tags
morphosyntactically deviant words with only one tag, there is normally no need for further
disambiguation in the error rules in order to detect an error. An example of an agreement
error is ett röd bil (a red car), where en (a) does not agree with röd (red) and bil (car) in
gender. The strategy differs from most rule-based systems which often use a complete
grammar in combination with relaxation techniques to detect morphosyntactical deviations
(e.g. Sågvall-Hein 1998). An error rule in Granska that can detect the agreement error in ett
röd bil is shown in rule 1 below.

Rule 1:
kong22@inkongruens
1
X(wordcl=dl),
Y(wordcl=jj)*,
Z(wordcl=nn & (gender!=X.gender I num!=X.num I spec!=X.spec))
- >

mark(X Y Z)
coir(X.get_fomi(gender:=Z.gender, num:=Z.num, spec;=Z.spec) Y Z)
infoC'Arlikeln" X.text "slammer inte överens med substantivet" Z.text)
action(granskning)

http://www.nada.kth.seAheory/projects/granska/demo.html

■52

Rule 1 has two parts separated with an arrow. The first part contains a matching condition.
The second part specifies the action that is triggered when the matching condition is
fulfilled. In the example, the action is triggered when a determiner is found followed by a
noun (optionally preceded by one or more attributes) that differs in gender, number or
species from the determiner.

More formally, the condition part of the rule can be read as “an X with the word class
determiner (i.e. wordcl=dt) followed by zero or more Y:s with the word class adjective (i.e.
wordcl=Jj*) and a Z with the word class noun (i.e. wordcl=nn) for which the values of
gender, number or species are not agreeing with the corresponding values of the
determiner X (i.e. gender!=X.gender I num!=X.num I spec!=X.spec). The characters

“I” and denotes the operators “is identical to”, “is not identical to”, “or” and
“and” respectively. The comma is used for separating matching variables. The Kleene star
(*) indicates that the preceding object can have zero or more instances.

Examples of phrases that match the condition is ett röd bil (deviation in gender), en röda
bilen (deviation in species) and den röda bilama (deviation in number).

The action part of the rule specifies in the first line after the arrow that the erroneous
phrase X Y Z should be marked in the text. In the second line of the action part, a function
(X.get_form) is used to generate a new inflection of the article X from the lexicon, one that
agrees with the noun Z. When calling this function, the determiner X is assigned the same
values of gender, number and species as the noun Z by the operator “:=” in order to get a
new form from the lexicon that agrees with the noun. The new form is presented to the
user as a correction suggestion (in the example en röd bil) by the corr statement. In the info
statement in line 3, a diagnostic comment describing the error is constructed and presented
to the user.

In most cases, the tagger succeeds in choosing the correct tag for the deviant word on
probabilistic grounds (in the example ett is correctly analyzed as an indefinite, singular and
neuter determiner by the tagger). However, since errors are statistically rare compared to
grammatical constructions, the tagger can sometimes choose the wrong tag for a morpho-
syntactically deviant form. In such cases, when the tagger is known to make mistakes, the
error rules can be used in retagging the sentence to correct the tagging mistake. Thus, a
combination of probabilistic and rule-based methods is used even during basic word
disambiguation.

5. Help rules
It is possible to define phrase types like noun phrase (NP) and prepositional phrase (PP) in
special help rules that can be used from any error rule. Rule 2 below, uses two help rules as
subroutines (NP@ and PP@) in detecting agreement errors in predicative position. The
help rules specify the internal structure of the NP and the PP in the main rule
(pred2@predikativ). Note that the help rule PP@ uses the other help rule NP@ to define
the prepositional phrase.

The main rule states that the copula X should be preceded by an NP optionally followed
by zero or more PPs, and that an adjective Y that does not agree with the NP in gender or
number should follow the copula. An example of a sentence matching the rule is det lilla
huset vid sjön är röd (the little house by the lake is red) where the form röd does not agree
in gender with the NP. The variables T and Z in the rule are contextual variables that

53

ensures that the NP is not part of a previous prepositional phrase and that the adjective Y in
the supposed predicative position is not part of a larger noun phrase.

Rule 2:
pred2@predikativ
1
T(wordcl!=pp),
(NP).
(PP)*.
X(wordcl=vb & vbt=kop),
Y(wordcl=jj & (gender!=NP.gender I num!=NP.num)),
Z(wordcl!=jj & wordcl!=nn)
->
mark(*)
corr(T NP PP X Y.get_form(gender.=NP.gender, num:=NP.num, spec:=ind) Z)
infoC'Subslantivfrasen" NP.text "stämmer inte överens med
"adjektivet" Y.text)
action(granskning)

NP@
(
X(wordcI=dt)?,
Y(wordcl=jJ*),
Z(wordcl=nn)
->
action(hjälp, gender;=Z.gender, num;=Z.num, spec:=Z.spec, case:=Z.case)

PP@
I
X(wordcl=pp),
(NP)
->
action(hjälp)

The help rules make the analysis approaches that of a phrase structure grammar. Help rules
make it possible for the system to do a local phrase analysis selectively, without parsing
other parts of the sentence that are not needed in the detection of the targeted error type.
Thus, by calibrating the level of analysis that is needed for the case at hand the system
obtains high efficiency.

6. Erroneously split compounds
Above we have shown how agreement errors are handled in the system. Another frequently
occurring error type is erroneously split compounds. In contrast to English, a Swedish
compound is regularly formed as one word so split compounds are treated as

54

ungrammatical. So far, we have mainly focussed on erroneously split compounds of the
type noun+noun which stands for about 70 % of the various types (Domeij, Knutsson &
Ohrman 1999).

Detection of erroneously split compounds where the first part cannot stand alone is
trivial. This is done by listing those first parts in the lexicon and classifying them so that an
error rule can be made to search the text for such a first part in combination with any other
noun. An example is pojk byxor where pojk is the first part form of pojke (boy) which is
combined with byxor (trousers).

In other cases when both parts have the form of full words, the strategy for detecting
erroneously split compounds makes use of the fact that the first noun, unlike the last, must
be uninflected (indefinite and singular). Since the combination uninflected noun followed
by any noun is an unusual syntactical combination in grammatically correct sentences, it
can be used to find candidates for split compound errors. Other contextual cues are also
used before checking the candidate against a spell checker for compound recognition. If the
spell checker recognizes the compound as such, the two nouns in the text are marked as a
split compound and the corrected compound is given as a suggestion alternative.

Rule 3.
sär2@särskrivning
(
Xl(wordcl=dt),
X2(wordcl=jj)*,
X3(wordcl=nn & (gender!=XI.gender I num!=Xl.num I spec!=X1.spec)),
X4(wordcl=nn & gender=Xl.gender & num=Xl.num & spec=Xl.spec &
correctly_spelled(concat(X3.text, X4.iext)))
->
mark(X3 X4)
corr(Xl X2 concal(X3.text, X4.lext))
infoC'Sarskrivningsfel, salt ihop” X3 X4 ”till " concat(X3.text, X4.lexl))
action(granskning)
}

In rule 3 above (which has been slightly simplified), an erroneously split compound is
described where the determiner XI does not agree with the first noun X3, but does agree
with the second noun X4 as in the phrase ett cykel ställ (a bike rack). If the two nouns were
to be combined into one word the result would be a perfectly grammatical phrase {ett
cykelställ). Therefore, the disagreement between determiner and the following noun,
together with the agreement between determiner and second noun give reasonable
contextual evidence to suspect an erroneously split compound. To corroborate this
hypothesis further, the two nouns are combined and checked by the spell checking function,
as indicated in the last line of the condition, to see if the combined words are recognized as
a compound. In the action part of rule 3, the error candidate is first marked in the text and
then concatenated to be used in the error correction suggestion.

It can happen that two matching error rules collide, as in the example ett cykel ställ
where both the rule for agreement error and the rule for erroneously split compound apply
in an overlapping fashion. At the time, there is nothing to prevent the system to interpret

55

this error in both ways. However, the problem can sometimes be avoided by further
disambiguation in the rules. For harder cases, a possibility would be to order the rules
corresponding to the probability that an error occurs in a given context. Before we make a
decision to implement such a function, we need to look deeper into the problem. Often, the
wisest strategy is to present all error possibilities to the user.

Many errors can be difficult to detect because of ambiguities that are irresolvable on
contextual grounds only. One example is en exekverings enhet (an execution unit). The first
noun exekvering belongs to a group of nouns that take an -s when compounded with
another noun (exekvering-s+enhet). When the compound is erroneously split, the form of
the first noun coincides with the genitive form (an execution’s unit) which has the same
syntactical distribution as the error construction and therefore cannot be distinguished from
the split compound case.

There are also problems with false alarms, for example when the tagger has mistagged a
word so that the error rules make a false detection.

7. Results
The tagging module has a processing speed of more than 22 000 words per second on a
SUN Sparc station Ultra 5. In a previously unseen text, 97 percent of the words are
correctly tagged, a good result in an international comparison. Words not covered by the
dictionary are correctly tagged in 92 percent of the cases. The whole system (with about 20
rule types for 250 error mles) processes about 2 800 words per second, tagging included.
The numbers are hard to compare since results for other systems are seldom sufficiently
presented, but we believe that we have achieved a comparably high performance. The
results show that by using statistical methods it is possible to achieve a reasonably good
linguistic analysis combined with high efficiency for real-time computation. We also
believe that the analysis can be further improved by using mle-based methods for
correcting faulty statistical analysis.

We are still working with optimizing the system and improving the error rules.
Preliminary tests with the error rules show that we can hope for a recall rate above 50
percent and a precision rate above 90 percent for agreement errors and erroneously split
compounds. The results so far are promising, but we need further development and testing
before we present final results and compare them to fully developed systems, such as
Grammatifix (Arppe, 2000, this volume; Bim 2000, this volume). Even if Granska is not
yet fully developed, it has the advantage of being able to deteet split compounds in
Swedish, something that neither Grammatifix or any other commercial system does.

It is unrealistie to hope for full recall and precision. Therefore, we think it is important to
test the program on users in practice to study usability aspects as well as the effects on
writing and writing ability (see Domeij 1997, 1998). To do that we need to develop a user
friendly and instructive graphical interface. The graphical interface for PC is scheduled to
be ready during the spring 2000. The user tests will be ready before the end of the year.

56

Acknowledgements
The work has been funded by the Swedish research councils TFR, HSFR and Nutek.
Project leader has been Kerstin Severinson-Eklundh. Språkdata at Göteborg University and
the Swedish Academy let us use Svenska Akademiens ordlista as a source for words in
Granska. Prof. Eva EJerhed from Umeå University and Prof. Gunnel Källgren from
Stockholm University let us use SUC.

References
Arppe, A. 2000. Developing a Grammar Checker for Swedish, Nodalida’99, Trondheim,

December 1999.
Bim, J. 2000. Detecting Grammar Errors with Lingsoft's Swedish Grammar Checker.

Nodalida’99, Trondheim, december 1999.
Carlberger, J. & Kann, V. 1999. Implementing an Efficient Part-of-Speech Tagger. In;

Software - Practice and Experience, 29 (9), pp. 815-832.
Domeij, R. 1997. Datom och språkriktigheten. I: O. Josephson (ed.) Svenskan och IT-

samhället. Uppsala: Hallgren & Fallgren.
Domeij, R., Eklundh, K., Knutsson, O., Larsson, S. & Rex, Å. (1998). Granskaprojektet

1996-1997. Technical Report NAD A, KTH.
Domeij, R. 1998. Detecting, Diagnosing and Correcting Low-Level Problems when Editing

with and without Computer Aids. In TEXT Technology, vol 8, no. 1. Wright State
University, Celina, USA.

Domeij, R., Knutsson, O. & Öhrman, L. 1999. Inkongruens och felaktigt särskrivna
sammansättningar - en beskrivning av två feltyper och möjligheten att detektera felen
automatiskt. Svenskans beskrivning, October 1999.

Ejerhed, E., Källgren, G., Wennstedt, O. & Aström, M. 1992. The Linguistic Annotation
System of the Stockholm-Umeå Corpus Project. Description and Guidelines. Version
4.31. Department of Linguistics, Umeå University.

Kann, V., Domeij, R., Hollman, J., & Tillenius, M. 1998. Implementaion Aspects and
Applications of a Spelling Correction Algorithm. To appear in: R. Koehler, L.
Uhlirova, G. Wimmer: Text as a Linguistic Paradigm: Levels, Constituents,
Constructs. Eestschrift in honour o f Ludek Hrebicek, 1999. NADA report TRITA-
NA-9813, 1998.

Kukich, K. 1992. Techniques for Automatically Correcting Words in Text. ACM
Computing Surveys, Vol. 24, No. 4, pp. 377-439.

Scarrie. 2000. Web site: stp.ling.uu.se/~ljo/scarTie-pub/scarrie.html
Svenska akademien (The Swedish Academy) 1986. Ordlista över det svenska språket

(SAOL), 11'" edition. Stockholm: Norstedts Förlag.
Sågvall-Hein, A. 1998. A Chart-Based Framework for Grammar Checking. Proc. from

Nodalida98.

A dapting an English Inform ation E xtraction
System to Sw edish

Kristofer Franzén
Information and Language Engineering

Swedish Institute of Computer Science (SICS)
Box 1263, SE-164 29 Kista, Sweden

franzenOsics. se

This work was made possible thanks to generous funding from The Swedish Institute and The Swedish
Foundation for International Cooperation in Research and Higher Education (STINT).

Abstract

This paper presents work on adapting the Proteus Information Extraction sys­
tem to Swedish. It turned out that the cross-lingual adaptation as such was fairly
straight-forward; however, the Proteus system design did not render itself that well
to reconfiguration at such a low level as needed. To evaluate the adaptation, the
system was tested on a Swedish version of the MUC-6 Scenario Template Task. The
Swedish version performed excellently on a training corpus, but quite discouraging-
ly on an unseen test corpus. As a consequence of that work, a new Information
Extraction system is being designed and the layout of that system is described.

1 Introduction

A well-known problem in the area of Information Extraction regards the adaptation of
an extraction system to handle a new class of events (Yangarber and Grishman, 1997).
With the increasing interest in multi-lingual and cross-lingual information extraction,
it becomes necessary to construct systems that are easily adaptable, not only to new
extraction tasks, but also to new languages. This paper presents work on adapting the
Proteus Information Extraction system (Grishman, 1995; Yangarber and Grishman, 1998)
developed at New York University, to Swedish. The system has previously successfully
been adapted to Japanese (Sekine and Nobata, 1998).

The topics covered in the following sections are: an introduction to the Information
Extraction task, a description of the Proteus Information Extraction system, an account
of the adaptations made to the system and some results from evaluating the adapted
system. A description of our present work on designing a new information extraction
system and the motivations behind it will conclude the paper.

58

2 Information Extraction

Information Extraction can be defined as the task of extracting instances of a predefined
class of events from natural language texts, and to build a structured and unambiguous
representation of the entities participating in these events and the relations between them.

While Information Retrieval (i.e., document retrieval) systems aim at returning a ranked
list of documents as an answer to any arbitrary information need (posed in the form of a
query), an Information Extraction system is tuned to a specific, well-specified, predefined
and persistent information need. Input to the system is a stream of unrestricted text and
it outputs a structured representation in the form of a filled template or database record
for every instance of an answer to the information need.

In Figure 1, an actual information need that could be satisfied by an Information Ex­
traction system is shown. The description is taken from the specification of the MUC-6
Sceneirio on Management Succession.

“This scenario concerns events that would be of interest to an analyst
who tracks changes in company management. The event object captures the
management post, the company, the current manager, and the reason why
the post is or will be vacant. The relational and low-level objects capture
information on who’s “in” and who’s “out”, where the new manager came from,
and where the old manager is going. A relevant article refers to assuming or
vacating a post in a company and must minimally identify the post and either
the person assuming the post or the person vacating the post.”

Figure 1; The narrative description of the MUC-6 Information Extraction Task.

A short text in Swedish and parts of the templates that could be filled in with information
from the text, based on the above task definition, are shown in Figure 2.

Information Extraction and its methods of evaluation have to a great extent been defined
by the Message Understanding Conferences (Grishman and Sundheim, 1996; Sundheim,
1991; Sundheim, 1992; Sundheim, 1993; Sundheim, 1995). The conference series is or­
ganized in the form of a competition where the participating extreiction systems are
evaluated against key templates constructed by human annotators. The metrics used to
evaluate the systems are standard precision and recall measures over the template slots:

„ . . „ Correct Answers r. ,, r. CorreclAnswersPrecision = P = —---------- -— ;----; Recall = i t =
Answer sProduced

These values are often combined into an F-measure:

TotalPossMeCorrect

F = [0^ + \)P R
{0̂ P + R)

Where ^ is a parameter that represents the relative importance of Precision (P) and
Recall (R).

59

Karo Bio. Per-OloJ
Mårtensson har åter
utsetts till VD efter
att sedan förra våren
ha varit ordförande.
Mårtensson efterträds på
ordförandeposten av
Bertil Hållsten, tidigare
chef för S-E-Bankens
läkemedelsfonder.

(‘Karo Bio. P -0 M.
has been reappointed
president after serving
as chairman of the
board since last spring.
Mårtensson is succeeded
as chairman by B. H.,
former heéid of S-E-Banken’s
pharmaceutical funds’).

POSITION
COMPANY
IN-PERSON

POSITION
COMPANY
IN-PERSON
OUT-PERSON

POSITION
COMPANY
OUT-PERSON

VD (‘president’)
Karo Bio
Per-Olof Mårtensson

ordförande (‘chairman’]
Karo Bio
Bertil Hlllsten
Per-Olof Mårtensson

chef {‘head’)
S-E-Bankens läkemedelsfonder
Bertil Hållsten

Figure 2; A short text and the three simplified templates it would generate.

As Appelt and Israel (1999) point out, interannotator agreement has been as low as 60-
80% in the MUC:s (depending on MUC-task), which indicates that information extraction
is a difficult task also for humans. They claim that, depending on the complesdty of the
extraction task and the preparation time, among other things, it seems very hard for an
extraction system to reach beyond 60% of human accuracy.

Obviously, one of the main problems for an information extraction system is how to
account for the linguistic variation in which the information is expressed in the text.
This difficulty concerns lexical and syntactic variation as well as variation at the level of
discourse and pragmatics. Consider the following constructed examples:

Assam Parks nye VD Fjun Fämeryd . . .
(Assam Parks’ new CEO Fjun Färneryd . . .)

Fjun Fämeryd har utsetts till ny verkställande direktör för Assam Pärks AB.
(Fjun Färneryd bas been appointed new chief executive officer of Assam Parks AB.)

Fjun Fämeryd, som igår utsågs till ny VD för Umeå-företaget Assam Pärks, . . .
(Fjun Färneryd, who yesterday was appointed new CEO of the Umeä-based company Assam Parks, . . .)

F. Fämeryd, 41' ör och nybliven direktör för Assam Pärks, . . .
(F. Färneryd, 47 years old and newly appointed president of Assam Pärks, . . .)

60

Assam Pärks styrelse utsåg igår Fjun B. Färneryd till direktörsposten i ledningen för företaget.
(The board of Assam Pärks yesterday appointed Fjun B. Färneryd to the post as managing director
of the company)

Assam Parks har fått en ny VD. Fjun Färneryd satt tidigare t ledningen för Eckym Ropos,
men fick lämna posten efter påståenden om insideraffärer.
(Assam Pärks has appointed a new CEO. Fjun Färneryd was earlier part of Eckym Ropos' management
but had to resign after allegations of insider dealing.)

Just consider the difference in the first and the last example above, where, in the first
case, a single noun phrase expresses relations that require supra-sentential inferential
processing to deduct from the last example.

An Information Extraction system aims at text understanding, but only from the per­
spective relevant to the information need at hand. There is no need to resolve ambiguities
in the text as long as they are not relevant to the present extraction task. Therefore most
extraction systems make do with shallow parsing techniques (Grishman, 1995; Hobbs et
al, 1997) and local text analysis.

3 The Proteus Information Extraction System

lEsyfiem orrhilteiure.

Figure 3: General architecture of the Proteus Information Extraction System.

New York University’s Proteus system has a cascaded finite state transducer architecture
common to many information extraction systems. It has a modular pipelined design
consisting of domain-independent core components with domain-specific knowledge bases
and task-dependent components for the specific scenario at hand. The lion’s share of the
linguistically interesting components of the system is defined in a number of pattern bases
that are compiled at run-time into finite state transducers that perform deterministic,
bottom-up, partial parsing and sequentially construct analyses of the text on increasingly
higher levels of abstraction, building on the results from preceding transducers. The
pattern bases contain rules that consist of a pattern part and an action part. A stylized
rule to identify person names could look like

61

(T itle) '! C o m m o n F ir s tN a m e { M id d le In i t ia l)? C a p ita l iz e d W o r d T a g a s P e r so n \

The rule would give Mr. Fjun B. Femeryd an annotation of type Person which could be
referred to in consecutive rules, e.g., in a pattern that identifies a company’s appointment
of someone:

N o u n G ro u p { ty p e = C o m p a n y) V e rb C ro u p { ty p e = A p p o in t) N o u n C r o u p { ty p e = P e r s o n)

The general information flow through the system is shown in Figure 3 and the functions
of the different modules are briefly described in Table 1 (see next page).

As can be seen in Table 1, some parts of an information extraction system are independent
of the specific extraction task at hand, and some modules have to be modified when the
system is tuned to a new task. This does not mean that the functionality of the component
in itself should be changed, but rather that some rules or some knowledge contents that
modify the behavior of the module have to be changed. The same should apply when
porting an extraction system to a new language. For an English-Swedish bilingual system,
there should be different rule sets for lexical analysis components, syntactic analysis
components, and scenario specific patterns as well as for the pattern generalizations, but
the rules guiding anaphora resolution and discourse analysis could possibly be the same;
many of the knowledge bases could be shared, but the lexical leaves of the semantic
concept hierarchy have to be re-mapped.

4 Changes made to the system

We aimed at changing the system as little as possible, but still get a reasonably good
result. The Proteus system was adapted to the Swedish extraction task in the following
ways

• Input format. Since the lexical analyzer and the tagger of the Proteus system were
not to be used, an SGML interface to the system was constructed to facilitate the
input from any external resources. For want of better alternatives, the SWECG
tagger and disambiguator from Lingsoft (Karlsson et a i, 1995) was used for pre­
processing the Swedish text, which then had to be postprocessed to deal with the
inconsistent SWECG output. The output was then transformed into the SGML
format.

• Rule predicates. A rule in the system consists of a pattern matching part and an
action part. Some of the predicates used in the pattern matching part of the rules
where modified to allow for richer descriptions of the matched elements. Minor
adjustments had to be made for Swedish (Latin-1) characters to be accepted in the
pattern matching rules and their actions. •

• Domain and task independent rules. Patterns for noun groups and verb groups had
to be redefined, as well as patterns to identify, for example, people, organizations
and locations.

62

M odule D escrip tion Scenario
Specific

C ore m odules
Lexical analysis Assigns part-of-speech

tags to the text
no

N am e de tec tion and
categorization

Identifies person names,
company names,
names of locations
and possibly products

no
7

no
7

A nalysis o f num erical
expressions

Identifies monetary expressions,
percentages and time/dates

no

N oun group detection Identifies noun phrases
without right modifiers.

no

Verb group detection Verb + auxiliaries to identify
main verb and tense.

no

N oun phrase detection Full noun phrases for important
scenario entities.

yes

A naphora resolution Resolution of pronouns and
definite nouns involved in the
scenario.

no

Scenario specific
p a tte rn m atching

Top-level patterns for the
specific extraction task.

yes

D iscourse analysis Co-reference analysis on the
discourse level to merge events.

7

Inference rules Formalizes world knowledge in
rules so that text content fits
template format. I.e., “last
week” becomes a date, etc.

yes

T em plate generation Produces the filled template for
the specific task.

yes

S upporting m odules
Knowledge bases Lists of common first names,

corporations, locations and
scenario specific entities.

no

yes
Sem antic C oncept
hierarchy

A hierarchy of concepts to
support pattern matching,
anaphora resolution and discourse
analysis.

yes

P a tte rn p roduction
m odule

Allows for the user to produce
scenairio specific patterns
interactively from examples.

no

P a tte rn generalization
m odule

Meta-pattems that generalize
patterns to match various kinds
of subjunctive clauses, reduced
clauses, passives etc.

no

Table 1: Common modules of an Information Extraction System.

63

• Task specific rules. Patterns for entities participating in the events of the task had
to be redesigned, as well as the patterns for the events themselves.

• Knowledge bases. Several knowledge bases specific to Swedish were compiled to
support the identification of names of people, organizations, locations and reportable
positions,^ etc.

The difficulties in trying to adapt the Proteus system to Swedish were not the linguistic
differences (as expressed, for example, in the shallow parsing pattern matching rules), nor
the differences in how the events were expressed in the different languages (as is expressed
in the higher level rules); these patterns and rules were often surprisingly interchangeable,
with small modifications, across the languages. What posed severe problems were the
technical difficulties in changing a very complex system that was not initially built to be
reconfigured on such a low level. Even though there is a graphical user interface to the
English system in which the user can build patterns incrementally from examples, that
tool would have required extensive work to function with the SGML input format and
the other modifications made to the system.

5 Experiment and evaluation

For a comparison of the performance of the Swedish and the English systems, the Scenario
Template Task of MUC-6 was chosen. This task concerns changes in corporate executive
management personnel, as described in Figure 1. A Swedish corpus was compiled consist­
ing of 34 financial news articles from Tidningarnas Telegrambyrå and Affärsvärlden. This
training corpus contained 51 reportable events for which key templates were constructed.
Rules were written and evaluated iteratively with the MUC-scorer^ on the corpus until
an F-score of 55.45 was obtained. In comparison, the systems at the MUC-6 evaluation
ranged from about 48 to 56 in F-score on the test corpus (Sundheim, 1995). After exten­
sive training, the Proteus system has since been boosted to perform at an F-score around
65 on the same task.

A test corpus consisting of 50 financial news articles from the same sources as the training
corpus was compiled, as well as template keys, by an annotator not involved in the
adaptation of the extraction system. The results from running the system on the test
corpus seem quite discouraging with an F-score of around 28, but have not yet been fully
analyzed. Further analysis will show if they are due to over-training of the system, faulty
system design, or mismatches in the annotator’s and the author’s interpretation of the
template filling rules.

6 Building a new system

The overall experience of trying to adapt the Proteus Information Extraction system to
Swedish has led to the decision to build a new Information Extraction system. This

‘For example, according to the MUC>6 definitions, ‘chairman of the board* is a reportable position
while other types of chairpersons are not reported.

^The MUC-scorer is described in http://www.muc.saic.com/scorer/Manual/manual.html

http://www.muc.saic.com/scorer/Manual/manual.html

64

system will be inspired by the general architecture of the Proteus system, but also by
suggestions of improvements of that system that came up during and after the work
cited in this paper. The new system will be built around a document manager which
functionality is a subset of that in the Tipster Architecture (Grishman and others, 1996).
This means that all internal functions are based on manipulating aimotations of the text.
We will aim at giving the system the following features:

Easily portable to new domains. We recognize the need for a tool that facilitates
for the non-expert user to write rules for a new extraction task without knowing
the internals of the system or the syntax of the pattern matching language. Such a
tool for example-based pattern acquisition exists in the Proteus system (Yangarber
and Grishman, 1997).

Easily portable to new languages. We will make every effort not to build language
prerequisites into the system. For example, there will not be any restrictions on
what features or feature values that may be found in an annotation.

Easily extensible. Since there will be a well-defined interface to the document man­
ager and a general set of methods to manipulate document annotations, and since
there will be no restrictions on what the features of the annotations can be, the
system is not limited to merely Information Extraction tasks, but can be extended
to any document or text manipulating task.

Modular and flexible. The system will have an object oriented design with distinct
interfaces between the modules. If a new module is required for an analysis task, it
should be easy to include it in the existing set of modules.

Platform independent. The system will be implemented in Java and not dependent
on external software in itself. Initially, the extraction system will be dependent on
an external lexical analysis component.

Open Source. Every part of the core extraction system will be open source and free
to use for research or commercial purposes.

7 Conclusion and Further Work

Even though the Proteus system has previously successfully been adapted to Japanese,
our experiences in eidapting the system to Swedish have led us to believe that it will
be worth the effort to build a new extraction system from scratch, taking into account
portability not only on the task level, but also on the language level. Such a project has
been initiated in collaboration with New York University and the result will eventually
be publicly available.

This work has also led to the composition of the above mentioned t&st corpus for Swedish
Information Extraction systems which will also be publicly available as soon as copyright
issues are solved.

65

References

Appelt, D. E. and Israel, D. J. 1999. Introduction to Information Extraction Techno­
logy. http://www.ai.sri.com/'appelt/ie-tutorial/IJCAI99.pdf. A Tutorial Prepared for
IJCAI-99.

Grishman, R. 1995. The NYU system for MUC-6, or where’s the syntax? In Proceedings
of the Sixth Message Understanding Conference (MUC-6), Columbia, MD, November.
Morgan Kaufman.

Grishman, R. and Sundheim, B. 1996. Message Understanding Conference - 6: A brief
history. In Proceedings of the 16th International Conference on Computational Lin­
guistics (COLING96), Copenhagen, August.

Yangarber, R. and Grishman, R. 1997. Customization of Information Extraction Sys­
tems. In Proceedings of International Workshop on Lexically Driven Information Ex­
traction, FVascati, Italy, July.

Yangarber, R. and Grishman, R. 1998. NYU: Description of the Proteus/PET System as
Used for MUC-7 ST. In Proceedings of the Seventh Message Understanding Conference
(MUC-7), Virginia, USA, April. Morgan Kaufman.

Hobbs, J. R., Appelt, D., Bear, J., Israel, D., Kameyama, M., Stickel, M., and Tyson,
M. 1997. FASTUS; A Cascaded Finite-State Transducer for Extracting Information
from Natural-Language Text. In Roche, E. and Schabes, Y., editors, Finite-State Lan­
guage Processing, Language, speech, and communication. MIT Press, Cambridge, Mas­
sachusetts.

Karlsson, F., Voutilainen, A., Heikkila, J., and Anttila, A., editors. 1995. Constraint
Grammar: A language-independent system for parsing unrestricted text. Mouton de
Gruyter, Berlin.

Sundheim, B., editor. 1991. Proceedings of the Third Message Understanding Conference
(MUC-3). Morgan Kaufman, May.

Sundheim, B., editor. 1992. Proceedings of the Fourth Message Understanding Conference
(MUC-4). Morgan Kaufman, June.

Sundheim, B., editor. 1993. Proceedings of the Fifth Message Understanding Conference
(MUC-5)., Baltimore, MD, August. Morgan Kaufman.

Sundheim, B., editor. 1995. Proceedings of the Sixth Message Understanding Conference
(MUC-6), Columbia, MD, November. Morgan Kaufman.

Sekine, S. tmd Nobata, C. 1998. An Information Extraction System and Customization
Tool. In Proceedings of the New Challenges in Natural Language Processing and its
Application, Tokyo, Japan, May 25-26.

Grishman, R. et al. 1996. TIPSTER Text Phase II Architecture Design. Technical
report. Department of Computer Science, New York University, September.

http://www.ai.sri.com/'appelt/ie-tutorial/IJCAI99.pdf

T h e sh o r tc o m in g s o f a tagger

Kristin Hagen, Janne Bondi Johannessen og Anders Nøklestad
The Text Laboratory, The University of Oslo

{kxistiha, jannebj, noklesta} @hedda.uio.no

Abstract
The tagger used for the Oslo Corpus of Tagged Norwegian Texts has very good statistical results. In spite
of this, it makes mistakes. In this paper we take a closer look at some of them. Although some mistakes
are of a kind that would disappear if we improved the tagger, many are impossible or very difficult to do
anything about. They are due to errors in the corpus (spelling errors, foreign words, non-standard
spellings), to elliptic sentences, such as headlines, and to structural ambiguity, which abounds to a
surprising extent. Proofreading the corpus would have removed the first kind of problems, but the other
two types cannot be resolved in any obvious way.

1. Introduction
The first version of the first ever comprehensive tagger for Norwegian is ready. Both the
nynorsk and the bokmål (the two Norwegian language varieties) versions have been used
to tag a large number of texts (= the Oslo Corpus of Tagged Norwegian Texts). The
corpus has an advanced web-based user interface, which often gives nice results, but it
also makes it easy to discover mistakes and shortcomings of the tagger. The present paper
will focus on these.

The tagger is of a Constraint Grammar-type (Karlsson et al 1995). The linguistic
constraints (rules) were developed by the Text Laboratory, while the software came from
Lingsoft, Helsinki. A CG tagger takes as input a multitagged text, where each word form
has as many tags as the lexicon allows, and gives as output a text where the tags are
disambiguated by the given linguistic constraints according to the context for each word
in question. The statistical results are good: The bokmål tagger has a recall of 99,2% and
a precision of 96,8%. For nynorsk the results are slightly worse: 98,8 % recall and 95,6
% precision.

The tagger, then, makes some mistakes. One kind of shortcoming involves cases where
some ambiguity remains (this influences the precision rate) - for a number of reasons, of
which structural ambiguity is the most severe one: Sometimes extralinguistic knowledge
would be required to disambiguate a certain ambiguity. Another shortcoming has to do
with mistaken lexical analysis: We have problems when a text contains words that are
unknown to the lexicon or that are analyzed wrongly by our compound analyzer, or if
they even contain a wrong language (common in citations, loanwords etc.).

Before we go into these mistakes, however, let us give an example which shows that in
spite of the errors, the overall impression is that the tagger actually does a good job. In
the following example, we have asked the corpus to give us all occurrences of the word
stemme (‘vote’) used as a verb; we therefore do not want any occurrences of the same
wordform used as a noun meaning ‘vote’ or 'voice'. And indeed, the overall impression
is that we get what we wanted:

67

(1) Example of an arbitrary selection of hits from a search for the verb stemme 'vote'.
as opposed to the noun stemme 'vote' or 'voice'

Søkestreng; [word="stemme" & tagg=".* verb.*" & (src="AV.*" | src="SA.*"
src="SK.*")] med 30 tegn på
venstre side og 40 tegn på høyre side.

AV/Ad96/01; re hele det norske folk ved å stemme mot, eller utfordre NATO-kolleger ved
AV/Ad96/01: utfordre NATO-kolleger ved å stemme for. I slike saker gjelder diplomatiet
A V/Ad96/01: re hele det norske folk ved å stemme mot, eller utfordre NATO-kolleger ved
AV/Ad96/01: utfordre NATO-kolleger ved å stemme for. I slike saker gjelder diplomatiet
AV/Ad96/01: møter opp, men avstår fra å stemme, vil i praksis støtte eventuelle fusjo
AV/Ad96/01: og Mosvold Farsund Invest vil stemme for fusjonen. - Gjensidige sier ja til
AV/Ad96/01: n med Danmark og Island fra å stemme da FNs nedrustningskomite i går
AV/Ad96/01: var to var i tvil,én viUt stemme nei, men bademester Eivind Nilsen (ek
AV/Ad96/01: re, sa begge at de kom til å stemme for svensk medlemsskap i EU. Eivind
AV/Ad96/01: e, mens ingen tidligere fikk stemme for mer enn 12,5 prosent. I forbindeis
AV/Ad96/01: egjering som et mottiltak vil stemme nei til alle reformer av EU-samarbeidet
AV/Ad96/01; ens 38 land avholdt seg fra å stemme. Resolusjonen er ikke bindende, men
AV/Ad96/01: neringen, men fikk det til å stemme rimelig bra mot TPG, sa Håvard. - Vi
AV/Ad96/01: var to var i tvil, én ville stemme nei, men bademester Eivind Nilsen (ek
AV/Ad96/01: re, sa begge at de kom til å stemme for svensk medlemsskap i EU. Eivind
AV/Ad96/01: spennende hvordan dette ville stemme med søkernes ønsker. Vi så for oss
AV/Ad96/01: sjonelle ferdighetene » til å stemme igjen. Han har 14 dager på seg før den
AV/Ad96/01: tradisjonelt hatt for vane å stemme sammen med Arbeiderpartiet og SV.
AV/Ad96/01: ndre tusen nye velger som vil stemme på meg! Sjakk i UIGE-Adressa | En
AV/Ad96/01; dene hadde forsiktig begynt å stemme sine bakben (som de gnir mot en
AV/Ad96/01: den britiske regjering med å stemme nei i EUs ministerråd i alle spørsmål,
AV/Af94/01; ene søkeren at hun kom til å stemme på ham dersom hun deltok på møtet,
AV/Af94/01: peacemedlemmer fullmakt til å stemme på landets vegne. Selv var de ikke til
AV/Af94/01; pålegge sine representanter å stemme efter en vedtatt partilinje. Men konse
AV/Af94/01: nde. Hvordan skulle da Høyre stemme i Stortinget? Partilandsmøtet løste sa
A V/Af94/01: ervere seg dersom de ikke kan stemme for i Stortinget, sier hun. Efter man
AV/Af94/01: t partiet Rukh sier at de vil stemme imot avtalen når den kommer opp i paria
AV/Af94/01: år. På Lillehammer skal alt stemme i første forsøk, legger han til. - Ko
AV/Af94/01: en i fjor, sier nå at de vil stemme Høyre igjen. Høyrelederens opptreden s
AV/Af94/01: ripe inn i tidens politikk og stemme med Venstre i unionsstriden også når ha
A V/Af94/01: r frem til velgerne går for å stemme. Og kommer velgere som vil ha en

2. Structural ambiguity

Each time a word is left ambiguous between two categories, the corpus user will tend to
think that the tagger is unsatisfactory. However, there is a lot of stmctural ambiguity in
language. Most of it goes unnoticed, because our pragmatic and world knowledge guides
us towards the right interpretation. But a tagger has only access to form, i.e. morphology
and syntax, and will not be able to know which interpretation is the correct one when the
formal features are the same.

Let us look at some examples.

68

Norwegian, BM:
Two readings:

(2)

Ambiguity:

Jeg kjente meg glad og lettet da hun gikk
a. I felt happy and relieved when she left
b. I felt happy and took off in the air when she left

lettet: "lette" 'take off in the air' verb pret
"lette" 'relieved'adj mascfem indsg

Our world knowledge tells us that the pronoun jeg refers to a person, and we also know
that people do not have wings, and therefore normally will stay on the ground, unless
something in the context tells us otherwise. We also Imow that the feeling of being glad
(‘happy’) often goes together with the feeling of being lettet (‘relieved’). As human
beings, we therefore interpret the sentence in (2) in the only pragmatically correct way;
the a-reading. But the tagger has no world knowledge, and must leave the sentence
ambiguous, i.e. leave the word lettet with both tags.

(3)

Norwegian, NN:
Two readings:

Ambiguity:

Vaskehjelper som vaskar skular...
a. Cleaning women/men who wash schools...
b. Cleaning women/men who wash stare...

skular: “skule" ‘schools'noun plural indef
“skule" 'stare verb present tense

When seeing a sentence like (3), we know immediately that the relative clause would be a
tautology if it only contained the verb without its object. We therefore understand the last
word as the object of the verb rather than as a verb. But the tagger is in no position to
decide which of the meanings would be meaningless, and has to leave the word skular
with both tags.*

(4)

Norwegian, NN:
Two readings:

Ambiguity:

Ho skulle sleppa fara på åker og eng, berre ho ville sjå til huset
a. She would not have to travel in fields and meadows, i f only she

would look after the house
b. She would not have to travel in fields and meadows, she was the

only one to look after the house

berre: "berre" 'if only' subjunction
"berre" 'only' adverb

In (4), we understand that the most likely interpretation is that the second clause is a
condition for the first clause. But the tagger finds the second reading, in which the second
clause is a juxtaposed main clause, just as likely. Therefore, the word berre must be left
ambiguous, keeping both the subjunction and the adverb tags.

(5)

Norwegian, NN: Ho kysste han gang på gang før ho og vart riven bort
Two readings: a. She kissed him time and time again before her and was taken away

b. She kissed him time and time again before she too was taken away

69

Ambiguity: før: "før'
'før'

og: "og'
"og'

ho: "ho'
"ho''

'and' conjunction
'too' adverb

'she'pronoun nominative

In (5), both readings are equally likely without knowing more about the context. In the a-
reading, there are two women involved, where one kissed the male before the other one,
and was subsequently taken away. In the b-reading, there is only one woman, who
kissed the man until she - in addition to somebody else - was taken away. There is no
way the tagger would be able to choose betwen these readings, and three words have to
be left ambiguous as a result.

(6)

Norwegian, BM:

Three readings:

Ambiguity:

Smidsrød har arbeidet som forsker ved NTNFs Norsk Institutt for
Tang- og tareforskning fra 1961
a. Smidsrød has worked as researcher at NTNF...
b. ??Smidsrød has (his) work which does research...
c. ?? Smidsrød has (his) work as researcher...

arbeidet: "arbeide" 'work' verb past participle
"arbeid" 'work' noun sg def

som: "som" 'as'preposition
"som" 'which' relative subjunction

forsker: "forsker" 'researcher' noun sg ind
"forsker" 'research' verb pres

In (6), the meanings of the italicized words tell us that the word arbeidet should be
interpreted as a verb. E.g., we know that arbeidet can never be an agentive noun, and
therefore never be the subject of a verb forsker. We also know that the italicized words
should not be interpreted as a noun phrase, as would have been the case in e.g. Smidsrød
har arbeidet som hobby. Again, the tagger cannot choose, and will have to leave three
words ambiguous.

3. Headlines have too little grammatical information

Headlines and titles generally are very rudimentary sentences that often lack a verb and
function words. There is therefore very little information that can guide the tagger in the
right direction when it comes to choosing between different readings:

(7)

Norwegian, BM:
Two readings:

Rushfeldt for dyr for Viking?
a. Rushfeldt too expensive for Viking
b. Rushfeldt for atiimals for Viking

Ambiguity: for: "for" ‘fo r’ preposition
"for" 'too'adverb

dyr:

70

“dyr" ‘animals' noun indplural
“dyr" ‘expensive’ adjective indsg masc

As Norwegians, we know that Rushfeldt is a footballplayer, that Viking is a football
club, and that football players often require a lot of money to change clubs. The a-reading
is the only appropriate one. But the tagger does not know that the other reading is
impossible, in which Rushfeldt would make a statement in favour of animals. Two tags
are left ambiguous as a result.

(8)

Norwegian, BM: Luftpistol - Intemasjonal gren og olympisk øvelse
Two readings: a. Air pistol - International branch and Olympic event

b. *Air pistol - International cried and Olympic event

Ambiguity: gren: “grine" ‘cry’ verb preterite
“gren ’’ ‘branch ’ noun ind singular masc

We know that, although an adjective can be the subject of a clause in Norwegian, in this
particular sentence, which has to to with Olympic events, it is obvious that the word gren
refers to air pistols a a branch, and is not a verb. But since this is a headline, there is no
requirement for a finite verb, and indeed it does not have one, which might otherwise
have helped disambiguate this word. And with no world knowledge, the tagger cannot
choose between the two readings.

4. Wrong language or dialect causes problems

In an open text corpus there will always be examples of words and phrases that belong to
other languages and dialects. We have not wanted to clean the corpus of this type of
occurrences. Obviously, then, words from other languages will not be correctly analyzed
by our monolingual tagger. This may in turn create problems for the tagging of the other
words surrounding the unknown word - since disambiguation to a large extent depends
on the local context of each word. Below are some examples of foreign elements:

(9) Dialect: Uknown word causes unresolved ambiguity in preceding word:

Norwegian, BM:

Two readings:

Ambiguity:

Det va et godt forslag. Deinn første kjæresten m...
(va instead of var)

•It was a good proposal
•The was a good proposal

det: "det" 'the' determiner demonstrative sg neuter
"det" 'it'pronoun sg neuter

In (9), the italicized word va is a Trøndelag dialect word for the standard word var
(preterite of the verb vcere ‘be’). Since va is the infinitive form of a verb meaning to walk
in water, the tagger finds no finite verb. It will then not know that the first word is a
subject, and will not be able to understand that it is the pronoun reading, and not the
determiner one, that should be chosen for Det. It is left ambiguous.

Other languages and dialects are actually quite common in texts generally - here are some
more examples:

71

(10) German word:

Det er «schbnt», for han var mitt forbilde, sier Anders.
It is wonderful for he was my idol, Anders says.

(11) Trondheim dialect word:

Ni straffekast til Old Girls og bare tre til imgpian startet kampen.
Nine penalties for the Old Girls and only three to the young lasses started the
match.

(12) Nynorsk Norwegian sentence in a Bokmål text:

Zimmer-utvalet liar korne med framlegg til ny lov her til lands om eigedomsskatt.
The Zimmer committee has suggested a new law in this country about property tax

5. Words written in a way that is believed to be right, but isn’t

Orthography is not easy, and indeed lots of people are unaware of how to write or even
how to inflect certain words according to the norm. The tagger uses lexicons that follow
the standard norm (Bokmålsordboka, Nynorskordboka, IBM’s lexical database).
Although we have made an effort to enlarge our lexical database to include the most
common misconceptions (see Hagen, Johannessen and Kristoffersen 1997), it is not
possible to foresee all possible mistakes, as can be seen below.

(13) A phra.se believed to be a compound

Norwegian, NN;
Wrong analysis:

Wrong analysis:
compound adverb
Should have been:

Det er ikkje nokon kvensomhelst som no står fram som ja-mann
• *It is not any who-who-rather who now stands forward as a yes-

man
(should have been anybody)

kvensomhelst: “kven-som-helst" 'who-who-rather'

kven som heist "kven som heist" 'anybody'

The way Norwegian creates ‘free choice items’, like the English any, is by adding the
(untranslatable) phrase som heist to the word in question. Since this is a set phrase, it
may easily be conceived of as being compounded with the word it modifies. This has
happened in this particular context. Since the word is not in the lexicon, the compound
analyzer belonging to the tagger has, correctly, found the three words it consists of, but
has treated it like all other compounds, giving the compound as a whole the tag of its last
member. This of course gives the wrong result: The compound is given the tag adverb
rather than pronoun, or even noun in this particular context. (Indeed, this particular word
probably ought to have been added to the lexicon as a nominal compound.)

72

(14) Wrong inflection

Norwegian, NN:
Wrong analysis:

Wrong analysis:
Should have been:

Ho er fødd i Kristiansand og vaks opp på Gjøvik
She was bom in K. and o f the fish being on the feed up at Gjøvik.

(should have been: voks)

vaks: "vak" 'fish being on the feed near the surface' noun sg gen
voks: "vokse" 'grow' verb preterite

Strong verbs - verbs that inflect with an internal vowel change - sometimes have an
inflectional norm that does not comply with what people actually believe to be the case. In
(14) the verb is therefore analyzed by the tagger as a noun, which of course will prevent
the correct analysis and disambiguation of the rest of the sentence.

These mistaken beliefs are actually very common. Actually, the Oslo Corpus contains 96
occurrences of the wordform vaks (supposed to be preterite of the verb meaning "grow"),
compared to 145 correct ones. In other words, 40 per cent of the occurrences are written
in a nonstandard way. The same is true in the results from a general Alta Vista web
search: 173 pages contain the form ”vaks ” and 840 the form ”voks ”. Given that many
of the latter ones also must have belonged to the homonymous noun meaning "wax", we
can conclude that this mistaken belief with regard to spelling is very common.^

6. Spelling errors and mistakes generally cause problems

Every time there is a mis-spelt word or mistakes in punctuation, the tagger will have
problems. A mis-spelt word will either not be analyzed or be analyzed wrongly, with the
result that other words surrounding that word will also be difficult to analyze. For
example, if a noun is wrongly identified as a verb, then the determiner of that noun will
not be analyzed correctly, since a determiner needs a noun to be identified. If there is a
mistake in punctuation, the tagger will not know where the clause ends. This has serious
consequences. Since the tagger, for example, accepts only one finite verb for each clause,
a missing full stop will make it impossible to identify two finite verbs in what is really
two clauses.

(15) Lack of full stop:

Norwegian, BM:

One wrong reading:

Wrong analysis:
Should have been:

Du kan også svare på fax ; 72501468 eller via e-mail: ole-
einar.andersen@adresseavisen.no Vi må ha svaret innen kl. 12.00.

You can also answer by fax:.., or by e-mail:... Vi must have the
answer by 12 Midday.

Vi: "Vi" proper name
Vi: "vi"'we'pronoun pi

In (15), the word Vi is of course a pronoun that is written with a capital letter because it is
the first word of a sentence. Our knowledge of language makes it immediately possible to
interpret it correctly, and to spot that there is a missing full stop in front of this word.
However, the tagger has more limited knowledge, and instead analyzes this unknown
word as a proper name, wrongly of course, with bad results for further identification of
the words in the clause.

mailto:ole-einar.andersen@adresseavisen.no
mailto:ole-einar.andersen@adresseavisen.no

73

Below are a couple of more examples of printing and spelling errors that are problematic;

(16) Two words written together:

I Trondheim er mellomSO og 50 stellebord av denne typen solgt.
In Trondheim, between30 and 50 changing units of this kind have been sold.

(17) Wrong spelling:

Hvis betingelsene for forskninng er bedre i andre land enn her hjemme, vil
forskningen etter hvert flyttes ut. (should have been: forskning)

If the conditions for research are better in other countries than here at home,
research will be moved out after a while.

7. Wrong for other reasons

There are cases in which the tagger would have had better results had we improved it in
certain ways. Below are a couple of such examples.

(18) A word unknown to the lexicon

Norwegian, BM:
Two readings:

Ambiguity:

... i Europa. Per-Åke Palmquist som alle de andre...
• *...in Europe. Per-eo Palmquist like all the others..
• ...in Europe. Per-Åke Palmquist like all the others..

Per-Åke: proper name
Per-Åke: "per-åke" ‘per-go’verb infinitive

If a word with a capital letter follows a full stop, it is possible to analyze it as a proper
name if the word is not in the lexicon. But if the word is ambiguous between a proper
name and a word in the lexicon, or is a possible compound, it is more difficult for the
tagger to make the right choice. In (18), the name is interpreted as a compound, since the
last part of it could be a verb. A list of names or a statistical module telling the tagger that
the verb åke is very rare might have solved this problem, but as it stands, without these,
the problem remains.

(19)

Norwegian, NN: Han kjende berre noko voks oppunder ermstaupet pS han.
Only reading: a. He only felt some wax under his armpit.
Not analyzed: b. He only felt something grew under his armpit

Ambiguity; noko; "noko" 'something' pronoun neuter sg
"noko" 'some' determiner neuter sg

voks: "vokse" 'grow" verb preterite
"voks" 'wax' noun sg ind masc

In (19), the problem for the tagger is that it has to understand that the italicized words, in
addition to being a noun phrase consisting of a determiner plus a noun, can also be
analyzed as a pronoun followed by a relative clause without a relative subjunction. But

74

this second reading is overall less likely, and to accept this kind of reading would
probably give many more ambiguities in the rest of the tagging.

8. Conclusion

As long as each text is not cleaned before tagging, some problems are bound to remain
unsolved. We have chosen this inclusive perspective for The Oslo Corpus because we
believe that our users appreciate the possibility of being able to do searches in a large
corpus. If we had chosen a restrictive attitude to the way the corpus texts should look
before they were taggable, our corpus would have been considerably smaller, because we
would have had to proofread it. The tagging mistakes which are due to wrong spelling
and to wrong language and dialect are therefore impossible to prevent.

Some of the mistakes are due to people's mistaken beliefs. This kind of mistake, which is
finite in number, can be accommodated by expanding the lexicon to include nonstandard
spellings and inflections of words. We have already done this to some extent, and we
have also done the opposite - reduced the lexicon by removing some extremely infrequent
correct wordforms that are homonymous with some very frequent ones.

Structural ambiguity and ambiguity due to headlines are two problems that we do not see
that we can solve. They require world knowledge of a kind that is hard to include in even
very domain specific AI systems, and are impossible to include in tagging of completely
open text corpora.

The fact that there turns out to be a surprising amount of structural ambiguity, however,
is interesting with respect to the evaluation of taggers more generally. There are basically
two types of taggers; those that leave ambiguity where it cannot be decided, like the
Constraint Grammar type (Karlsson et al 1995) that we have used for the Oslo Corpus,
and those that always make a choice, like statistical taggers (e.g. Kupiec 1992). It is
possible that languages differ with respect to how much structural ambiguity they allow.
We believe, after having worked with tagging of Norwegian, that a tagger which allows
structural ambiguity to remain unsolved is preferable to one that does not.

Notes

1. One might ask whether the rest of this sentence would make the exerpt unambiguous, but this is not
the case:

(i) Reinhaldsarbeidarar eller vaskehjelper som vaskar skular, kommunehus, bibliotek og andre
kommunale hus bør få nøye opplæring i korleis dei skal utføre arbeidet sitt.

'Cleaning personell or washing people who wash [a. schools/b. stare], city halls, libraries or
other buildings belonging to the council ought to be taught how to perform their work properly.’

With the a-interpretation, the noun skular is in a multiple coordination with other kinds of buildings, all
being part of the object of vaskar. With the b-interpretation, the verb skular ends the clause, while the
other kinds of buildings are the (pragmatically odd) subject of a second, asyndetically coordinated, main
clause.

75

2. We are grateful to Øystein Alexander Vangsnes for making us aware of these facts.

References

Bokmålsordboka. 1993. Landrø, M.I and B.Wangensteen (ed.). Universitetsforlaget,
Oslo.

Hagen, K., J.B. Johannessen and K.E. Kristoffersen. 1997. Problemer ved bruk av
andres lister til taggerformål. Paper presented at Møter om norsk språk 7,
University of Trondheim.

Karlsson, F., A. Voutilainen, J. Heikkilå and A. Anttila. 1995. Constraint Grammar. A
Language-Independent System for Parsing Unrestricted Text. Mouton de Gruyter,
Berlin.

Kupiec, J. 1992. Robust part-of-speech tagging using a hidden Markov model,
Computer Speech and Language 6, 225-242.

Nynorskordboka. 1998. Hovdenak, M., L. Killingbergtrø, A. Lauvhjell, S. Nordlie, M.
Rommetveit and D. Worren (red.). Samlaget, Oslo.

The Oslo Corpus of Tagged Norwegian Texts:
http://www.tekstlab.uio.no/norsk/bokmaal/
http://www.tekstlab.uio.no/norsk/nynorsk/

http://www.tekstlab.uio.no/norsk/bokmaal/
http://www.tekstlab.uio.no/norsk/nynorsk/

M erg in g C lassifiers for Im p ro v ed In fo rm a tio n
R e tr iev a l

Anette Hulth, Lars Asker
Dept, of Computer and Systems Sciences

Stockholm University
[hulthI asker]Ødsv.su .se

Jussi Karlgren
Swedish Institute of Computer Science

ju s s iø s lc s . se

Abstract

One prospective way to improve information retrieval is to use several indexing
methods to retrieve different sets of documents, and then to merge (or combine) these
results into one single result. The merging should be done in a way that produces a
final result that is more accurate than the output of any of the individual classifiers.
A merging algorithm called SE Q U E L has been applied for this task to data in the
field of information retrieval. This article describes the results of these experiments,
as well as conceivable future directions.

1 Introduction

Training several different classifiers and combining their predictions into a single one is a
common method for creating a classifier from a set of training data. This approach gen­
erally yields a more accurate result than that from the constituent classifiers, which has
been shown by a number of researchers. (For an overview of research and results in this
area see for example Merz (1999) and Dietterich (1997).) Similar results have also been
shown in the document retrieval domain by Bartell et al. (1994): using different retrieval
algorithms and then combining them may significantly improve retrieval performance.

When applying a merging strategy, the first thing to decide is what different classifiers
to use. In the information retrieval domain the source of information is often documents.
As documents consist of words, a feasible approach could be to use linguistic methods for
retrieval. If each of the methods captures a different aspect of the documents’ content,
we could possibly retrieve a larger amount of relevant documents on the whole. When
merging the different results, the aim is to produce a final result that is more accurate,
i.e., has a higher average precision, than the output of ciny of the individual results.
Obtaining this is, however, not trivial, as we only have recourse to weak clues about text
relevance, and since results vary between queries, domains and reader preferences, all of
which is based on knowledge that is difficult to model reliably.

77

2 Background

In this section we will describe the Text REtrieval Conference—the framework within
which most of the work was done. We will also describe how the relevance is judged, as
well as give a motivation for using several information retrieval methods.

2.1 Text REtrieval Conference

The Text REtrieval Conference (TREC) is an annual workshop on information retrieval
organised in the form of a competition by National Institute of Standards and Technology
(NIST). Several aspects of information retrieval are dealt with within different tracks:
interactive search (using users’ feedback); spoken document retrieval-, question answering
(the answer to a stated question is returned to the user); cross-language retrieval (the
database is multi-lingual), just to name a few. The track that attracted the largest
number of participants at TREC-8 was the ad hoc track. This task investigates the
performance of systems that search a static set of documents using new topics. This
corresponds to how we, for example, search the World Wide Web using Altavista: the
user states a number of words that describe the wanted document, and a list of documents
ranked after presumed relevance is returned by the system.

Each group participating in the ad hoc task is given a large set of documents (approxi­
mately 2 GB) plus 50 topics. First, the participants have to produce a new query set from
the topics given, thereafter these queries are run against the given collection. For each
topic, a ranked list of 1 000 documents retrieved from the collection should be returned.

The document collection used for TREC consists mainly of articles from, for ex­
ample: Wall Street Journal; Foreign Broadcast Information Service (FBIS); The Fi­
nancial Times; Federal Register; and The LA Times. (For more on TREC, see
Voorhees and Harman (1998b).)

2.2 The Relevance Judgement

In information retrieval, one way to measure how relevant a set of retrieved documents
is, is by looking at precision and recall. By precision we mean the proportion of relevant
documents in the retrieved set. Recall is the proportion of relevant documents in the
whole collection which the system has retrieved. Both measures take a value between 1.0
and 0.0, where 1.0 corresponds to the best performance.

The measure used in the experiments described below, and one of the measures used in
TREC is mean average precision. For a single query, the average precision is the mean of
the precision obtained after each relevant document that is retrieved. By averaging this
value for several queries, we obtain the mean average precision. This measure is sensible
to the rank of the relevant documents: having the relevant documents at the top will
result in a higher value, i.e., such documents will be given higher weights.

As the data collection is fairly large, as is the amount of runs submitted by the par­
ticipating teams, it is not possible to calculate the exact precision or recall. Instead, a
number of human judges take the top 100 for each query and mark the documents for

78

relevance. These judgements are used as a relevance pool for the rest of the retrieved
documents. Hence, a rather large amount of documents will not be judged at all (the
documents that are ranked as 101-1 000 and that have not been retrieved by anybody
else on the first 100 places). However, if none of the participating systems have retrieved
a document in the top 100, sampling tests seem to indicate that it is not very likely to
be relevant.

2.3 Natural Language Information Retrieval

The GE/Rutgers/SICS/Helsinki team (further described in Strzalkowski et al. (1998))
has for several years participated in TREC with the aim to show that linguistic features
can be useful for classifying documents as relevant or irrelevant to a query. To accomplish
this, different indexing approaches, term extracting, and weighting strategies have been
used to build a number of streams. Each stream represents an alternative text indexing
method; some require complex linguistic processing, while others are based on simple
quantitative techniques. The results obtained from the different streams are lists of
documents ranked in order of relevance: the higher the rank of a retrieved document,
the more relevant it is presumed to be. The ordering is based on the relevance score—
a figure produced by the stream, reflecting the document’s accuracy as judged by the
system. The streams perform in parallel and the results from the different streams should
be merged to produce one final result.

3 The D ata Set

The experiments described in this article were performed with TREC-7 data, processed
with methods developed for TREC-8. We merged four different streams; these will be
described below. For more details on the indexing methods see Strzalkowski et al. (1999).

3.1 The Indexing Methods

As mentioned above, the different streams correspond to different indexing methods. In
this section, we will describe these streams. For simplicity we will refer to the streams
as one, two, three and four respectively.

S tre a m one Automatic expansion, i.e., passages extracted from retrieved documents
are added to the query. Uses proximity phrases—that is two (or more) terms must
be adjacent (or within a distance) of e2xh other. Runs on stem stream (stemmed
words and stop words removed).

S tre a m tw o Before expansion the terms from stream one were added to the topics using
a feature in InQuery called #phrase operator (giving higher weight to co-occurring
phrases) in case it is a phrase. Automatic expansion. Runs on stem stream.

S tre a m th re e Automatic expansion. Runs on stem stream.

S tre a m four Single words and head-modifier word pairs. The word pairs contain noun
phrases but also other syntactic constructions which have similar meaning.

79

The words from the title of the topic description are repeated three times before the
query is processed for all four streams, thus giving different weights to the different fields
in the topic.

3.2 The Data

As stated in the previous section, we performed the experiments using four different
streams. Each stream produced a list of 1 000 documents for each query, and as we had
a total of 50 queries, the whole set added up to 200 000 documents. The relevance pool
(i.e., all documents that were reviewed by the human judges) for TREC-7 consisted of
4 674 relevant and 75 671 non-relevant documents (in total 80 345).

In table 1 below, we will give some statistics about the streams: the number of relevant
documents retrieved for each of the stream (rel.); average precision (av. pr.); the number
of queries for which the stream had the highest number of relevant documents retrieved
as compared to the other streams (best); and the highest and the lowest relevance score
for each stream over the 50 queries (max. and min.).

Table 1: Statistics about the data. (For explanations of the abbreviations, see above.)

one two three four
rel. 2 779 2 604 2 918 1 435
av, pr. 0.2442 0.2266 0.2442 0.0918
best 15 11 9 3
max. 0.4729 0.4721 0.4765 0.4593
min. 0.4062 0.4052 0.4062 0.4036

It is interesting to note that although stream three retrieved about 5% more relevant
documents than stream one, the average precision is the same for the two streams. One
should also note that although stream one was the best stream on many more occasions
than stream three, they had the same average precision, thus showing that the ordering
of relevant versus non-relevant documents is important.

4 Experiments

In this section, we will first describe the merging algorithm used, and then look at the
results we got when applying this algorithm to the task at hand. As mentioned previously,
the data used was the TREC-7 data, and we also used the relevance judgements from
TREC-7 to meeisure the average precision.

4.1 SEQUEL

S e q u e l is a merging algorithm developed by Asker and Maelin (1997) and has been used
successfully for image classification tasks. The rationale behind Seq u el is to find the most
confident classifier down to a certain threshold. It requires that the list be sorted by—in

80

this case—relevance score. The confidence is calculated by finding the classifier with the
highest proportion of correct classifications (i.e., relevant documents) at the top, down
to the first non-relevant one. The threshold will be the lowest relevance score within this
interval. The items covered by the span are removed from all classifiers.

The training was performed on 40 out of 50 queries—setting aside 10 for testing. Two
different implementations of the algorithm were made: one where all queries were sorted
by the judgement of the system; and one where the program examined the confidence for
ecich query at a time, taking the average as the result. All non-judged documents were
removed, leaving only the judged documents for consideration. In addition, one small set
of experiments was performed where the ranking scores were normalised to fall between
1 and 0 (only for the first implementation).

4.2 Results and Discussion

Although the algorithm performed well, no merged list had higher average precision than
the best individual stream (which is our criteria for a successful merging). For this reason,
no diagrams or curves of these runs will be presented here, but we will conclude with
some reflections of possible reasons why the algorithm did not work for this type of data.
We will also suggest an alternative method, which still has to be realised before we can
draw any conclusions about its ability.

The algorithm tended to favour the best performing classifier (it being the most confident
stream) and discarded the additional information that the weaker streams may have
contributed with. This could possibly be because the algorithm was not very forgiving:
immediately upon finding an irrelevant document the stream was discarded. Seq u el also
tended to work with chunks of documents, covering too many at the time. This could
be due to the fact that the relevance scores given by the retrieval systems range over a
quite limited span. (The above mentioned normalisation of the scores did not, however,
yield a better result.) A shortcoming of the algorithm is that it does not take a possible
overlap of the retrieved documents in the different streams into account.

At a certain value the best performing classifier may be considered the default classifier,
i.e., it can be used as the single classifier. While experimenting with different threshold
values it turned out that the more we let the best performing stream influence the result,
the better it got. That was simply because we had fewer of the less well-performing
streams lowering the result.

This automatic classification scheme is seemingly tuned for a different type of task.
Hence, we need to find more forgiving methods, which do not discard a stream imme­
diately upon finding an irrelevant document: document relevance is a debatable issue in
itself, and cannot easily be compared to other classification tasks where the errors are of
a more clear-cut nature.

5 Future Work

Seq u el was implemented to consider the top 1 000 for each query and classifier. This
means that for the majority of the documents, we will only know the relevance scores

81

from one or two streams. It would be more appealing to apply a method where every
document to a larger extent could benefit from the fact that we use several retrieved
methods. Something that points in the direction that this could be a feasible approach
is the fact that the ranking scores continue to be more or less at the same level even at
end of the list of retrieved documents.

We will conduct a set of new experiments that will take into account the judgement of
every stream: all documents that have been ranked among the first 1 000 documents
by at least one stream out of N streams will constitute a “document pool” of at least
1 000 documents and not more than N*1 000 documents. We will let every stream score
all documents in this pool. As a first experiment, we will implement a simple linear
combination of the judgements from the four streams. By a weighted sum of all the
scores from e2u:h of the streams we will get a total score that includes the knowledge of
all streams in question. As mentioned before, the span for the ranking scores is not that
large, and therefore even a very small score can alter the ordering of the documents. For
these tests we will retain the non-judged documents, and we will experiment with both
non-normalised and normalised scores.

A document pool for the four stre2ims would constitute of the 113 135 unique documents
(out of 200 000 in the retrieved set, meaning that the overlap is about 43%). Of these
3 408 are relevant. If comparing this figure to the 2 918 documents that stream three
retrieved the other three streams could—at least in theory—contribute with 490 relevant
documents. Below, in table 2, we will give an example from one query. Here we can see
that there is a difference of 55 documents between the best performing stream (stream
one) and the document pool. If including these additional documents in the best retrieved
set, the number of relevant documents would increase with 32%.

Table 2: Number of relevant documents found to query no. 354.

1 one 1 two three four doc. pool 1
1 172 1 142 170 115 227 1

There is a possibility that some documents could get a better total score by having been
given four low scores (too low to be among the best 1 000 documents for any stream)
than one with a high score on one and no rating on the other streams. However, if none of
our streams ranks a document eimong the top 1 000 we will discard it. If the experiments
with simple linear combinations turn out satisfactory—i.e., better than the non-adapted
learning eilgorithms—we will continue with more sophisticated methods, for example by
weighting the different streams. As a baseline, we will use the average precision we get
when combining the scores, not looking beyond the top 1 000.

6 Related Work

An approach similar to the one described in the previous section was used by
Mayfield et al. (1999) at TREC-8. The team used a linear combination with manu­
ally set weights for merging three different runs. The ranking scores from the runs were
normalised to fall between 0 and 1. An improvement was obtained with the merging

82

compared to the single runs. However, only the top 1 000 was considered for each run,
and when having conducted the above described experiments, we will be able to conclude
whether our approach is more favourable.

References

Asker, L. and Maclin, R. 1997. Ensembles as a Sequence of Classifiers. In Prvceedings
of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 97),
Nagoya, Japan.

Bartell, B. T., Cottrell, G. W., and Belew, R. K. 1994. Automatic Combination of
Multiple Ranked Retrieval Systems. In Proceedings of the seventeenth annual interna­
tional ACM-SIGIR conference on Research and development in information retrieval
(SIG IR’94), Dublin, Ireland.

Dietterich, T. G. 1997. Machine Learning Research: Four Current Directions. A I
Magazine, 18(4):97-136.

Mayfield, J., McNamee, P., and Piatko, C. 1999. The JHU/APL HAIRCUT System at
TREC-8. Preliminary TREC-8 Report. Gaithersburg: NIST.

Merz, C. J. 1999. Using Correspondence Analysis to Combine Classifiers. Machine
Learning, 36(l/2):33-58 .

Strzalkowski, T., Stein, G., Wise, G. B., Perez-Carballo, J., Tapanainen, P., Jarvinen,
T., Voutilainen, A., and Karlgren, J. 1998. Natural Language Information Retrieval:
TREC-7 Report. In Voorhees and Harman (eds.) (Voorhees and Harman, 1998a).

Strzalkowski, T., Perez-Carballo, J., Hulth, A., Karlgren, J., and Tapanainen, P. 1999.
Adhoc experiments performed by the GE/Rutgers/SICS/Helsinki team in the context
of TREC-8. Preliminary TREC-8 Report. Gaithersburg: NIST.

Voorhees, E. M. and Harman, D. K., editors. 1998a. Proceedings of the Seventh Text
REtrieval Conference (TREC-7). NIST Special Publication 500-242.

Voorhees, E. M. and Harman, D. 1998b. Overview of the Seventh Text REtrieval
Conference (TREC-7). In Voorhees and Harman (eds.) (Voorhees and Harman, 1998a).

Extracting Keywords from Digital
Document Collections

Anna Jonsson
Swedish Institute of Computer Science

Human Computer Interaction and
Language Engineering Laboratory

Kista, Sweden
E-mail: anjo@sics.se

Abstract

An indexing tool was built to provide for one of several information seeking tasks. In ac­
cordance with the basic principles of work held by the HUMLE laboratory at SICS, a so­
lution regarding indexing would be a semi-automatic tool. This approach is also relevant
as the continuation of the indexing project is conducted in co-operation with the Swedish
Parliament, where a staff of professional indexers currently is investigating the utility of
automatic and semi-automatic indexing tools to raise productivity.

1 Introduction

Digital libraries are complex information systems, which augment and extend tradi­
tional libraries by affording users better support for human problem solving and prob­
lem formulation. Digital libraries should be understood to be more than a haphazard col­
lection of electronic resources and associated technical widgets for creating, searching,
and using information in various media and over networks. They are, or should be, tai­
lored to the needs and tasks of a group or several groups of users, and their functional
capabilities should support the information needs and uses of those individuals and
groups.

Digital libraries are both an extension and integration of existing information sources,
and through the advent of new technology and adjustment of tried and familiar tech­
nologies, a completely new concept. While digital libraries typically improve certain
aspects of traditional libraries, most often today they leave other aspects unaddressed,
which will decrease their usefulness. Traditional information institutions not only make
information resources available to the public, but actively select, collect, organise, and
preserve them, engaging in numerous behind-the-scenes tasks seldom addressed, or
taken for granted in their digital counterparts.

Despite recent advances in both computer technology and computational linguistics,
retrieving and extracting useful information in large document collections is still very
troublesome. Freetext search is certainly useful and fast, and generates a generous
amount of results, but distinguishing the relevant documents from the non-relevant in
the abundance of returned documents is a problem. Other systems for structuring infor­
mation to enhance availability has traditionally been by storing information about

mailto:anjo@sics.se

84

documents, books, and texts in bibliographic cards; and by indexing the documents by
lists of keywords or keyphrases.

2 SICS Digital Library

To understand the context to our current indexing work, this chapter gives an overview
of the theoretical background important in the Digital Library Project at SICS (DigLib),
as well as a short description of the project itself.

2.1 Theoretical Background

The belief that one kind of information retrieval system, i.e. freetext search systems, can
suffice for, and even replace other systems, and thus provide for all information seeking
needs users have, is widely common today. This maybe due to the recent technological
advances that have solved a considerable amount of the problems this area suffered ini­
tially, mainly regarding speed and storing possibilities. However, Belkin and others
have analysed user strategies for information seeking (Belkin & Cool, 1993; Belkin,
Cool, Stein & Thiel, 1995), and recently Belkin and Carballo (1998), based on extensive
user observations, found that humans utilise a multitude of strategies in the task of in­
formation seeking. The four strategies people spend most time on are: finding a known
information object, recognising useful information objects by scanning through an in­
formation resource', evaluating the usefulness o f information objects', and determining
the content or structure o f a collection o f information objects. The first of these strate­
gies, “finding a known information object” can be seen as corresponding to biblio­
graphic cards, containing information about author, title, publishing data, and possibly
an abstract, used for example in traditional libraries. An example of what “recognising
useful information objects by scanning through an information resource” means, can be
the behaviour we adopt when browsing through web pages. The third strategy we spend
time on, “evaluating the usefulness of information objects”, is e.g. when we try to dis­
tinguish what documents are relevant to our query after a search, for example a search
on Altavista. And finally, “determining the content or structure of a collection of infor­
mation objects” is what we do when familiarising ourselves with a book by looking at
the table of contents, or by looking up the keywords listed in the book’s index.

So, the conclusion is that multiple information seeking strategies need to be met by sev­
eral information seeking tools, which clearly indicates that a single information access
tool would not be sufficient.

2.2 DigLib

SICS runs DigLib, a project for the study and application of digital libraries. The central
issue for DigLib is focusing on usage: studying how and why users interact with docu­
ment collections, and trying to build tools incorporating new technology to aid users in
the tasks we find they try to solve. The leading principle is that general solutions to in­
formation access problems tend to be unsatisfactory, and that tailoring technology to

85

specific requirements of professional users is more rewarding than trying to automate
general tasks for all.

To provide for the above-mentioned information seeking strategies proposed by Belkin
and Carballo, a platform including different tools was built within DigLib. As a tool for
“finding a known information object”, we included Dienst, a bibliographic look-up en­
gine. Dienst performs a search in bibliographic records, where, among other things, title
and author are specified. It provides rapid, consistent, and predictable results: it indexes
documents by a small number of highly relevant fields without bothering with the full
document texts (Davis & Lagoze, 1994). “Recognising useful information objects by
scanning through an information resource” was made possible through a systematic
structure of HTML links, organised hierarchically by information source. The third pro­
totypical information seeking interaction “evaluating the usefulness of information ob­
jects” cannot be met by adding a single tool, as this concerns different aspects of in­
dividual documents or sets of documents, and requires specific techniques for informa­
tion refinement. Evaluating a document in regard to a user’s information need, can for
example be accomplished by comparing the document to other documents in the collec­
tion or by custom-made summarisations of retrieved documents.

There are several ways to support the fourth information seeking interaction style, “de­
termine the eontent of a collection of information objects”. Although graphical visuali­
sation techniques using various metaphors show promise of usefulness, other solutions
must be offered, since up to 64 percent of the population have difficulties using maps
for orientation even in straightforward navigation tasks (Streeter & Vitello, 1986). We
implemented the Keyword Extraction Function (KEF, see further in section 3.1 below),
that extracts and presents keywords from documents in a way that resembles an index in
a book - something most of us are familiar with, and many of us use for precisely the
purpose of familiarising ourselves with the eontents of a book.

3 Previous Work

Within the DigLib project we have, as outlined above worked on integrating several
tools that meet different information seeking strategies. The tool we developed in-house
corresponds to one of these strategies, and is described below.

3.1 The Keyword Extraction Function

The tool called the Keyword Extraction Function (KEF) was the first prototype to an
indexing tool. The function takes all words from the text-files and applies a lexical fil­
ter, which selects all nouns from these texts. For this it is dependent on a part-of-speech
tagger. We investigated the possibility of using other criteria for keyword spotting, such
as word length; long words tend to be topic-specific, especially in a compounding lan­
guage such as Swedish. The results were not completely discouraging, but we found
that the benefits a tagger gave were not limited to term spotting, but included conflation
of morphological variants - which in general is desirable. We concluded that tagging is
necessary for term extraction.

86

Nouns were chosen as index words, as they seem more information dense than other
word-classes, and are most often used in retrieval queries (Källgren, 1984; Källgren,
1992). Complex noun phrases were disregarded, after having analysed a sample set of
documents. In addition Ingwersen (1992) states that automatic indexing techniques
based on single words are quite effective, and multi-stream information retrieval ex­
periments shows that single term retrieval in general is the single most effective know­
ledge source for information retrieval (Strzalkowski et al., 1997), compared to, among
others, multi-word terms.

By selecting all nouns occurring in the texts for further inspection, KEF overgenerates
terms. The assumption was that overgenerating terms and excluding non-relevant ones
is a safer bet than attempting to pick only the most relevant ones. A number of research­
ers have in various ways shown that frequency or repetition in addition to lexical cate­
gory is important for modelling term relevance (Luhn, 1959; Salton, 1989; Justeson &
Katz, 1995).

Our conclusions from this work were that morphological and lexical tagging is neces­
sary for term extraction and that a keyword index needs further techniques for refining
the choice of included terms. Current experiments include statistically based term selec­
tion metrics, and the possibility of generating different index term lists for different pur­
poses: a shorter list could conceivably be used for overview; a more exhaustive list for
finding precisely which items to peruse further.

4 Current Work

There are today many organisations that daily deal with large amounts of documents,
index them manually, i.e. create lists of keywords describing the document, in order to
enhance the documents availability for information finders within the organisation as
well as, in some cases, for the general public. Indexers sometimes have access to
knowledge databases of some sort, often a structured ontology or knowledge model to
aid them in their work. The quality of these manually produced indexes is high, how­
ever, although when having access to ontologies, humans do not seem to index in a con­
sistent way (Earl, 1970, Kowalski, 1997), and the work is both time-consuming and ex­
pensive. As comparison, automatic indexing, which has undergone a dramatic change to
the better since the beginning in the 50s and 60s, gives quick results that can be said to
be consistently done, and it is far less expensive than manual indexing, but the quality is
still questionable (Salton, 1989, Kowalski, 1997).

So, bearing in mind that manual indexing is of high quality but time consuming and in­
consistent, and automatic indexing is fast, consistent but of lower quality - how can we
improve the quality of indexing, and relieve pressure on those who are professional in­
dexers, and increase productivity?

87

4.1 Principles of Work

As mentioned above, the leading principle when working with DigLib, was to avoid
general solutions. In our case, and as an answer to the question ending the previous sec­
tion, the solution to us is semi-automatic tools. To understand why, a description of
some of the basic principles important for the work done at the HUMLE laboratory
might be necessary. These principles concern: system context; methods for design; and
the development of tools for professionals.

Firstly, it is important to adapt a system to an existing situation, understanding the lan­
guage used in some specific context, and to include modality-specific information in the
system specification. There is often no best general solution available, but a system
needs to be customised to fit in the workflow of the organisation. Secondly, it is im­
portant to bear in mind the difficulty involved when trying to collect and collate the
right sort of information; information that has bearing on the design process. That is,
finding a method of relating information about a workplace and the individuals therein
to the design process is essential. And thirdly, the professional user shall be aided in the
task at hand, and it should be an intelligent aid system. Complete automation should be
regarded with some degree of scepticism. The goals are to raise productivity, efficiency,
and quality of information work.

4.2 The Swedish Parliament

One of the organisations we co-operate with regarding indexing is the Swedish Parlia­
ment. They index large numbers of documents yearly, in order to make them accessible
both to information specialists and to the general public, and their work on this plays an
important societal role. This work has progressed for a long period of time, during
which they have developed an extensive hierarchically organised domain specific the­
saurus (or knowledge base). Figure 1, below, shows an excerpt of the thesaurus: the
word arbetshandikapp (work disablement) and it’s broader term (BT), narrower terms
NT, related terms (RT) and a description of what the word means (SN).

Arbetshandlkapp
BT Arbetsliv
NT Arbetsbiträde
NT Näringshjälp
NT Skyddat arbete
RT Anställningsfrämjande åtgärder
RT Handikapp
RT Lönebidrag
SN Nedsatt arbetsförmåga pga fysiska, psykiska, förstånds-

mässiga eller socialmedicinska handikapp - däri inbegripet
missbruk av alkohol eller annat berusninasmedel.

Figure 1. Excerpt from the thesaurus developed at the Swedish Parliament.

As a consequence of the parliament’s long history of manual indexing, radical depar­
tures from tradition is very much undesirable. Meaning that an aiding indexing tool in
essence must function as a re-implementation of the tasks currently performed.

88

4.3 Towards a Domain Specific Indexing Tool

The development of the new indexing tool takes a slightly different starting point than
KEF. The input comes in the form of a list of keywords generated by means of standard
tP idf calculations. As before, we have concentrated on norms as keywords, at least as
an outset. The new approach, from our point of view, is making use of the thesaurus,
(mentioned above), for shortening the list of keywords. By aggregating several occur­
ring narrower terms, the tool can then suggest to the human indexer, with some measure
of confidence, a broader term that describes the document on a higher level of abstrac­
tion. For example, if the list of keywords shows that the document contains several oc­
currences of specific types of banks (e.g. Affärsbanker, Foreningsbanker, In­
vesteringsbanker, Sparbanker) the indexing tool will suggest their broader term Finans­
institut (Finance Houses) to describe the document. The confidence measure will reflect
the coverage of the terms occurring in the document that are corresponding to the terms
listed in the thesaurus.

In order to improve the performance of the indexing tool, automatic evaluation based on
previous manual indexing will be implemented. The manual indexing done at the Swed­
ish Parliament over many years has been stored and used for an enhancement of the in­
dexing accuracy. This will be taken into account also for our indexing tool.

Another facet that will be taken under consideration in the further development of the
tool is the temporal aspect. Term meanings change over time, and index terms shift over
time. This should be made visible to both the indexer and the viewer/user of the finished
index. When e.g. looking up a new term, it may be relevant to also retrieve documents
covering the same concept, although it might be described using slightly different terms.

In the future we want to enable the indexing tool to recognise when new terms should
be added to the thesaums. If there seems to be a new term frequently occurring in a
number of documents indexed with the aid of the tool, it should make the manual in­
dexer aware of this, by recommending that the term be added to the thesaurus.

5 Discussion

This article has given the settings to the current work performed within the DigLib pro­
ject at SICS. The theoretical background is that people use various strategies when seek­
ing information (Belkin & Carballo, 1998), and the strategy we have focused on is one
way of allowing users to familiarise themselves with an information resource. This is
accomplished by presenting an index of the document. The work started with the Key­
word Extraction Function, implemented in SICS’ Digital Library platform (Hulth &
Jonsson, 1999), and has later on developed into the semi-automatic indexing tool cur­
rently under development.

Semi-automatic indexing may not be too hard to accomplish per se, as it is a rather
straightforward task. Using the semi-automatic indexing in combination with ontologies
may, however, be more of a challenge, especially the question of how to combine two
or more differently structured knowledge models, and allow them to communicate and

89

co-operate with each other. This will be one focus of research that we will be experi­
menting with in the near future.

Another focus is the question of what makes a good index. There is more to indexing
than merely making lists of words, whether they have frequency measures and weights
of various kinds attached to them or not. What criteria do humans use when indexing a
document for example?

When we have realised the implementation of the tool, and evaluated its performance in
the authentic environment, adapted to the requirements of the workplace, we will know
to what extent our presumptions regarding semi-automatic indexing were correct.

Acknowledgements

A lot of the previous work was performed in co-operation with Anette Hulth.

References

Belkin, N.J. & Carballo, J.P. 1998. Understanding and Supporting Multiple Information
Seeking Strategies, a TIPSTER Phase III Research Project. URL;
http;//www.scils.rutgers.edu/tipster3/18month/index.htm

Belkin, N.J., Cool, C., Stein, A. & Thiel, U. 1995. Cases, Scripts and Information Seek­
ing Strategies; On the Design of Interactive Information Retrieval Systems. Expert
Systems with Applications.

Belkin, N.J., Marchetti, P.G. & Cool, C. 1993. BRAQUE; Design of an interface to
support user interaction in Information Retrieval. Information Processing & Man­
agement Vol 29, 3, 325-244.

Davis, J.R. & Lagoze, C. 1994. A Protocol and Server for a Distributed Digital Techni­
cal Report Library. URL; http;//cs-
tr.cs.comell.edu/Dienst/UI/2.0/Describe/ncstrl.comell/TR94-1418?a

Earl, L.L. 1970. Experiments in Automatic Extracting and Indexing. Information
Storage & Retrieval. Vol. 6, pp. 313-334. Pergamon Press.

Hulth, A. & Jonsson, A. 1999. An Experimental Digital Library Platform - A Demon­
strator Prototype for the DigLib Project at SICS. Stockholm. SICS Technical Report
T99;02.

Ingwersen, P. 1992. Information Retrieval Interaction. Taylor Graham Publishing.
Justeson, J. & Katz, S. 1995. Technical terminology; some linguistic properties and an

algorithm for identification in text. Natural Language Engineering 1 (I) 9-27. Cam­
bridge University Press.

Kowalski, G. 1997. Information Retreival Systems: Theory and Implementation. Kluwer
Academic Publishers.

Källgren, G. 1984. Automatisk exerpering av substantiv ur löpande text. Ett möjligt
hjälpmedel vid datoriserad indexering? IRI-rapport 1984;1. Institutet for
Rättsinformatik. Stockholm University. (In Swedish.)

http://www.scils.rutgers.edu/tipster3/18month/index.htm

90

Källgren, G. 1992. Making maximal use o f surface criteria in large-scale parsing: the
MorPparser. Papers from the Institute of Linguistics. (Publication 60). University of
Stockholm.

Luhn, H.P. 1959. Auto-Encoding of Documents for Information Retrieval Systems. In:
Boaz, M. Modern Trends in Documentation. (Ed.). London: Pergamon Press. (Re­
printed in: Schulz, C.K. (1968). H.P. Luhn: Pioneer o f Information Science, selected
works. (Ed.). New York: Sparta.).

Salton, G. 1989. Automatic Text Processing. Addison-Wesley Publishing Company.
Streeter, L. & Vitello, D. (1986). A Profile of Drivers’ Map-Reading Abilities. Human

Factors. 1986, 28(2), 223-239.
Strzalkowski, T., Guthrie, L., Karlgren, J., Leistensnider, J., Lin, F., Perez-Carballo, J.,

Straszheim, T., Wang, J. & Wilding, J. 1997. Natural Language Information Re­
trieval: TREC-5 Report. Proceedings o f the fifth Text Retrieval Conference, Donna
Harman (ed.), NIST Special Publication, Gaithersburg: NIST.

Ontologically Supported Semantic Matching

Atanas K. Kiryakov, Kiril Iv. Simov
Linguistic Modelling Laboratory
Bulgarian Academy of Sciences

Acad. G. Bontchev Str. 25A, 1113 Sofia, Bulgaria
diogen@diogenes. bg, kivs@bgcict. acad. bg

A b strac t

Evaluation of the closeness of two texts is a subtask for F T R and I R systems.
The basic means used to accomplish it is the matching of a to m ic te x t e n t i t ie s (ATEs)
such as words, stems, simple phrases and/or concepts. We address the question how
concepts can be used as ATEs more efficiently in order to match “s m a l l d u c k ” with
“s m a l l b ir d ”. The o n to -m a tc h in g technique introduced in the paper makes extensive
use of lexical ontologies similar to WordNet.

We work with two tasks in mind: query expansion and text concept indexing.
We outline some arguments showing why onto-matching is useful and how it can
be implemented. Also, we conducted some experiments with query expansion for
AltaVista.

1 Introduction

“A typical information retrieval task is to select documents from a database in re­
sponse to a user’s query, and rank these documents according to relevance.” Strza-
Ikowski et al (1998). The relevance must be defined on the basis of the concepts
represented in the text and in the query. Usually information retrieval (IR) systems
calculate the relevance of a text with respect to some query according to the num­
ber and the profile of the occurrences in the text of some elements from the query.
The meiin stream of research in IR is towards the development of methods for the
recognition of more meaning bearing elements of texts which can then be used to
evaluate the closeness of the two texts (queries are also texts).
Most often a document is converted into a bag of words, stems or other textual ele­
ments which we call atomic text entities (ATEs) (sometimes information associated
with them is also used). The hope is that these elements explicate the concepts
represented by chunks of text and so define the topics of the document. Similarly,
the query is considered to be itself a bag of words, stems, etc. and again the hope
is that they explicate the concepts of the query.
Although words denote concepts, often they are not sufficient in themselves to
explicate these concepts. They can be thought of as names for the concepts in
the world. Usually the definition of a concept spells out what are the constraints
on its possible representatives or instantiations, it could also give some prototype

92

information and information about this concept’s relationship to other concepts.
It is our opinion that users of information retrieval systems rarely search simply
for words. Rather, they are interested in the concepts that words represent. Thus
concepts (including at least some parts of their definitions and relations to other
concepts) should be included amongst the atomic text entities. In this way we will
capture the intuitive expectation that when one is searching for bird the occurrence
of duck is also relevant. This is so because the word duck represents a subconcept
(more specific concept) of the concept represented by bird.
The problem of the word-to-concept correspondence is well known and intensively
studied in a number of areas like linguistics, psychology, artificial intelligence, etc.
In order to demonstrate some of its aspects we give here a small example. Let us
consider the following top-ontology of particulars (taken from Guarino (1998)):

Particular
Location

Space (a spatial region)
Time (a temporal region)

Object
Concrete object

Continuant (an apple)
Occurrent (a fa ll of an apple)

Abstract object (Pythagoras' theorem)

Here, objects are considered to be concrete because of their ability to have some
location. Continuants are what is usually considered to be objects, while occurrents
correspond to events. Continuants have a location in space. They have spatial
parts, but they have neither a temporal location nor temporal peirts. Occurrents are
“generated” by continuants, according to the way they behave in time. Occurrents
always have other occurrents as parts (continuants take occurrents as parts, but are
not part of them). They have a unique temporal location, while their exact spatial
location can not be defined in the general case. Abstract objects do not have a
location at all. Most of the entities classified as abstract objects can also be thought
of as universals.
Depending on the definition of a concept and therefore on the objects this concept
denotes it can be classified under one or another branch of this ontology. Thus
concepts lexicalized via words in a natural language (or lexical concepts) will belong
to different branches of any ontology extending on the above minimal ontology. For
example, the English word 6oofcdenotes at least the following concepts: “information
unit”, “physical object” and “commodity” which belong to different branches. As
a physical object book is a continuant and as an information unit it is an abstract
object.
One another important point is that world knowledge, that is our repository of con­
cepts and facts, is considerably more massive than is the set of lexicalized concepts.
Therefore, if we use only words as concept denoting entities, we can hope to find
only a fraction of the concepts that we have available to us.
In this paper we investigate the possibility to use WordNet (see Fellbaum (1998))
as a source for the explication of some concept relations in order to improve the
matching of ATEs in documents and queries. More specifically, we exploit the

93

hypernym-hyponym relation. We call this augmented matching of concepts — onto-
matching. This improvement can be used in the core of both FTR and IR systems,
as well as in other places, like information filtering, dictionary look up, information
extraction, etc.
The structure of the paper is as follows: the following section gives an overview of
WordNet and some of the approaches to using WordNet to enhance the precision in
IR systems; afterwards, we discuss different approaches to “concept” search in texts
and we introduce the central notion of the paper — onto-matching; the next section
is devoted to the application of WordNet and onto-matching to query expansion and
document indexing; the last section concludes the paper and lists some problems
and directions for future research.

2 U sin g W ord N et to E n h an ce IR

2.1 W ordNet — a lexical ontology

The following is a concise description of WordNet as given by its developers: “Word-
Net is an on-line lexical reference system whose design is inspired by current psy-
cholinguistic theories of human lexical memory. English nouns, verbs, adjectives and
adverbs are organized into synonym sets, each representing one underlying lexical
concept. Different relations link the synonym sets.” see Miller (1995) and Fellbaum
(1998). Some other basic relations are hyponymy, hypernymy and meronymy for
nouns, entailment for verbs, antonymy for adjectives. The relations are divided in
two levels: conceptual relations that connect synonym sets such as the hyponymy-
hypernymy relation and lexical relations that connect particular words in synonym
sets such as the antonymy relation.
The fundamental building block of WordNet — the synonym set or synset represents
a lexical concept via the set of words (in some cases also phrases, idioms or collo­
cations are used) that lexicalize this concept. Besides these “names” (and informal
glosses) no other information is given about the concept, i.e. there are no formal
definitions or prototype information. The main design principle of WordNet is to
situate lexical concepts in semantic nets constructed with respect to a number of
semantic relations between concepts (or words) that are sufficient to discriminate
between them. This design principle implies the division of WordNet into four non­
interacting semantic nets — one for each open word class. This separation is based
on the fact that the appropriate semantic relations between the concepts represented
by the synsets in the different parts of speech are incompatible. For example, there
is no semantic relation that would appropriately connect a verb synset with a noun
synset and that would make a reasonably detailed distinction between these synsets
and other verb and/or noun synsets.
Additionally, the semantic nets in WordNet are divided in subnets by the so called
unique beginners which determine hierarchies of mutually incomparable lexical con­
cepts. These unique beginners play a role similar to that of the ontological classes
given in the above top-ontology. The following synsets define some of the unique

94

beginners for nouns:

{act, activity}
(cognition, knowledge}
{process}

{animal, fauna}
{natural object}
{quantity, amount}

{artifact}
{possession}
{shape}

The structure and the content of WordNet determine the ways and the extent to
which it can be used to explicate the concepts in a text. Most profitably, one can use
WordNet to determine the lexical concepts designated by a word and their relations
to other lexical concepts.

2.2 W ordNet and IR projects

WordNet was used in several projects to enhance the precision of the search for
relevant documents. These include (among others): Voorhees (1998), Guarino et
al (1999) and Gonzalo et al (1998). Gonzalo et al (1998) uses WordNet to index
texts in two ways: first, they attach to each word its sense, using an index of three
numbers — one for its part of speech, one for the unique beginner within this part
of speech and a third one pointing to the word-sense in this file; second, they attach
to each word the right synsets (lexical concepts). Then they use the standard vector
based matching of the query to the documents using the added information. The
experimental work shows that the performance of document retrieval by summaries
improved by 29%!
Voorhees (1998) reported on two different tasks: word-sense disambiguation as part
of the problem of conceptual matching and semantic expansion of the query. The
conceptual matching experiment failed, because of a wrong strategy for automatic
disambiguation combined with an extremely error-sensitive relevance evaluation
method — the extended vector space model. The idea, in itself, is much like the
one employed in Gonzalo et al (1998), where they studied the sensitivity of concept
indexing against disambiguation errors and reported good results despite the 30%
of errors. The goal of the second experiment was query expansion on the basis of
lexical relations encoded in WordNet. All kinds of relations were studied as possi­
ble directions for the expansion with limited or unlimited transitivity. The results
reported, however, concern only the case where all kinds of relations were traced
for just one step. The conclusion was that such an expansion will lead to some
improvements in the case of relatively short queries.
The OntoSeek project (Guarino et al (1999)) performs knowledge extraction with
the support of the Sensus ontology (Knight &; Luk (1994)). As a lexical front-
end it uses WordNet and then maps the synsets to the formal concepts in Sensus.
The goal is to provide means for knowledge acquisition from a knowledge base of
lexical conceptual graphs (LCG). The target domains are on-line product catalogues
and yellow pages. The results are descriptions of products or companies that can
be matched with queries while taking into account ontological dependencies. This
approach, however, presupposes semi-automatic encoding of the descriptions into a
special form.

95

2.3 Including hypernymy in the retrieved

In our work we investigate the use of a more complicated concept matching approach
augmenting some aspects of the approaches mentioned above. In our view a concept
in a text is defined not only on the basis of its synset (taken as index) but also on
the basis of other semantic relations, especially hyponymy and hypernymy.
We envisage two tasks: Query expansion. We expand the query by adding the
hyponyms of the words it contains. Such an expanded query is evaluated with
respect to documents for which no concept indexing has been done (using AltaVista
for instance); Concept indexing. The texts of the documents are extended by a bag
of concepts mapped to their words. These concepts are determined on the basis of
the hypernymy-hyponymy relation.

3 C on cept search

Concept search is defined in terms of atomic text entities which are extracted from
texts and which are used as units in the evaluation of their closeness. In the usual
query-document scenario we talk about query reengineering or expansion, while
processing of the documents can be thought of as some sort of indexing. After
the two texts (a document and a query) have been appropriately processed the
sets of detected ATEs are matched with one another. There are also “stof)-ATEs”
which are defined in such a way that from each set of detected ATEs some of the
entities are deleted. Usually, the deleted entities are those that denote overly broad
concepts that would be found in any text. In our work we parametrize the notion
of “stop-ATEs” to depend on the context and the wish of the user.
Most of the appro^lches to information retrieval we are aware of use the standard
vector-space model to match the ATEs in texts and evaluate the semantic distance.
The following is an overview of some of these approaiches and the ATEs they use:

• Word-stem. With the help of an inflectional or a derivational morphological
analyzer each word in the text is converted to its stem. The set of stems
is used as an index space over which the matching algorithm operates. For
instance, all occurrences of “read”, “reads”, “readable”, “reader”, “reading”
are mapped to the stem “read”. The idea is that a family of morphologically
related words represents a concept and each member of the family denotes just
some of aspect of it. •

• Word-sense. This approach presupposes the availability of a lexical database
listing a number of senses for each word. Using a word-sense disambiguator the
appropriate sense is attached to each word in the text. The set of word-senses
is used as an index space in the same way as in the word-stem approach.
This approach is reported in Gonzalo et al (1998) where an index pointing
to the word-sense is attached manually to the words in the test set of texts.
The following example is taken from Gonzalo et al (1998): the occurrences of
“debate” are represented by “debate%l:10:01::” where the three figures index
is pointing to the sense number in the corresponding file of WordNet.

96

• Lexical concept. This approach uses a lexical database which relates each
word to its corresponding lexical concepts. Each word in the text is substi­
tuted by an appropriate lexical concept. The index space here is the set of
lexical concepts. In this approach different words can share the same lexical
concept. For instance, in Gonzalo et al (1998) lexical concepts are represented
by the synsets’ identifiers from WordNet. Thus “debate” is substituted by
“n04616654”.

• Ontological chunks. Here the lexical concepts attached to the words in the text
are augmented by their super and subconcepts. Thus each word is substituted
by a chunk of an ontology which determines its place in it. Some of the
ontological chunks will share their top parts — some lexical concepts in the
text will have the same superconcepts. The index space is more complicated
because we have to account for the ontological relations in the chunks. It is
this approach that we investigate in this paper.

In the first three cases we can claim that the index spaces consist of points (word-
stems, word-senses, lexical concepts). The matching algorithm has to compare these
points in order to evaluate the matching of two texts. See Fig. 1 for a picture of this
kind of matching. When the index space consists of ontological chunks, the matching
algorithm has to be modified in an appropriate way to reflect the super/subconcept
relation and the fact that concepts, even though they are not equivalent, could be
considered relevant in the context of a certain retrieval task. This modification of
the matching algorithm we will henceforth call onto-matching. See Fig. 2 for a
picture of onto-matching.
The onto-matching approach is one attempt to overcome a certain intuitive asymme­
try in users’ expectations. For instance, in the case of IR, using the query/document
schema, if one puts a more general query then all the documents that are evaluated
as similar or more specific with respect to the concepts in the query are considered
to be relevant. More general documents will be classified as irrelevant. When eval­
uating the relevance disregarding the structure of the texts, the same direction of
generalization is expected for the atomic text entities (ATEs). For example, in most
cases, a document containing only bird will be irrelevant to a query asking for duck.
But under certain relevance evaluation schemata, a matching against the natural
flow of generality can also be used (when in the document the superconcept is used
in phrases that additionally constrain this superconcept and make it more specific).
Onto-matching gives more flexibility in the formulation of the query. The user can be
additionally consulted so as to determine more exactly the content of the ontological
chunks that are attached to the query. Depending on the settings, normally, the
query will be indexed either by lexical concepts only or by lexical concepts and their
subconcepts. In addition, one can direct the search using chunks that include also
some of the neighboring concepts. This can be done by going up a few steps in the
hierarchy to concept C and taking all subconcepts of C on the level of the lexical
concept that was found in the text. Or to go on with our example, if in the text
the concept duck is recognised, we go one step up in the hierarchy and take the
immediate subconcepts. Then we also seeirch for goose (this is done on the basis of

97

Fig. 1. Point to point matching. The dots represent the ATEs, the vectors repre­
sent the indexes to the occurrences of the ATEs in the text, the lines between the
dots represent the matching between the ATEs in the query and in the document.
For instance, the ATE for “duck" in the query matches the ATE for “duck" in the
document.

the WordNet hierarchy). This can be done without the user’s intervention if in the
search engine an operator “SIMILAR” is defined that is doing this job automatically.
Query expansion with ontological chunks can be useful also when the document
collection with respect to which it will be evaluated is not indexed even by lexi­
cal concepts. In this case, we have to attach to the lexical concepts in the query
their subconcepts (or the words that represent them). This approach can lead to
generation of hundreds of alternatives just for one of the words in the query. For
example, trying to get the transitive hyponym expansion of the synset for bird (the
first one listed in WordNet), we will end up with more than one thousand synsets
representing more specific concepts.
One way to control onto-matching is to ”refine” and strip the ontological chunks
by removing some of the concepts which are not relevant. Such judgement can be
made because of irrelevancy to the users’ goals in particular run. Or, because of
the nature of onto-matching we might want to exclude some ”artificial” concepts
or other ”noisy” patterns that can be recognized in the ontology. For example, if
we are searching for bird it can be the case that we want to exclude some of the
branches of the hyponyms like seabird. These refinements in onto-matching can not
be made before the acturJ search because they depend on the users’ goals.
The mechanisms proposed so far serve as a reduction of the problem of match­
ing between relevant but non-equivalent concepts. The goal is to make possible
onto-matching with minimal complication of the currently used algorithms. The
ontological chunks explicitly represent the necessary inferences and they are taken
into account by the standard matching algorithm.

98

Fig. 2. Onto-matching. The dots represent the lexical concepts, the vectors represent
the indexes to the occurrences of some lexical concepts in the text, the lines between
the dots represent the matching between the lexical concepts in the query and in the
document. Some lexical concepts are elements of the ontological chunks and the vec­
tors connect them to their subconcepts instead of pointing directly to positions in the
text. For instance, bird in the query matches duck and robin in the document via the
ontological chunks above duck and robin.

4 W o rd N et for o n to -m atch in g

In this section we give some more concrete examples of the onto-matching approeich
using WordNet as the source for ontological chunks. We used the hypernymy-
hyponymy relation between synsets for text indexing and query expansion. We
conducted some experiments evaluating query expansion in searching the Internet.
In both cases we presupposed that the texts were disambiguated and each word in
them is connected to the right synset from WordNet. Some of the problems related
to this assumption are commented in Section 5. In what follows we describe work
with respect to the nouns in the text.

4.1 Text Indexing
Our goal is to index the text by the concepts corresponding to the words in it.
Additionally, each lexical concept of a noun is indexed by the hypernym synsets.

99

All content words in the query text are indexed by their synsets only. Suppose a
document contains an occurrence of the word duck to which the correct synset has
already been assigned:

duck — (small uild or domesticated veb-footed broad-billed suimming bird . . .)

The hypernyms for this synset are:

duck
=> acseriform bird

=> waterfowl, water bird, waterbird
=> aquatic bird

=> bird
=> vertebrate, craniate

=> chordate
=> animal, animate being, beast, brute, creature, fauna

=> life form, organism, being, living thing
=> entity, something

We index the occurrence of duck in the document with its synset and the synsets
corresponding to its hypernyms. We call this onto-indexing. When a query con­
tains a concept for bird it will be matched to the occurrence of duck (indexed with
its hypernyms) without extending the query to the subconcept of bird.
One drawback of onto-indexing is that the overall size of the index will increase. We
can partially solve this problem in two ways. First, we can reduce the number of
the superconcepts deleting those that are not, strictly speaking, lexical concepts like
“aquatic bird” in the hypernym chain above (see the Conclusion section). Also, the
user can define concepts that should be excluded from the hypernym chain because
they are specific to some domain of usage. In the example above one such lexical
concept is “chordate” which is scientifically correct, but not much used in everyday
life. Of course, if the search is for scientific documents then this concept should be
retained and others excluded. Second, we can construct the ontology of the text
so that hypernyms shared by some nouns in the text are represented only once.
Suppose that in the text we have occurrences of duck, goose and robin and that
anseriform bird, aquatic bird and chordate are excluded from the hypernym chains.
In this case the index will look as follows:

(entity, something)
I

(life form, organism, being, living thing)
I

(animal, animate being, beast, brute, creature, fauna)
I

(vertebrate, craniate)
I

(bird)
/ \

(waterfowl, water bird, waterbird) (passerine, passeriform bird)
/ \ i

(duck) (goose) (oscine, osciiie bird)
I

(thrush)
I

(robin)

Thus reducing the number of the added superconcepts we hope that the increase of
the index will be logarithmic to the size of the lexical concepts found in the text.

4.2 Query Expansion

Here we assume that a query is matched against a collection of documents that are
indexed only by words or stems. We then use WordNet to generate a list of their
synonyms and hyponyms. This list is added in an appropriate way to the original
query and then the actual matching is done. This is the approach employed in our
testbed, but we should mention that ambiguous words (synonyms or hyponyms) can
lead to a sharp decline of precision.
We carried out some experiments with a query expansion in order to estimate the
applicability of onto-matching for the retrieval of documents from a heterogeneous
set (web-pages from AltaVista) with a short query. The query in this case is not
a normal text but resembles a formula constructed from words and operators like
AND, OR, NEAR and others. The words in the query were mapped manually to the
correct synsets in WordNet. Then the full set of synonyms and hyponyms for each
noun was constructed. This set was added to the query, with the exception of the
multi-word phrases.
For instance, for the query “+hotel NEAR +cheap NEAR +London” we expanded the
noun “hotel”. The corresponding synset in WordNet is:

hotel — (a building where travelers can pay for lodging
and meals and other services)

This synset has the following hyponyms:

hotel
=> hostel, hostelry, inn, lodge

=> caravansary, caravanserai, khan, caravan inn
=> imaret
=> roadhouse

=> motel, motor hotel, motor inn, motor lodge, tourist court, court
-> resort hotel, spa

We added the hyponyms to the query connecting them to the expanded word with
OR. In the expansion process we exclude the phrasal synonyms like “motor inn”.
After the expansion the query became:

(hotel OR
hostel OR hostelry OR inn OR lodge OR

caravansary OR caravanserai OR khan OR
imaret OR
roadhouse OR

motel OR court OR
spa)

NEAR '(‘Cheap NEAR L̂ondon

AltaVista returned 104 documents for the original query, against 138 for the ex­
panded one. Experiments concluded with different queries confirmed the expectation

101

that the precision after the query expansion without onto-indexing is quite sensitive
to ambiguous synonyms emd hypernyms like “court” in the example. We concen­
trated on queries that do not contain highly ambiguous words in the expansion in
order to get some approximation for the case of onto-matching.
We checked the precision for queries that return relatively small amount of docu­
ments and the general observation is that the expansion of the query did not depress
it. The average increment of the recall is 30%.
In these experiments we were limited by practical considerations: we don’t have at
our disposal a collection of disambiguated documents indexed by lexical concepts;
also, the majority of documents available for searches are not indexed by lexical
concepts. Despite these practical constraints and the simplicity of the experiments,
we can conclude that onto-matching is a promising approach for improving the
precision in IR.

5 C on clusion

We found the results of the experiments encouraging, but have to point out a number
of problems and directions for further research. The main difficulty is word-sense
disambiguation. Throughout the paper we assume that each word in the text is
correctly connected with the respective lexical concept. One could envisage a solu­
tion of this problem based on the use of semantic concordances in combination with
statistical techniques similar to those used for POS-tagging.
Another problem is the recognition of multi-word concepts. For example, water
b ird is itself a concept and it will be strange to expand it in a query b ird to
something like:

water (bird OR cock OR hen OR eagle OR . . .)

The right analyses of such terms will improve onto-indexing by attachment of the
correct concept to multi-word terms in documents. This topic is described in details
in Strzalkowski et al (1998).
If we have a more complicated concept representation where not only lexical con­
cepts of nouns are used but also some additional constraints from the context are
inferred (e.g. some attributes and their values) then a more sophisticated indexing
mechanism will be needed. In this respect one can use the idea mentioned in Miller
(1998) and compile for each noun a set of more appropriate attributes and their
values (see pp. 40-41 there). These sets can be used for recognition of multi-word
terms and for word-sense disambiguation.
In a more practical vein, we envisage to undertake experiments in onto-indexing
over a collection of documents following the methodology of Gonzalo et al (1998)
by manually attaching the appropriate chains of hypernyms to the words in the
collection. These will give more reliable evidence for the usefulness of the ideas
presented in this paper.

102

6 A ck n ow led gm en ts

The research reported here was carried out within the Tiibingen-Sofia International
Graduate Programme in Computational Linguistics and Represented Knowledge
(CLARK) funded by the Volkswagen-Stiftung. We would like to thank the Seminar
fiir Sprachwissenschaft, Tubingen, for hosting the first phase of the writing of the
paper. Also, we would like to thank Gergana Popova for her invaluable help. The
first author is grateful to his colleagues from Sirma AI Ltd and Instill Corp. for
their patience and understanding.

7 R eferen ces

Gonzalo, J., Verdejo F., Chugur I. & Cigarran J. 1998. Indexing With WordNet
Synsets Can Improve Text Retrieval. Proceedings of the COLING/ACL Workshop
on Usage of WordNet in Natural Language Processing Systems. Montreal.
Guarino, N. 1998. Some Ontological Principles for Designing Upper Level Lexical
Resources. Proceedings of First International Conference on Language Resources
and Evaluation. Granada, Spain.
Guarino, N., C. Maisolo and Vetere G. 1999. OntoSeek: Using Large Linguistic On­
tologies for Accessing On-Line Yellow Pages and Product Catalogs. IEEE Intelligent
Systems.
Fellbaum, C. 1998. WordNet: an electronic lexical database, (editor) MIT Press.
Knight, K. &; Luk S. 1994. Building a Large Knowledge Base for Machine Transla­
tion. Proceeding American Association of Artificial Intelligence Conference (AAAI-
94), AAAI Press, Menlo Park, California. 773-778.
Miller, G. A. 1995. WordNet: A Lexical Database for English. Communications of
ACM, U, 39-41.
Miller, G. A. 1998. Nouns in WordNet. WordNet: an electronic lexical database.
(editor) MIT Press.
Strzalkowski, T., Guthrie L., Karlgren J., Leistensnider J., Lin F., Perez-Carballo J.,
Straszheim T., Wang J. & Wilding J. 1998. Natural Language Information Retrieval:
TREC-5 Report.
Voorhees, E. 1998. Using WordNet for Text Retrieval. WordNet: an electronic
lexical database, (editor) MIT Press.

Automatic Detection of Lexicalised Phrases in Swedish

Janne Lindberg
Dept of Linguistics

Stockholm University
beb@ling.su.se

I wiIrpresent a system under development, called LP-DETECT. The system detects and
analyses Swedish lexicalised phrases (LPs) in order to enhance subsequent parsing. LPs
are one of a number of stumbling blocks related to word sequences that must be dealt with
when parsing unrestricted text. LPs include semantic idioms, syntactic idioms and
morphological idioms and so called valency breaking LPs. The system reported on
consists of an LP lexicon of some 8000 LPs with analyses, a detection program written in
perl and rules for disambiguating between and discarding LP analyses. A small evaluation
of the system is also presented.

1. Lexicalised phrases
LPs are expressions that belong to the lexicon and consist of more than one word.
Included are semantic idioms the meaning of which is not built up compositionally
from the individual meanings of the words in the idiom. (An English example is kick the
bucket meaning 'die', a Swedish equivalent ta ner skylten (lit. take the sign down) also
meaning 'die'.) They should be lexically listed because of semantic reasons. Another
group consists of syntactic idioms containing "ungrammatical" or non-standard
combinations of words, in syntactic terms (inte så värst (lit. not so worst) meaning 'not
particularly'; English example: by and large). The syntactic idioms do not make up
regular grammatical structures and must therefore be listed as wholes in a parsing
system. Of course, since syntactic idioms are syntactically irregular, no general function
of semantic interpretation can apply over them and therefore a syntactic idiom is also a
semantic one.

A third group consists of phrases containing words that are unique to the phrases where
they occur, often lexical relics, for instance the Swedish LP med nöd och näppe meaning
'with difficulty'. The word näppe is not used outside this phrase and should therefore not
be individually listed in a word lexicon. Related to the latter group are also phrases
containing foreign words (anno domini) or nonce forms (hux flux). These could be
called morphological idioms and they of course qualify as semantic idioms too.

In addition there are a large number of LPs, partly overlapping with the LP types
described above, which I call valency breaking LPs. They simplify the phrase structure
of sentences when detected as LPs. They tend to end in function words. An example of
these is multi-word prepositions, i.e. in spite o/(Swedish example: på grund av, lit. on
ground of, 'because of). "Mechanically", the PP in spite o f the weather consists of a P
(in) and a complex NP (spite o f the weather, itself containing a PP). In spite o f here
functions as a complex preposition, actually replaceable with the single preposition
despite, making the syntactic structure of the PP simpler and more one-to-one with its
semantics. Other examples of such LPs are phrases, often described using some kind of
subcategorisation, are so called prepositional verbs (tro på, eng: believe in), V-i-NP-i-P

mailto:beb@ling.su.se

104

constructions seen as “nouns with supportive verbs” by Dura (1997) (fd grepp om, lit.
get grip about; ‘understand’) and complex auxiliary verbs (kommer att, 'will')'.

My intuitive opinions as to what a lexicalised phrase is was initially shaped largely by
an article by Anward & Linell (1976). Those opinions have since been somewhat altered
but their article is still very important for my thinking on the subject of lexicalised
phrases.

1.1 Criteria
I have two obligatory criteria that have to hold for every potential candidate as an LP.
The first (l:a) is that the candidate should be a standard way of expression in Swedish; it
should be an institutionalised way of saying something. The second (l;b) is the simple
formal criterion that they must consist of more than one word but less than a clause.

In addition to these, either of the following two characteristics has to hold; (2:a) The
candidate has to be semantically non-compositional OR (2:b) a “better” phrase-structure
analysis is obtained when grouping the word combination in question as an LP.

Non-compositionality can either arise from the candidate being partially non-
compositional, that is, one or more but not all words are used in a non-standard way, e.g.
fatta eld (eng. ‘catch fire’), where the word fatta is used in a marked way^, or the
candidate as a whole is used to mean something quite different than what is expressed
with a literal interpretation^ (sticka under stol med, ‘hide’).

Below are some examples of the reasoning behind criterion (2;b).

(1) [på [grund [av [faran
(2) [på grund av [faran]]

]] lit: on ground o f danger-DEF

A “mechanical” division of the above PP produces constituents whose semantic status is
clearly debatable. Both grand av faran (ground of danger-DEF) and av faran (of danger-
DEF) in (1) are uninterpretable without context"*. I regard pd grand av (’because of’) as a
complex preposition taking an NP, here faran. (See (2).)

(3) [Jag [tror [på [tomten]]]]
(4) [Jag [tror på [tomten]]]

lit: I believe on Santa-Claus-DEF

In the VP tror pd tomten (believes in Santa-Claus), the predicate meaning is described
by the string tror pd (believes in) and not by the verb (believes) alone. The PP pd tomten
in (3) is not meaningful without the verb. I see tror pd as a complex transitive verb and
the NP tomten here is the direct object. (See (4).)

(5) [Det [kommer [att regna]]]
(6) [Det [kommer att [regna]]]

lit. It com es INF rain

105

Examples (5)-(6) treat the Swedish future tense expression. Kommer att is the string that
expresses future tense in Swedish. Kommer alone does not, at least not in the written
language. I see kommer att as a complex auxiliary verb.

Specific criteria are formulated for different structural types of lexicalised phrases where
certain tests can be applied to candidates. Below are some examples:

Particle verbs
The general criterion saying that an LP should be semantically non-compositional
should be applied to particle verbs in the following way:

Particle verbs that qualify as LPs should satisfy the following description: 1. The
particle does not modify the verb meaning spatially in a way that can be predicted from
the spatial meaning of the particle. Slänga in (‘hurl in’) could be an example of a non­
qualifying candidate. However lägga in lit. 'lay in' qualifies because one of its meaning
is non-compositional ‘pickle’. 2. The particle verb is not an instance of a productive
metaphor. Often spatial expressions can be used metaphorically as for instance: slunga
ut 'hurl out' and sväva ut 'float away'. These do not qualify as LPs, because they are
instances of productive spatial metaphors.

Reflexive verbs
The reflexive in a reflexive verb should not have argument status. The transitive
reflexive verb tvinga sig 'force oneself is thus not considered an LP.

Prepositional verbs
The noun phrase that follows the preposition should have argument status. It should also
be replaceable with other noun phrases. If the whole of the verb+prep plus a following
noun phrase forms an idiomatic phrase and the verb+prep combination can not be
combined with other noun phrases, it is not a prepositional verb. The preposition plus
the noun phrase should also not form an adverbial.

2. The use of “idioms” in tagging and parsing
The English Constraint Grammar, ENGCG (Karlsson et al 1995), uses a list of 700
syntactic “idioms” and 5000 complex nominals that are deterministically grouped and
analysed as complex words at tokenisation. The two examples below are taken from
Karlsson et al (1995).

in spite of —> in=spite=of/PP
run time —> run=time/NN NOM SG

The CLAWS 4 tagging system (Leech, Garside & Bryant 1994) used for annotating the
British National Corpus (BNC) with parts-of-speech has a sub-component called
IDIOMTAG, which makes use of multi-word units to correct prior erroneous taggings. The
lexicon in IDIOMTAG has over 3000 entries representing “general idioms” (e.g. as much
as), multi-word proper names (e g. Dodge City) and foreign expressions (e.g. annus
horribilis). IDIOMTAG introduces ambiguities where more than one “idiom” analysis is
possible and later resolve these ambiguities. When Blackwell (1987) reported on an
earlier version of c l a w s , id io m t a g made the idiom analyses deterministically, i.e. the

106

analyses could not be un-done at a later stage. From what I can make out of the
documentation in Leech, Garside & Bryant (1994), the determinism is now abandoned,
but I am not sure of that. The system can express several traits of variation and
discontinuity of the “idioms”.

Harald Berthelsen (Berthelsen 1997) used an earlier version of the LP lexicon that I will
report on below and wrote a prolog program detecting LPs in texts. It was used to
augment a Constraint Grammar (s w e c g) analysis with LP membership on words. The
analysed words had indexes pointing to the lexicon. Constraints could be written
discarding or selecting LP analyses.

Other related implementations
Stephan Bopps (Bopp 1996) Phrase Manager is a framework for databases of multi­
word units. The program makes it possible to specify e.g. transformation restrictions on
idioms. Bopp does not report on an actual lexicon though. It is the database format itself
that constitutes Phrase Manager.

André Schenk (Schenk 1994) analysed idioms and collocations and incorporated them
into compositional M-grammar used for automatic translation in the Rosetta machine
translation system. Schenk describes a formal apparatus for dealing with idioms and
collocations but does not report on an actual lexicon either.

3. LP-Detect
My system for detection of LPs (LP-DETECT) takes text files from the SUC Corpus
(Ejerhed et al 1992) as input, converted and simplified so that only <word>:<tag> pairs
remain. Optionally, sentence enumeration can also be displayed in the output. <word>
are word forms except for verbs where <word> are base forms. <tag> are the POS tags
from SUC. All other information such as the morphological features are deleted^. The
output of the LP detection is also <word>:<tag> pairs but more information is added. 1.
The words in the LPs are given an additional tag for LP membership. 2. The LPs are
given an analysis. 3. The LPs are enclosed within square brackets.

Input: ... word:tag word:tag , . . . , word:tag word:tag ...
Output: ... word:tag [word:tag_LPtag , ... , word:tag_LPtag LPanalysis] word:tag ...

LP-DETECT consists of three components, an LP lexicon, a detection program and Dis
rules (Disambiguation and Discarding).

3.1 The LP lexicon
The LP lexicon comprises 8057 LPs distributed over 4775 LP Sets. LP sets reflect the
fact that many LPs have variants^ and those variants are grouped together in the lexicon
and are given the same main enumeration index. Examples of LP Sets are varaAigga/stå
i maskopi med (‘be/lie/stand in collusion with’) and så in i baljan/norden/helvete (‘as
hell’). The lexicon contains morpho-syntactic and some phonetic/prosodic information
about the LPs. The phonetic/prosodic information is left from an earlier phase where
LPs were collected to enhance text-to-speech synthesis (Lindberg 1996).

107

My main source for the LP lexicon has been Johannisson & Ljunggrens “Handordbok”
(1966). To overcome problems connected with the age of “Handordbok”, I have also
used “Wörterbuch Der Schwedischen Phraseologie In Sachgruppen” (Schottman &
Petersson 1989). I have also taken “slang” expressions from Haldo Gibson’s “Svensk
slangordbok” (1969). Other written sources have been “Svenska Akademiens ordlista
över svenska språket” (1979) and Svenskt uttalslexikon (Hedelin et al 1989). Phrases
following certain POS patterns or containing certain words have been excerpted from
the s u e corpus (Ejerhed et al 1992) and the PAROLE corpus’. Collocations have also
been excerpted from the SUC corpus and the Dragon corpus of Dept of Speech, Music
and Hearing at KTH, Stockholm. I have also found a great deal of the phrases by leading
an ordinary life; listening to people talk, watching TV and reading books, newspapers
etcetera, always with a pencil and a paper within reach (if that counts as an ordinary
life).

Table 1. The fields in LP entries with two examples.

Field name Example 1 Example 2
Index number 2076:2 4030
Index word fmna hållet
LP tag VT?VC?VI AB
Reg exp fmna: VB_<RP> helt:AB_och:KN_hållet:..
Word info 3:obs!
Prosodic markers l:acc;2:ob l:acc;2:ob;3:acc
S-form indication 0
Imperative form indication 1
Phrase info
Internal POS structure 1:VB;2:PN 1;AB;2;KN;3:Y

The LP entries consist of ten fields and are examplified in Table 1 above. Index number
is an enumeration of the LP sets. The second figure is an enumeration of entries within
LP sets. Index word is an approximation of the least frequent word of the phrase, using
the longest word of the phrase. The LP tag field contains a syntactic analysis for the LP
as a whole. The tags for the LP tag field use the SUC part-of-speech analyses except for
the verbal LPs where subcategorisation information is encoded. The LP in example 1 is
given three possible analyses; as a mono-transitive, copulative or intransitive verbal LP.
Example 2 is analysed as an adverbial LP. In the Reg exp field resides a regular
expression used to find the LP in the input sentences. The regular expressions allow for
alternatives both for words and tags as well as variables that are expanded in the main
detection program described below. Word info is for various information such as the
note obs! indicating that the word could have more than one pronunciation and only one
is correct here. It can also contain information on tense agreement in LPs with more than
one verb. The prosodic marker field contains information stating the extent to which the
words of the LP retain their word accent when pronounced together. The next two fields
bears information on allowed inflexional forms of the verb in verbal LPs. In the Phrase
info field there may be additional morpho-syntactic information such as morphological
features restricting the context of the LP. The last field is an enumeration of the parts-of-

108

speech in the phrase, following the SUC tagging conventions as strictly as possible.
However, some words in LPs are notoriously difficult to annotate, since many LPs are
grammatically deviant. Therefore two additional tags are used. One tag, X, is used for
words that are only found in LPs, often archaic forms (e.g. i sinom tid, ‘in due time’).
The other tag, Y, is used for words that are used in a non-standard way in the LP (e.g.
till sist, ‘at last’). Also, the word tag NN (noun) has the morphological tags i=indefinite,
d=definite, s=singular and p=plural as an extension of the SUC POS tag. In the current
implementation, only the first four fields are used.

In Table 2 below, the phrase tags with subcategorisation codes for the verbal LPs are
shown.

Table 2. Phrase tags with subcategorisation codes for the verbal LPs.

VI Does not take a
complement

VS Takes a subordinate clause
complement

VT Takes an object (NP or S) VTnexus Takes an object (NP) LP-
intemally (in the nexus)

V2T Takes two objects (NP or
S)

VTnexusA Takes an object (NP or S)
LP-intemally (in the nexus)
and a post-posed «»-clause
as complements

Vadv Takes an adverbial
complement (of any
form)

VTnexusS Takes an object (NP or S)
LP-intemally (in the nexus)
and a post-posed
subordinate clause as
complements

VH Takes an infinitive VP VTnexusH Takes an object (NP or S)
LP internally and a post-
posed infinitive VP LP as
complements

VC Takes a predicative
complement

V2Tnexus Takes an object (NP,
indirect object) LP-
intemally (in the nexus) and
a post-posed direct object.

VA Takes an «»-clause (that-
clause)

VHpass Takes an infinitive VP with
the verb in passive form

For certain verbal LPs, alternatives can be given:

VI?VC?Vadv hålla <RP> Eng. lit: hold_REFL

Han var nödig men han höll sig (VI) 'He needed to go to the toilet but he restrained
himself

Hon höll sig underrättad (VC) 'She kept herself informed'
Han höll sig på kontoret hela dagen (Vadv) 'He stayed at the office all day'

109

The tags for the non-verbal LP analyses (LP type) are taken from the SUC part-of-
speech tag set (where they of course are used to analyse words and not phrases). The one
exception to that rule is the tag PD (multi-word pre-determiner). The LP analyses in
question are shown in Table 3.

Table 3. Phrase tags for the non-verbal LPs with examples

AB adverbial LP så länge
DT multi-word determiner en och annan
NN multi-word nominal mannen på gatan
JJ adjectival LP liten i maten
PP multi-word preposition tack vare
SN multi-word subordinating conjunction så länge
KN multi-word co-ordinating conjunction for att inte tala om
IE multi-word infinitive marker i akt och mening att
PN multi-word pronoun en och annan
PD pre-determiner en del av
HP multi-word interrogatory pronoun vem i all värden
HA multi-word interrogatory adverb hur i all världen

3.2 The detection program
In the main detection program, written in perl, the regular expressions for the LPs are
enhanced to allow for intervening material between certain words and specification of
variables in LPs. Lookup speed is increased by only considering those LPs whose
longest word is present in the sentence to be analysed (length of word approximating
word frequency in an inverse relation). This is much more efficient than the usual
method of using the first word as a trigger. When two or more words are of the same
length, the last one is chosen for most structural types of LPs. The detection also allows
for embedded LP analyses where one LP is embedded within another LP.

3.3 The Dis rules
The next step is the Dis rules. "Dis" stands for disambiguation and discarding of LPs.
Disambiguation: The disambiguation rules pick one of several analyses for a given LP
or discards an erroneous one, possibly leaving more than one analysis. Discarding: All
LP analyses for a word sequence that is not an LP but happens to contain the words of
an LP in the right order (juxtaposition) are deleted. Usually, word forms or tags in the
immediate context are used for the Dis rules. 36 disambiguation rules and 75 discarding
rules are implemented presently.

The algorithm for the detection of LPs with the Dis rules is shown below.

110

Algorithm:
Reads in and stores the LP lexicon
Regular expressions for LPs are augmented
For each SUC sentence:

Converts the SUC file format
Stores relevant lexicon entries
For each stored lexicon entry matching the sentence:

Marks matching words and gives the LP an analysis
Runs dis rules if that is chosen and if at least one LP is found

4. Output
As indicated above, not all possible analyses residing in the lexicon are present in the
output, partially because of the simplified input format. The examples (7)-(9) contain
lexicon entries, output and an english traslation. Examples (8)-(9) also contain dis rules.
The example entries only contain the information used in the implementation. In
example (7), two LPs have been detected, the adverbial i alia fall (‘at least’) and a
verbal LP taking a complement adverbial ha det (lit. have it).

(7)
4236fall AB i:PP_alla:DTJall:NN
295:1 det Vadv (få:VB\ha:VB)_det:PN

Men:KN östtyskama:NN kan:VB nu:AB alltså:AB skryta:VB med:PP att:SN de:PN [
i:PP_LP-4236 alIa:DT_LP-4236 fall:NN_LP-4236 ©AB-4236] [har:VB_LP-295:l
det:PN_LP-295:l @Vadv-295:l] bättre:AB i:PP sängen:NN än:KN västtyskama:NN
.:MAD

Eng translation: But the east Germans can brag about the fact that they at least are
better o ff in bed than the west Germans.

In example (8), a discarding rule has worked, deleting a particle verb reading (here VI,
‘takes no complements’) of the string gå bort (the idiomatic reading meaning ‘die’, here
retaining the literal meaning ‘walk away’) using prepositions in the immediate right
context.

(8)
Dis rule:
gåJPL^ —> N I L / _ (mot\till\från)

Gumman:NN [reste:VB_LP-2174 sig:PN_LP-2I74 @VI-2174] och:KN [gick:VB_LP-
2693 långsamt:AB bort:AB_LP-2693 @VI-2693] mot:PP sitt:PS bylte:NN .:MAD
» » >
Gumman:NN [reste:VB_LP-2174 sig:PN_LP-2174 @VI-2174] och:KN gick:VB
långsamt:AB bort:AB mot:PP sitt:PS bylte:NN .:MAD

Eng translation: The old woman rose and walked away slowly towards her bundle.

Ill

In example (9), a disambiguation rule has chosen the analysis V2T (takes two object
complements) using the right context (the LP böna och be means ‘beg and plead’).
Another disambiguation rule has chosen the analysis AB (adverbial LP) over SN
(complex subordinating conjunction) for the LP varje gång ‘each time’, also using the
right context.

54 böna V2T?VA?VIböna:VB_och:KN_be:VB
4771 gång AB7SN (varje:DT\varenda:DT)_gång:NN

V2T?(VT?VA)?VI -> V 2 T / _ (NN\PN) NPbörjan
AB7SN -> AB / _ (KN\PP\MID\MAD\VB)

HoniPN hade:VB [bönat;VB_LP-54 och:KN_LP-54 bett:VB_LP-54 @V2T?VA?VI-
54] honom:PN att;IE vara;VB tystare:JJ ,;MID för:KN tänk:VB om:SN flickan:NN
vaknade:VB och:KN [varje:DT_LP-4771 gång:NN_LP-4771 @AB?SN-4771]
lovade:VB han:PN .:MAD
> » »
Hon:PN hade;VB [bönat:VB_LP-54 och:KN_LP-54 bett:VB_LP-54 @V2T-54]
honom:PN att:IE vara:VB tystareJJ ,:MID för;KN tänk:VB om:SN flickan:NN
vaknade:VB och:KN [varje:DT_LP-4771 gång:NN_LP-4771 @AB-4771] lovade:VB
han:PN .:MAD

Eng translation: She had begged him to be more quiet, because what if the girl would
wake up, and each time he promised.

5. Small evaluation
I trained the system on 50.000 words of Swedish text from the SUC corpus. The genres
represented newspaper text, legal text and novels. As a simple base-line setting test I
tested the precision on one of the texts from novels from the training material. 144
sentences were scanned, 90 LPs were found. After the Dis rules 80 LPs remained.
Below are the results. Figures in the evaluation are rounded because of the small
amounts of text used.

90/144 = 0.6 LPs were detected per sentence as a mean
86/90 = 96 % of LPs were unambiguous initially, 100 % finally
76/90 = 84 % of LPs were correctly detected initially
75/80 = 94 % of LPs remaining after the dis rules were correctly detected

The precision figure rose from 84 % to 94 % using the dis rules. All ambiguities were
eliminated.

To test recall, a text from a novel from the training material was manually scanned. It
contained 144 sentences. 76 correct LPs had already been found by the detection
program, nine more were found in the manual scan. Thus, the total number of LPs in the
text was 85.

Recall: 76/85 = 89 %

Five of the misses were due to the LPs not being in the lexicon.

Lexicon recall: 80/85 = 94 %.

Since the lexicon lacked five LPs found in the manual scan, only 81 LPs would have
been possible to find with the present lexicon, even with a perfect detection algorithm.
76 LPs were found. Therefore, the recall for the detection was 94 %.

Detection recall: 76/81 = 94 %

112

As for the shortcomings of the detection program, one flaw was due to the way the
regular expressions work, scanning the texts from left to right. When a situation of LP
overlap occurs, only the leftmost LP is detected. The other flaw was due to the very
simple formulation on the allowed tags for intervening material in LPs as an unordered
set of tags’ . That forces prohibition of some tags, e.g. prepositions, conjunctions and
verbs in order to avoid overgeneration. In fact, all tags can appear breaking up a verbal
LP but not in any order. Other sources of misses were from faulty tagging in SUC.

I did a somewhat larger test in texts not from the training material. The proportions were
40 % newspaper text, 40 % text from novels and 20 % political text. 782 sentences were
used. 415 LPs were found initially. After the Dis rules, 380 LPs remained.

415/782 = 0.53 LPs were detected per sentence as a mean
386/415 - 9 3 % unambiguous initially
369/380 - 9 1 % unambiguous finally
340/415 = 82 % correctly detected initially
339/380 = 89 % correctly detected finally

Here, the precision figure rose from 82 % to 89 % using the dis rules. That means that
about a third of the initial false positives were eliminated by the dis rules. The
proportion of unambiguous analyses rose from 93 % to 97 %. Thus more than half of the
ambiguities were eliminated by the dis rules.

6. Discussion
My mini-tests have several flaws but I have chosen to present it here anyway just to get
a rough idea of the magnitude of the problem of over- and undergeneration of the
system. One flaw is the mere sparseness of the testing material. The different files varied
considerably as to the number of false positives both before and after the discarding
rules. Perhaps not surprisingly, there was a clear tendency for texts from novels to
produce more false positives than those from the other two genres. The amount of
remaining ambiguity in LP analyses was smaller for these texts though. There was also a
tendency for newspaper texts to have more LPs in them but fewer different LPs, the use
of LPs were more stereotyped in the newspaper texts.

The precision result on the small portion of the training material that was investigated
shows that I have not been able to eliminate the overgeneration of LP analyses. Those
cases that I could not write discarding rules for were either “parsning-complete” (i.e. a

113

parser not only for constituents but for grammatical functions would have been needed)
or even “Al-complete” (i.e. only full text understanding would have sufficed to
eliminate these false positives).

There were clear tendencies for the false positives. These instances were very often two-
word verbal LPs ending in either a preposition (false prepositional verb), a particle
(false particle verb) or a reflexive pronoun (false reflexive verb), where both the verb
and the second word were high frequency words. Examples of false LPs are the
prepositional verbs vara till ‘have the function of’, bli till ‘become’ and ga fdr'°. The
latter has later been reconsidered as not being a qualifying candidate as a prepositional
verb by the author.

As for the recall figures, the method I used was not optimal. The author (also the
compiler of the lexicon) scanned the text for LPs not found by the program and marked
candidates that satisfied my criteria. A better way would have been to have another
person look through the text and mark every LP that person could find using my criteria
and after that run the program on the same material and compare the results.

Clearly, l p -d e t e c t deserves a better evaluation.

To sum up, the fact that about half of the sentences contained an LP as an average
suggests that LPs are common enough to spend time on detecting in the first place.
However, in addition to helping out a system of syntactic and/or semantic parsing, such
a system could also be hindered by false positives, some of which are very difficult to
avoid.

Of course even idioms can be said to be valency breaking since syntactic arguments in idioms are often
not part of the argument structure of the sentences where the idioms occur.
 ̂Such phrases are often termed collocations (see e.g. Schenk 1994).
 ̂A description most often attributed to idioms.

■* * Note that the Swedish genitive is not productively signalled by a PP with av (of) as in English. ‘The
cause of the danger” is expressed farans grund (danger-DEF-GEN ground) in Swdish and not grunden av
faran (ground-DEFof danger-DEF). The preposition till (to) can be used instead, however.
’ Actually, the surface forms of the verbs are stored and retrieved later to be present in the output.
*’ See Sköldberg (1999) for an interesting discussion on types of idiom variation.
’ The PAROLE corpus is part of “Språkbanken” at Dept of Swedish, Göteborgs University.
* “gå_PL” means “an LP consisting of some form of the verb go followed by a particle (PL)”. Actually
this is just a way of representing the Dis rules in a somewhat more readable form. In real life, the Dis rules
are formulated as regular expressions.
’ That is, <word>:<tag> pairs. The actual form of the regular expression for the intervening material is
" ([^ :] + : (A B | P N | N N | D T | J J | P C I P M | P S | R G | R O)) * ? " .

In the expression det går för PERSON (‘PERSON is having a sexual climax’) or in the expression visa
(PERSONl) vad PERSON2 går för (‘show PERSONl what PERSON2 can do’).

114

References
Anward, Jan & Linell, Per. 1976. Om lexikaliserade fraser i svenskan. Nysvenska

studier 55-56, 77-119.
Berthelsen, Harald. 1997. The Constraint Grammar Idea applied to two Problems in

Text-to-Speech: Detecting Multi-word Units and Prosodic Boundaries. D-level
essay. Stockholm: Computational Linguistics, Stockholm University.

Blackwell, Susan. 1987. Syntax versus Orthography: Problems in the Automatic Parsing
of Idioms (Ch 9). In: The Computational Analysis o f English. A Corpus-Based
Approach. (Eds. Roger Garside, Geoffrey Leech & Geoffrey Sampson) London &
New York: Longman, 110-119.

Bopp, Stephan. 1996. Phrase Manager: a System for the Construction and the Use of
Multi-word Unit Databases. EURALEX’96 Proceedings, 55-64.

Dura, Ela. 1997. Substantiv med stödverb. Meddelanden från Institutionen för Svenska
Språket (MISS) 18. Göteborg: Göteborgs universitet..

Ejerhed, Eva; Källgren, Gunnel; Wennstedt, Ola & Åström, Magnus. 1992. The
Linguistic Annotation System o f the Stockholm-Umeå Corpus Project, Version
4.31. Umeå: Publications from the Department of General Linguistics, University
of Umeå, no 32.

Gibson, Haldo. 1969. Svensk slangordbok. Stockholm: Bonniers.
Hedelin, Per; Jonsson, Anders & Lindblad, Per. 1989. Svenskt uttalslexikon del 1-2.

Teknisk rapport nr 4. Inst för informationsteori. Göteborg: Chalmers University of
Technology.

Johannisson, Ture & Ljunggren, K.G. 1966. Svensk Handordbok. Konstruktioner och
fraseologi. Nacka: Svenska språknämnden och Esselte studium AB.

Karlsson, Fred; Voutilainen, Atro; Heikkilä, Juha och Anttila, Arto. (eds.) Constraint
Grammar: a Language-Independent System for Parsing Unrestricted Text. Berlin -
New York: Mouton de Gruyter.

Leech, Geoffrey; Garside, Roger & Bryant, Michael. 1994. CLAWS4: The Tagging of
the British National Corpus. Kyoto: Proceedings of COLING Kyoto.

Lindberg, Janne. Detektering av lexikaliserade fraser för text-till-talkonvertering. 1996.
The Nordic Languages and Modem Linguistics. Proceedings from the Ninth
International Conference of Nordic and General Linguistics, (eds: Kjartan G.
Ottosson, Ruth V. Fjeld and Arne Torp). Oslo: Novus, I9I-203.

Målande uttryck. 1990. En liten bok med svenska idiom. Uppsala: Esselte ordbok, 1990.
Schenk, André Y. 1994. Idioms and Collocations in Compositional Grammar. Utrecht:

OTS Dissertation Series.
Schottmann, Hans & Petersson, Ricke. 1989 Worterbuch Der Schwedischen

Phraseologie In Sachgruppen. Miinstersche Beiträge Zur Deuchen Und
Nordischen Philologie 6 1. Aufl. Munster: Kleinheinrich Verlag Fiir Kunst,
Literatur Und Wissenschaft.

Sköldberg, Emma. 1999. Varianter av idiom. Svenskans beskrivning 23. (Eds. Lars-
Gunnar Andersson, Aina Lundqvist, Kertin Norén & Lena Rogström). Lund: Lund
University Press, 384-392.

Svenska Akademiens ordlista över svenska språket. 1979. Stockholm: P.A. Nordstedt &
söners förlag.

Towards a Finite-State Parser for Swedish

Beäta Megyesi & Sara Rydin
Computational Linguistics
Department of Linguistics

Stockholm university
[bealsara]@ ling.su.se

Abstract

In this study, we describe a method for parsing part-of-speech tagged unrestricted texts in Swedish using
finite-state networks. We use the Xerox Finite-Slate Tool because of its expressiveness and power for
writing and compiling regular expressions and relations. The parser is divided into four modules: i)
contiguous phrase structure marker, ii) phrasal head marker, iii) syntactic function tagger, and iv) non­
contiguous group boundary recognizer. The aim is to develop a parser that can be used as a light/shallow
parser for marking phrase structure and, when needed, to label syntactic functions. We believe that
modularity is necessary since different NLP tasks require various levels of analysis. The parser for
Swedish is under development, but present-day results are promising.

1. Introduction

In several Natural Language Processing (NLP) tasks, such as information retrieval,
information extraction, speech technology, machine translation, etc., full or partial
information about phrasal and/or syntactic structures is needed. The main interest in
these tasks lies in detecting the constituent structures and sometimes their syntactic
functions in a robust and fast way. In this study, our aim is to develop a parser for
Swedish part-of-speech tagged texts, based on finite-state techniques using the Xerox
Finite-State Tool (Karttunen et al, 1997).

Finite-state techniques have been shown to be very useful for parsing unrestricted texts
for several languages, such as English, Finnish, French, German, Swedish, etc. Under
certain circumstances, these parsers are robust, fast and accurate. There are mainly three
approaches that have been applied for the construction of finite-state parsers:
constructive, reductionist, and the combinations of these.

Briefly, the constructive approach is based on lexical description of large collections of
syntactic patterns using subcategorisation frames such as verbs and their arguments, and
local grammars (Abney, 1996). The reductionist approach, on the other hand, starts
from a large number of alternative analyses that get reduced through the application of
constraints where the constraints may be expressed by a set of elimination rules
(Voutilainen & Tapanainen, 1993) or by a set of restrictions applied in parallell
(Koskenniemi et al, 1992). The hybrid method merges the constructive and the
reductionist approaches. It is developed by Ait-Mokhtar and Chanod (1997) who built
an incremental finite-state shallow parser for French in a modular way. The parser

116

makes incremental decisions throughout the parsing process. Syntactic information is
added at the sentence level depending on the contextual information. They achieve
broad coverage and include richer information than typical chunking systems.

A common procedure for building finite-state parsers from part-of-speech tagged texts
is to first mark contiguous groups, e.g. noun or verb groups, then mark the heads within
the groups and lastly, to extract patterns between non-contiguous group bounderies.
However, Grefenstette (1996) points out that several parsers mix non-fmite-state
methods with finite-state procedures for different modules. He shows that the entire
parser can be built easily within a finite-state framework by using finite-state
transducers.

Finite-state transducers are finite-state machines that take an input and produce an
output with each state transition. They generate or accept regular relations, i.e. sets of
pairs of strings where each string has an upper and lower language. They can be written
as regular expressions and can be used for introducing extra symbols into an input
string, i.e. for labelling entities (groups) in a text. The labels, then, can be used for
deriving further information from the text, such as extracting non-contiguous syntactic
n-ary dependencies. By composing a sequence of transducers and dividing the parsing
task into a sequence of partial tasks, such as contiguous group labelling, head marking,
and the detection of non-contiguous group boundaries, Grefenstette presents a robust
and fast light parser.

In this study, we use the Xerox finite-state tool (XFST), for constructing the parser. The
reason for our choise is that the XFST is very convenient to use since it allows powerful
and elegant linguistic descriptions by different operators for a high level of abstraction.

XFST is a general-purpose Unix application for computing with finite-state networks.
Simple automata and transducers can be easily created by a set of operations from text
files, binary files, regular expressions and other networks. Thus, XFST can read finite-
state networks and compile them from regular expressions and text files. The networks
can be simple finite-state automata or finite-state transducers and can be combined by
various operations. In addition to the usual operators' (e.g. concatenation, union,
optionality, Kleene star, Kleene plus, complement, intersection, relative complement,
crossproduct, composition, etc.) XFST also supports some special operators for high
level abstraction: restriction, replacement, and left to right longest match replacement.
The restriction operator is very useful when writing constraints to exclude unwanted
analyses. The rule A => B _ C expresses that A must appear in the context of B _ C, i.e.
between B and C. The replacement operator replaces a string with another string with or
without regard taken to context. For example, the rule A -> Bll L_R replaces A by B
between a certain left and right context where A and B denote regular languages and the
expression as a whole denotes a relation. The longest match operator is a special kind of
replacement operator. It imposes a unique factorisation on every input. It can also be
constrained by context and generalised for parallel replacement. For instance, the rule
A @-> B ... C forces the transducer to locate and pick out maximal instances of the
regular language A, leaving the entire string unchanged and inserting B and C around
the selected A strings as markers.

117

2. The Parsing Method

The Swedish parser is based on the hybrid approach using a cascade of finite-state
transducers. The parser consists, in its present form, of four modules: the phrase
structure module, the phrasal head module, the syntactic function module and the non­
contiguous group boundary module. The thought behind the modular architecture is to
facilitate the work during development, to allow different uses of the parser and to
reflect the different linguistic knowledge that is built into the parser.

First, modularity is important during the development of the parser as the modules (and
the rules in each module) are ordered. Because information about the ordering of
rules/modules and the separation of the linguistic knowledge are clearly specified, the
detection of sources of incorrect analysis is facilitated. It is, because of the modularity,
not only possible to use all four modules in the parser but to separate and run only the
first module, the first and the second module, and so on. The first module would give us
a phrase structure analyzed text and the sequential addition of the other three modules
would introduce more and more information to the analysis.

Secondly, modularity can also be useful in regular use. There are, for example, NLP-
tasks where only the information given by the first module is wanted; information about
noun phrase and verb phrase boundaries can be used to identify events and entities in
information extraction. There are also times when the syntactic function of the noun
phrases is needed; information about the object can, in word sense disambiguation, be
used to disambiguate the verb.

There is one last reason for modularity that is purely technical. With four modules, the
whole set of rules is compiled into four separate finite-state networks. If all this
information would be merged into one module, the compiled finite-state network would
be quite large, the compilation would be time-consuming and the insertion of additional
rules and the altering of the rule order would be more complex.

In the following, the finite-state networks describing the phrase and syntactic structure
of the language are presented. As mentioned above, the parser consists of four networks,
where each network is a composition of simple finite-state automata and/or finite-state
transducers. Within each network, the transducers are composed and ordered in such a
way that the easiest tasks are addressed first.

Each module marks up specific linguistic information by the use of reserved symbols,
i.e. symbols that cannot be found in the natural language text files that are analyzed. The
reserved symbols used by the parser consist of brackets and labels, shown in table 1
below.

118

Brackets Label Example Comment
[/] NP, PP, VP, AP [NP Left hand side phrase

structure tag for NP
* ActV, CopV, PasV

InfV, HeadN, PrepN
* PrepN Tag for head within a

NP in a PP
1 j * + + J Subj, Obj, Advl,

PredF
(***Subj Left hand side tag for

subject
[/] PVP [PVP Left hand side tag for

particle verb phrase

Table I. Symbols (tags) inserted by the parser

The corpus used to train and test the parser is the Stockholm-Umea Corpus, so-called
s u e (Ejerhed et al, 1992) annotated with the PAROLE tag set. A plus sign, a part-of-
speech tag and an appropriate number of morphological tags follow each token in the
text:

".. .svenska-l-AQPOPNOS stader-i-NCUPN @IS..."

Before describing the modules that the parser consists of, the reader should be reminded
that the parser is under development. This means that the description of Swedish in no
way is fully correct or exhaustive. The goal has been to see how suitable XFST or finite-
state networks are for building a parser for Swedish.

2.1 Phrase structure module

The first finite-state network module marks phrase structure for noun phrases (NP), verb
phrases (VP), prepositional phrases (PP), adverb phrases (AdvP) and adjective phrases
(AP). The parsing is done in a bottom-up fashion where the deepest constituents are
analyzed first. Thus, adverb phrases are detected before the adjective phrases since
AdvPs may be included in APs but not the other way around. In a similar way, APs are
marked before NPs.

Example 1 below shows how the adjective phrase is marked up. First, an adverb phrase
(ADVP) is defined as a word (Ord^), a part-of-speech tag "R" and a string of
morphological tags (Tagg-i-). Second, the adjective phrase (AP) is defined as containing
an optional adverb phrase, a word (Ord), the part-of-speech tag (A) followed by
morphological tags (Tagg). Last, the regular expression for the insertion of the AP tag is
defined with the help of the longest match and replacement operators.

define ADVP [Ord R Tagg-i-] ;
define AP [(ADVP "") Ord A Tagg] ;
regex AP @-> ”[AP "... " AP]" ;

Example I . Definition of and insertion of tags for the adjective phrase.

119

Next, the noun phrases are detected. Noun phrases are presently defined as being of
three different types: 1. a single pronoun (PRON), 2. an optional determiner (DET)
followed by one or more optional ordinal/cardinal numerals (NUM), followed by an
optional adjective phrase (AP) (the last two can optionally be in reversed order), and at
least one noun, 3. an optional determiner, a possessive pronoun (POSSPRON), an
optional, tagged adjective phrase and at least one noun. The definition of NPs is given
below.

define NP [[PRON] I [(DET) ([NUM]+) (AP) ([NUM]+) [NOUN]+]l
[(DET) POSSPRON (AP) [NOUN]+J];

Only attributes that precede the noun are included in the NP. The regular expression for
the insertion of tags for noun phrases (and VP and PP as well) is similar to the regular
expression given for AP (see example 1). In the rest of this section, only the outlines of
the definition rules are given in order to make the examples easier to understand.

Next, prepositional phrases are defined as consisting of either a preposition (PREP)
followed by a noun phrase (NP), or of a composite preposition and a tagged noun
phrase.

define PP [[[PREP] I [PREP KONJ PREP]] NP] ;

Last, the verb phrase can have two different forms depending on the sentence type the
verb occurs in. First, the position of the verb in regular word order is defined as follows:
an optional infinitive particle (INF, equivalent to the Eng. to), at least one verb (VERB)
and an optional verb particle (PART). Secondly, the position of the verb is given in the
case of subject-verb inversion: an auxiliary verb (AUX), followed by a tagged noun
phrase (NP), followed by at least one verb (VERB) and an optional verb particle
(PART).

define VP [[(INF) [VERB]+ (PART)]I[AUX NP [VERB]+ (PART)]];

Below, example 2 shows text annotated with phrase tags where the phrase tags are in
bold face. The sentence in English is: "Fear o f the disease forced the decision to build
water mains and sewage pipes".

[NP Skracken+NCUSN@DS NP] [PP for+SPS [NP
sjukdomen+NCUSN@DS NP] PP] [VP tvingade+V@IIAS fram+QS VP]
[NP beslut+NCNSN@IS NP] om+SPS [VP att+CIS bygga+V@NOAS VP]
[NP vattenledningar+NCUPN@IS NP] och+CCS [NP
avloppsror+NCNPN@IS NP] .+FE

Example 2: Output from the Phrase Stmcture Module^

120

2.2 Phrasal head module

The output of the phrase structure module constitutes the input to the phrasal head
module. Heads are marked in two types of phrases; verb phrases and noun phrases. The
phrase head information is marked in order to be used later, in the definition of syntactic
functions. Grefenstette (1996) suggested the division of noun and verb phrases into
subcategories, though we decided on a different division’ for the verb types. For noun
phrases there are two tags; HeadN and PrepN. Tagging of noun phrase heads are done
using two composed transducers. The first transducer tags all head nouns (i.e. the last
noun or pronoun in the noun phrase) as HeadN while the second transducer alters the
tag HeadN to PrepN when it occurs in a prepositional phrase. Note that this is not to say
that the head of the PP is the noun (which would of course be wrong), but only a way to
mark the noun in the PP and thereby differentiate NP included in PPs from the poor
lonely ones.

The verb phrases have four types of head tags according to different subcategorisation
frames: the active (ActV), the passive (PasV), the infinitive (InfV), and the copulative
verb (CopV). The first three are easily defined and tagged on the basis of the
morphological information given by the PAROLE tag set. Copulative verbs, on the
other hand, are defined as one of the words 'bliva' ('become'), 'finnas' ('be', 'exist'), 'vara'
('be') and 'heta'/'kallas' ('be called'). Example 3 shows the output from the phrase head
module.

[NP *HeadN Skracken+NCUSN@DS NP] [PP for+SPS [NP *PrepN
sjukdomen+NCUSN@DS NP] PP] [VP *ActV tvingade+V@IIAS fram+QS
VP] [NP *HeadN beslut+NCNSN@IS NP] om+SPS [VP att+CIS *InfV
bygga+V@N0AS VP] [NP *HeadN vattenledningar+NCUPN@IS NP]
och+CCS [NP *HeadN avloppsror+NCNPN@IS NP] .+FE

Example 3: Phrasal head information inserted for the same sentence as in example 2.

2.3 Syntactic function module

In this module, an attempt is made to mark the syntactic functions of the phrases. We
have elaborated with four kinds of syntactic functions: the subject, the object, the
adverbial and the complement to the copulative verb. The annotation is done with help
from the phrase tags and the head labels inserted by the previous modules. For example,
NPs containing the HeadN label (in contrast to NPs with PrepN label) can be marked as
subject or object. We have tried only to annotate syntactic function when fairly certain
of the correctness of the result. Thus, we tried to avoid rules that would increase the
recall but lower the precision substantially. Still, this module of the parser is probably
the trickiest because of semantic and structural ambiguities.

Subject labeling is often dependent of both the left and the right context of the possible
subject. There are several mles for the annotation of subjects and the choice among

121

them is done in the parser based on the word order in the sentence. Rules are primarily
specified for regular word order (SV) and subject-verb inversion (VS). The scope of the
subject is extended to include not only the noun phrase but also following adjacent
prepositional phrases. This extension cannot be done for the object because of the PP-
attachment ambiguity.

The annotation of objects is done on the basis of its left context. Here, the position of
the verb and the already labeled subject are of interest since the object must follow the
subject and/or the verb in a sentence. Note that the rule does not cover the case of
topicalized objects, e.g. in the sentence 'Him she loved'.

The complement to the copulative verb is easily found since the copulative verb itself
was annotated in the previous module by subcategorisation. Both object and verbal
complements are expected to come after the verb but unfortunately, that is not always
the case. Semantic features would be necessary to handle these phenomena correctly.
Concerning adverbials only prepositional phrases are marked as such in the present
module.

Lastly, an example of a sentence with syntactic function tags is given.

{***Subj [NP *HeadN Skracken+NCUSN@DS NP] {***Advl [PP
for+SPS [NP *PrepN sjukdomen+NCUSN@DS NP] PP] Advl***}
Subj***} [VP *ActV tvingade+V@IIAS fram+QS VP] [***ObJ [NP
*HeadN beslut+NCNSN@IS NP] Obj***] om+SPS [VP att+CIS *InfV
bygga+V@NOAS VP] (***Obj [NP *HeadN vattenledningar+NCUPN@IS
NP] och+CCS [NP *HeadN avloppsror+NCNPN@IS NP] Obj***} .+FE

Example 4: Output from the syntactic function module for the same sentence as in
example 2 and 3.

2.4 Module for Non-Contiguous Group Boundaries

At the moment, this module incorporates only information about verb particles. Most of
the particles are already found by the phrasal rules in the first module, i.e. when they
follow directly after the verb. Here, those particles that are not adjacent to the verb are
detected. The regular expression is quite straightforward as the verb particles have a
separate tag in SUC and phrases between the verb and the particle are already marked
up. In the future, we plan to incorporate other long distance dependencies, for instance
in non-contiguous VP idioms.

3. Discussion

Presently, no extensive test or evaluation has been done on the parser since correctly
labeled texts with phrase structure and syntactic information are not available. However,
we tested the different modules on one text, consisting of 3000 words. The system
accuracy regarding the detection of the different phrase structures seems to be good.

122

approximately 95%. The precision of marking syntactic features is lower approximately
60%-70%, because of syntactic ambiguity, such as PP-attachment, the scope of
predicatives, complex NP structures and elliptic expressions. Recall is in both cases
lower since our strategy has been to only label entities when fairly certain of the
correctness of the result. As the reader realises, there is more work to do in order to
develop a reliable parser.

However, we believe that the finite-state tool together with our parser architecture suits
the requirements for a useful shallow parser. The advantage of our system is that it is
fast, robust (in the case of the shallow parser) and modular. Because of the modularity,
the user can choose between only analysing the phrase structure, that is the usual case,
or adding even syntactic analyses when needed.

4. Conclusions

In this study, we presented a method for parsing part-of-speech tagged unrestricted texts
in Swedish by using finite-state techniques in the Xerox Finite-State Tool. Because of
the modular architecture of the parser, it can be used as a light/shallow parser for
marking phrase structure and, when needed, to label syntactic functions. The different
modules reflect different types of linguistic knowledge such as information on phrase
structure, phrasal heads and syntactic functions. However, the parser for Swedish is
under development. Due to the promising results we are planning to continue to
improve upon the different modules.

Acknowledgements

We would like to thank the Department of Linguistics, Uppsala university, for giving us
the opportunity to participate in the course ‘Automata theory’, and especially Torbjom
Lager who first introduced us to the XFST during this course.

Footnotes

' See Karttunen el al (1997) for a good description of the XFST operators.
' 'Ord' is defined as a string of accepted characters in the natural language that forms a word.
’ Note that neither the maximal projection of the NPs (’vattenledningar och avloppsrör'), nor the PP
consisting of a preposition and infinitive verb phrase ('om att bygga') are labeled in this module.
‘ Grefenstette (1996) parses verb and noun groups instead of phrases.

References

Abney, S. 1996. Partial Parsing via Finite-State Cascades. In Workshop on Robust
Parsing, 8th European Summer School in Logic, Language and Information, 8-15
Prague, Czech Republic.

Ait-Mokhtar, S., & Chanod, J-P. 1997. Incremental Finite-State Parsing. In Proceedings
ofANLP'97, 72-79, Washington.

123

Chanod, J. P. & Tapanainen, P. 1996. A robust finite-state grammar for French.
Techniqual report. Rank Xerox Research Centre, Meylan, France.

Ejerhed, E., Källgren, G., Wennstedt, O. & Åström, M. 1992. The Linguistic
Annotation System of the Stockholm-Umeå Corpus Project. Report nr. 33, Dept, of
General Linguistics, University of Umeå.

Grefenstette, Gregory. 1996. Light Parsing as Finite-State Filtering. Workshop on
Extended Finite State Models o f Language, ECAI-96, Budapest, Hungary.

Karttunen, L., Chanod, J. P., Grefenstette, G., & Schiller, A. 1997. Regular Expressions
for Language Engineering. Natural Language Engineering 2, 305—238, Cambridge
University Press.

Koskenniemi, K. 1990. Finite-State Parsing and Disambiguation. In Proceedings o f the
Thirteenth International Conference on Computational Linguistics COLING-90 2,
229— 232, Helsinki, Finland.

Koskenniemi, K., Tapanainen, P., & Voutilainen, A. 1992. Compiling and using finite-
state syntactic rules. In Proceedings o f the Fourteenth International Conference on
Computational Linguistics COLING-92 vol 1, 156-162, Nantes, France.

Voutilainen, A. & Tapanainen, P. 1993. Ambiguity resolution in a reductionistic parser.
In Proceedings o f the Sixth Conference o f the European Chapter o f the Association
for Computational Linguistics, 394-403, Utrecht, Netherlands.

Semantic Clustering of Adjectives and
Verbs Based on Syntactic Patterns

Costanza Navarretta
Center for Language Technology

Njalsgade 80 - Copenhagen
co s ta n z aS cs t.ku.dk

Abstract

In this paper we show that some of the syntactic patterns in an NLP lexicon can
be used to identify semantically ”similar” adjectives and verbs. We define semantic
similarity on the basis of parameters used in the literature to classify adjectives and
verbs semantically. The semantic clusters obtained from the syntactic encodings in
the lexicon are evaluated by comparing them with semantic groups in existing tax­
onomies. The relation between adjectival syntactic patterns and their meaning is
particularly interesting, because it has not been explored in the literature as much
as it is the case for the relation between verbal complements and tu-guments. The
identification of semantic groups on the basis of the syntactic encodings in the con­
sidered NLP lexicon can also be extended to other word classes and, maybe, to other
languages for which the same type of lexicon exists.

1 In tr o d u c tio n

The idea that the syntactic behaviour of words is connected with their meaning has
been the assumption behind research in different fields such as lexical semantics and
automatic clustering of words based on statistical methods. In particular much work
has been done to describe the relation between the semantic characteristics of verbs
and their syntactic patterns, among many Fillmore (1970) and Levin (1993), and
to identify semantically similar words from large text corpora on the basis of their
linguistic and distributional properties, i.a. Brown, della Pietra, de Souza, Lai &
Mercer (1992), Pereira, Tishby & Lee (1993). Some research has also been done to
extract the semantic meaning of adjectives on the basis of their co-occurrence with
nouns, (Justeson & Katz 1993, Justeson &; Katz 1995, Hatzivassiloglou &c McKeown
1993, Hatzivassiloglou & McKeown 1997).

Justeson &; Katz (1993) describe a method for disambiguating adjective senses by the
nouns or the noun phrases they modify, using co-occurrences in large text corpora.
They use statistical inference methods for organizing and analyzing the collected
material. Their disambiguation method is based on the observation that certain
nouns are strongly associated with some of the adjectives that modify them. For
example the adjective old means ”not-young” when combined with the noun ”man”.

125

but has the sense of ”not-new” if occurring with the noun ”house” . Justeson and
Katz disambiguate five common adjectives, hard, old, light, right, short, on the basis
of their co-occurrence with sense-specific antonyms referring to opposite values of
the same attribute (e.g. old-new, old-young).

Justeson & Katz (1995) investigate the semantic characteristics of the nouns which
they used to disambiguate the five adjectives (Justeson &; Katz 1993). Justeson
and Katz find out that a few general semantic features such as -h/- animate, -h/-
concrete are sufficient to characterize the disambiguating nouns. In the case of the
adjective hard they also consider a syntactic construction in which the adjective
does not modify a nominal, i.e. it is hard/easy to do something.

Hatzivassiloglou &c McKeown (1993) describe a method for clustering adjectives
semi-automatically according to their meaning in a parsed corpus as a first step
towards the identification of adjectival scales. Their hypothesis is that adjectives
describing the same property often modify the same set of nouns. The clustering
method defined combines statistical techniques and linguistic information and relies
on two similarity modules. Hatzivassiloglou and McKeown define similarity in terms
of the distributional similarity of the adjectives in relation to the nouns they modify.

Hatzivassiloglou & McKeown (1997) identify constraints on the semantic orienta­
tion' of conjoined adjectives extracted from a large corpus. They combine statistical
methods with morphological knowledge.

We follow the assumption that there is a connection between the syntactic behaviour
and the meaning of words. Although we agree with Levin (1993) that ”verb meaning
is a key to verb behaviour”, in this paper we go the other way round, i.e. from
the syntactic behaviour of words we derive some of their semantic characteristics.
In particular we have investigated to what extent it is possible to use the syntactic
encodings of a corpus-based NLP lexicon to extract clusters of semantic related verbs
and adjectives. Extracting semantic information from machine readable dictionaries
has been the object of much research, i.a. (Vossen, Meijs & den Breeder 1989),
(Wilks, Fass, Guo, McDonald, Plate Slator 1989). Because we use an NLP lexicon,
the data is already encoded in a structured way, making the extraction process
straightforward. We have extracted adjectives and verbs sharing the same syntactic
pattern in a corpus-based Danish NLP lexicon, the LE-PAROLE lexicon, and
we have investigated to which extent the obtained clusters contained semantically
”similar” elements. Because some syntactic constructions are common to a great
number of adjectives and verbs, such as the simple attributive and/or predicative
adjectival construction and the divalent verbal construction, these patterns cannot
be used to cluster them. Instead we have extracted adjectives and verbs sharing more
seldom patterns, such as adjectives subcategorizing for prepositional complements
or taking expletives patterns.

Because the connection between verbal complements and verbal meaning has been
widely studied, i.a. (Brent 1991, Levin 1993), the obtained clusters can be compared
with semantic groups identified in the literature. Less studied is the connection
between adjectival complementation and adjectival meaning^.

In section 2 we give a definition of semantic similarity for adjectives and verbs, in 3 we

126

briefly introduce the LE-PAROLE Danish lexicon. In section 4 we present some
examples of verbal semantic clusters extracted from the LE-PAROLE syntactic
lexicon, while in 5 we give a few examples of the extracted clusters for adjectives.
Finally in section 6 we propose a first evaluation of the obtained results and we
make some concluding remarks.

2 A D e fin it io n o f S e m a n tic S im ila r ity for A d jec ­
t iv e s a n d V erb s

We define ”similarity” of meaning for adjectives and verbs by parameters identified
in the literature.

Adjectives have ”similar” meaning if they are synonymous or antonymous (Miller,
Beckwith, Fellbaum, Gross, Miller &; Tengi 1993 (1990)) and if they belong to a
linguistic scale (Hatzivassiloglou & McKeown 1993). Linguistic scales, according to
the definition provided by Levinson (1983)[133], are ”sets of linguistic alternates, or
contrcistive expressions of the same grammatical category, which can be arranged in a
linear order by degree of informativeness or semantic strength” . We relate adjectives
belonging to the same scale, independently of their orientation, to a common ”super­
ordinate” concept.

Verbal linguistic scales exist, but they are not so frequent as adjectival scales, and
only few verbs have ”real” opposites. Thus we have extended the definition of
similarity of verbs to include the troponymy relation. According to Miller et al. (1993
(1990)) verbs are troponyms if they are connected to a super-ordinate along more
semantic dimensions. One of the most common relations holding among linguistic
scales (Levinson 1983) and among many verbal troponyms (Miller et al. 1993 (1990))
is the entailment relation. In conclusion we consider verbs to be ”similar” if they
belong to a linguistic scale, are opposites, synonyms or troponyms.

3 T h e L E -P A R O L E L ex icon

We have extracted adjectives and verbs using the syntactic encodings in the Dan­
ish LE-PAROLE lexicon which was produced in the EU-funded MLAP project
LE-PAROLE. The Danish lexicon is one of 12 general language, monolingual elec­
tronic lexica for European languages encoded in SGML format according to a com­
mon model, the so-called PAROLE model®. This model guides the construction
of generic NLP lexica, i.e. lexica which can be used in different applications and
systems. The LE-PAROLE lexica are mainly encoded on the basis of the cor­
pora collected by the LE-PAROLE corpus groups and the encodings in existing
dictionaries.

The PAROLE model distinguishes three separate levels of description: morphol­
ogy, syntax and semantics. At present the morphology and the syntax for 20,000
entries have been encoded^. A description of the PAROLE morphological and syn-

127

tactic levels can be found in (Guimier, Ogonowski &; Partners 1998a) and (Guimier,
Ogonowski & Partners. 19986).

A simplified picture of the morphological and syntactic layers of the LE-PAROLE
lexica can be seen in Figure 1.

1 f
1 /

' Morphologic
1 Unit

If.---------
1'
i '

Syntactic Unit

Subcategorization

Control

Alternation

' Syntactic Unit

Figure 1: LE-PAROLE lexicon

The main entities of the morphological layer are Morphological Units (MuS) con­
taining basic information on orthography, inflection and morphosyntactic features.
One or more Syntactic Units (SynUs) are linked to each (MuS) and correspond to
the syntactic patterns in which a morphological unit can occur. SynUs contain in­
formation about the syntactic behaviour of lexical units, such as sub-categorization,
characteristics of the lexical unit when associated with a specific sub-categorization
frame, control, diathesis alternations, linear order constraints. These information is
encoded in the so-called D escription. The Danish LE-PAROLE lexicon contains
20,000 morphological units. Of these units 2,816 are adjectival entries with their
corresponding 3,304 syntactic units and 3,223 are verbal entries with corresponding
5,020 syntactic units.

4 V erb s

To verify the hypothesis that the syntactic encodings in an NLP lexicon can be used
to extract semantically related verbs, we have looked at the syntactic patterns of
verbs which belong to semantic groups recognized in the literature, in particular
in (Levin 1993) and in WordNet (Miller et al. 1993 (1990)). Our study has shown
that the elements of most of these groups share the same syntactic patterns (De­
scription). Examples of verbal semantic clusters found by looking at the syntactic
encodings in the Danish LE-PAROLE lexicon and the corresponding groups in
other classifications are the following:

128

• Competition verbs (Miller et al. 1993 (1990)): kæmpe (battle), fægte (fence),
slås (struggle), stride (fight), konkurrere (compete), spille (play) etc.

• Weather verbs (Miller et al. 1993 (1990)) (Levin 1993): sne (snow), hagle
(hail), regne (rain), blæse (be windy) etc.

• Emotion verbs (Miller et al. 1993 (1990)) (Levin 1993): genere (bother), pine
{torment), fryde (delight), "bevæge” (”move”) etc.

• Verbs of Change of Possession (Levin 1993): give (give), skænke (donate),
forære (present), overdrage (hand over), testamentere (leave by will) etc.

The verbs in each group share the same syntactic pattern, with the exception of
the verbs of change of possessions which were obtained collecting verbs sharing
three different descriptions. However, these descriptions are related and indicate
the presence or absence of dative alternation and particular passive patterns where
the second or the third complement (or both) can occur as subjects.

Emotion verbs share both a simple divalent pattern and a pattern with an expletive
subject, an object and a clause as in the following examples:

Myggene generer mig
(The mosquitoes bother me)
Det generer mig at der er så mange myg
(It bothers me that there are so many mosquitoes)
Smerten piner hende
(The pain torments her)
Det piner mig at han ikke elsker mig mere
(It torments me that he does not love me any more)

Both patterns are also common to the motion verb bevæge used metaphorically as
emotion verb:

Det bevægede ham at Maria havde husket hans fødselsdag
(It moved him that Maria had remembered his birthday)
Filmen bevægede ham dybt
(The film moved him deeply)

5 A d je c t iv e s

The patterns we have used to extract semantically related adjectives are predicative
patterns where the adjectives subcategorize for prepositional phrases with nominal
and clausal complements or raising constructions. The obtained groups have been
checked manually and adjectives which were not semantically similar to the others
have been removed. To validate the clusters we have also looked for corresponding
synonyms and antonyms in WordNet. Finally we have identified common super-
ordinates for each semantic cluster. In the following some of the obtained groups
are given:

129

• ”being afraid/not being afraid (in various degrees) of (doing) something”:
bange (afraid), ræd (scared), angst (fearful), bekymret (worried), ubekymret
(carefree) . ..

• ”being easy/not easy (for somebody) to do something”: let (easy), nem (sim­
ple), besværlig (troublesome), vanskelig (hard), svær (difficult)...

• ”being irritated (in various degrees) at somebody”: gal (mad), vred (angry),
sur (irritated), rasende (raging),/orftifret (furious)...

• ”being happy/unhappy about something” : lykkelig (happy), ulykkelig (un­
happy). ..

• ”being friendly/not friendly (in various degrees) with somebody.l”: god (kind),
sød (nice), venlig (friendly), flink (nice), streng (strict), styg (nasty), hard
(harsh), modbydelig (disgusting), voldelig (violent), grusom (cruel), ond (evil)...

• ”being friendly/not friendly (in various degrees) with somebody.2” : god (kind),
sød (nice), venlig (friendly), streng (strict),/Zinfc (nice), voldelig (violent), gru­
som (cruel), styg (nasty), modbydelig (disgusting), hård (harsh), ond (evil) . ..

• ”being or not being capable (in various degrees) of doing something”: god
(good in the sense of capable), snar (quick), fin (good), egnet (fit), flittig
(diligent), (good), skrap (sharp), fortræffelig (excellent), enestående (ex­
ceptional), dygtig (very good) sød (nice), effektiv (efficient), langsom (slow),
slem (bad) . . .

Although many of the elements in each group are also related by relations of syn­
onymy, antonymy or hyponomy in WordNet, we have found more synonyms than in
WordNet.

Some of the obtained groups had to be splitted up in more groups, such as the two
groups ” being angry (in various degrees) against somebody” and ” being happy/unhappy
about something” which share the same syntactic pattern. Some groups contained
both related and unrelated adjectives. In the two groups ”being friendly/not friendly
(in various degrees) with somebody” the adjectives subcategorize for two different
prepositions (mod (against) and ved (at)). We kept them separate because some
Danes recognize a little semantic difference between the meaning of the adjectives
in the two groups. It must be noted that the adjective god subcategorizing for the
preposition mod can have two meanings depending on whether the prepositional
nominal complement is animate or inanimate. In the former case the adjective be­
longs to the group we have identified, while in the latter case it means ”effective”
against something. Of course, we were not able to recognize this difference on the
basis of the LE-PAROLE syntactic patterns.

6 E v a lu a tio n an d C o n c lu d in g R em a rk s

Before we evaluate the obtained results we must notice that the Danish LE-PAROLE
lexicon only contains approximately 3,200 verbs and 2,800 adjectives and that only

130

some of the corresponding syntactic patterns have presently been encoded. The
results obtained are based on this still incomplete lexicon. Although the Danish
lexicon follows the common PAROLE model, the granularity chosen to identify
syntactic patterns also depends on the lexicographic design chosen by the encoders,
the results we have got also depend on these design choices.

our analysis of the extracted data has shown that all the groups of verbs and ad­
jectives extracted from the l e - p a r o l e Danish lexicon contain similar words, in
the case of verbs all, or nearly all, the elements in the considered groups were se­
mantically related, in few cases more ”syntactic” groups formed a semantic cluster,
the adjectival groups contained in some cases a few semantically unrelated elements
besides the related ones and some of the adjectival syntactic groups had to be split
up in different semantic clusters. The difference between verbal and adjectival be­
haviour is not surprising, because verbs have much richer, and thus more specialized,
valency patterns than £idjectives.

Although only unusual patterns, i.e. patterns which are shared by few words, can
be used to identify semantically related words, and although the groups must be
manually checked, we believe that the obtained results are quite interesting especially
for adjectives, where the relation between syntactic pattern and meaning has not
been exploited as much as it is the case for verbs. Another positive result is that we
found more synonyms and antonyms than in WordNet for both verbs and adjectives.

In our opinion, semantic classifications of words must combine top-down with bottom-
up strategies. Clustering words on the basis of their distributional behaviour in large
corpora or their syntactic patterns in NLP corpus-based lexica is a valuable way to
complement the top-down classification process. We believe also that the results ob­
tained in our study, show that lexica with rich and well defined information as the
lexica which follow the PAROLE model can be used to identify semantical related
clusters and help in exploiting regularities/irregularities in the use of language.

Future work consists in extracting more groups of adjectives and verbs from the
LE-PAROLE lexicon and analyzing them.The study should also be extended to
complement-taking nouns and to adverbs. Because LE-PAROLE lexica, and/or
NLP lexica containing the same type of syntactic information as these, exist for
other European languages, the correspondence between syntactic behaviour and
semantic meaning in more languages can also be investigated. The standardized
encodings of the LEl-PAROLE lexica offer new possibilities of analyzing alternations
and other phenomena and of comparing them across different languages.

F o o tn o te s

* Semantic orientation is also called polarity in the literature.

^Most of the proposed taxonomies for adjectives are not related to their syntactic behaviour. An
exception is the taxonomy proposed in (Vendler 1963). A review of existing studies on the meeming
of adjectives can be found in (Raskin k Nirenburg 1995).

^For a general description of the PAROLE model the reswler is referred to (Calzolari 1996).
^The on-going European-funded project SIMPLE is in charge of encoding part of the semantic

131

level, i.a. (Pedersen & Keson 1999). The Danish STO project (Breiasch, Christensen, Olsen h
Pedersen 1998) is extending the vocabulary of the Danish LE-PAROLE lexicon to cover domain-
specific words. However in this paper we exclusively work with the syntactic encodings in the
LE-PAROLE lexicon.

R eferen ces

Braasch, A., Christensen, A. B., Olsen, S. & Pedersen, B. (1998). A Large-scale Lex­
icon for Danish in the Information Society. Proceedings from the First Interna­
tional Conference on Language Resources and Evaluation, Granada, pp. 249-
254.

Brent, M. (1991). Semantic Classification of Verbs from their Syntactic Contexts:
An Implemented Case Study of Stativity. Proceedings of the 5th European ACL
Conference, pp. 222-226.

Brown, P. F., della Pietra, V. J., de Souza, P. V., Lai, J. C. & Mercer, R. L. (1992).
Class-based N-gram Models of Natural Language. Computational Linguistics
18(4), 467-479.

Calzolari, N. (1996). PAROLE Linguistic Resources: Technical Specifications
Overview. MLAP PAROLE 4, Pisa: CNR.

Fillmore, C. J. (1970). The grammar of Hitting and Breaking. R. Jacobs &; P. Rosen­
baum, eds. Readings in English Transformational Grammar. Ginn, Waltham,
MA.

Guimier, E., Ogonowski, A. & Partners, P. (1998a). Report on the Morphological
Layer. LE-PAROLE Report P-WPl.l-MEMO-ERLI-32, ELRI.

Guimier, E., Ogonowski, A. & Partners., P. (19986). Report on the Syntactic Layer.
LE-PAROLE Report P-WPl.l-MEMO-ERLI-33, ELRI.

Hatzivassiloglou, V. & McKeown, K. (1993). Towards the Automatic Identification
of Adjectival Scales: Clustering Adjectives according to their Meaning. ACL
Proceeding, 31st Conference, pp. 172-182. Columbus, Ohio, USA.

Hatzivassiloglou, V. McKeown, K. (1997). Predicting the Semantic Orientation
of Adjectives. EACL Proceeding, 8th Conference, pp. 174-181. Madrid, Spain.

Justeson, J. & Katz, S. (1993). Principled Disambiguation: Discriminating Adjective
Senses with Modified Nouns. Making Sense of Words, Proceedings of the 9th
Conference of the UW Centre for the New OED and Text Research, pp. 57-73.
Oxford England.

Justeson, J. & Katz, S. (1995). Principled Disambiguation: Discriminating Adjective
Senses with Modified Nouns. Computational Linguistics 21(1), 1-27.

Levin, B. (1993). English Verb Classes and Alternations. Chicago: The University
of Chicago Press.

132

Levinson, S. C. (1983). Pragmatics. Cambridge, England: Cambridge University
Press.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K. J. & Tengi, R. (1993
(1990)). 5 Papers on Wordnet. CSL report 43, Cognitive Science Laboratory,
Princeton University.

Pedersen, B.S. & Britt Keson (1999). ’SIMPLE - Semantic Information for Multi­
functional Plurilingual Lexica: Some Danish Examples on Concrete Nouns’.
SIGLEX99: Standardizing Lexical Resources, Association of Computational
Linguistics. ACL99 Workshop, Maryland.

Pereira, F., Tishby, N. Lee, L. (1993). Distributional Clustering of English Words.
Proceedings of the 31st Annual Meeting of the ACL. pp. 183-190. Columbus,
Ohio.

Raskin, V. & Nirenburg, S. (1995). Lexical semantics of adjectives. Technical Report
MCCS-95-288, Computing Research Laboratory - New Mexico State University.

Vendler, Z. (1963). ‘The Grammar of Goodness’. The Philosophical Review, pp. 446-
465.

Vossen, P., Meijs, W. & den Breeder, M. (1989). Computational Lexicography for
Natural Language Processing, chapter: ’Meaning and Structure in Dictionary
Definitions’, pp. 171-192. UK: Longman.

Wilks, Y., Pass, D., Guo, C.-M., McDonald, J., Plate, T. & Slator, B. (1989). Com­
putational Lexicography for Natural Language Processing, chapter: ’A Tractable
Machine Dictionary as a Resource for Computational Semantics’, pp. 193-228.
UK: Longman.

An HPSG Account of Danish
Pre-nom inals

Anne Neville
Center for Language Technology

Copenhagen University
anneQ cst.ku.dk

Abstract
This article addresses the issue of selection restrictions for noun phrase specifiers.

Danish data is presented which shows that definiteness plays an important role in
this respect. It is pointed out that an analysis is required in which the specifier,
when present, leaves a mark on the projected phrase. This is achieved by assuming
that specifiers are syntactic heads of noun phrase constructions. Further an elaborate
classification of specifiers is also needed in terms of which selection restrictions may
be formulated, rJong with a cross-categorial definiteness feature. These properties
are part of the analysis proposed in this analysis.

Introduction

When investigating empirical data it becomes clear that noun phrases often have
multiple specifiers appearing before the noun. An important goal of noun phrase
analysis is the specification of selection restrictions for noun phrase specifiers and
pre-nominals in general to account for combinations of specifiers. It is this goal that
is pursued in this article.

In section 1 a set of Danish noun phrases are presented which form the basis
of a discussion of what properties determine the restrictions on combinations of
pre-nominals. In section 2 a number of previous HPSG analyses of noun phrases
and pre-nominals are discussed. In section 3 the proposed analysis is introduced
and sample analyses are shown. The proposed analysis has been implemented in
the LKB system (Copestake 1999). A test suite consisting of the data in section 1
has been run and the results are presented in section 4. The article is concluded in
section 5.

1 Some data

To narrow the focus of this article two sets of noun phrases have been selected
which illustrate the importance of the feature of definiteness in the account of selec­
tion restrictions. One set consists of noun phrases with multiple definite specifiers,

134

as shown in (1), and the other set contains pre-nominals showing the dependence
between specifiers and adjectives wrt. definiteness, as shown in (2).

(1) a. denne min begejstring
(this my enthusiasm)

b. denne den sidste Rabbit-bog
(this the last Rabbit book)

c. jeres den gamle grammofon
(your the old record player)

d. deres den nærmeste nabo
(their the nearest neighbour)

e. hende den tossede malerinde
(her the crazy painter)

f. ham den forsvundne dreng
(him the missing boy)

(2) a. de tre mindste skoler
(the three smelliest schools)

b. * tre mindste skoler
(three smallest schools)

c. de mange smukke ting
(the many beautiful things)

d. * de mange smukkeste ting
(the many most beautiful things)

All the examples in (1) contain two definite specifiers. In (la) the demonstrative
specifier denne precedes a possessive specifier. In (lb) the demonstrative specifier
define precedes the definite article. In (Ic) and (Id) the possessive specifiers jeres
and deres likewise precede the definite article. Finally, in (le) and (If) the personal
pronoun specifiers hende and ham precede the definite article*. To account for these
combinations, ruling out all other combinations, a detailed classification of definite
specifiers is required. In (2) definiteness determines the possibility of combining
specifiers and adjectives. In (2a) the specifier tre (three) combines with the definite
adjective mindste (smallest). However, the unacceptability of (2b) indicates that
this combination is licensed by the presence of the definite article. (2c) and (2d)
show that mange (many) does not allow a following definite adjective, irrespective
of the presence of a preceding definite article. Thus definiteness is not confined to
the description of specifiers, but it is also relevant to the analysis of adjectives.

2 Previous analyses

A number of analyses of pre-nominals have been proposed within the framework
of HPSG. Pollard & Sag (1994) propose a noun phrase analysis which is an NP

135

analysis for English. Pre-nominals are divided into specifiers and modifiers, and one
specifier is allowed in an NP. The specification of selection restrictions consequently
does not become relevant^. A series of alternative analyses have been put forward
since (Netter 1994, Kolliakou 1995, Allegranza 1998, Kathol 1998 and Bbrjars 1994).

Netter (1994) proposes a ”DP” analysis for German. DP is in quotes because
the analysis is not a DP analysis in the traditional sense (Abney 1987 and Dclsing
1993). It is a DP analysis in the sense that the determiner is the head. However,
determiners and nouns are assumed to be subtypes of a common nominal supertype.
This means that both a noun phrase with a determiner and a noun phrase without
a determiner may function as a maximal nominal phrase. Netter’s analysis allows
for multiple specifiers, in theory. However, he makes no attempt to specify selection
restrictions.

Kolliakou (1995) also proposes a ”DP” analysis, for Greek. It is a DP analysis
in the same sense as Netter’s analysis. However, Kolliakou’s nominal type hierarchy
is much more detailed than Netter’s, and in addition to determiner and noun types
she proposes demonstrative, numeral and adjective, all as subtypes of a common
nominal supertype. Her analysis allows for multiple specifiers, and she specifies
selection restrictions for them in terms of the nominal type hierarchy. Significantly,
her analysis covers quantifying specifiers. Kolliakou’s analysis covers a wide range
of noun phrases. Her hierarchy is developed for Greek, and does not account for the
Danish data, though.

Allegranza (1998) puts forward an ”NP” analysis for Italian. Here NP is in
quotes because it is not an NP analysis in the traditional sense (Chomsky 1970)
and Jackendoff 1977). The noun is the syntactic head, but he introduces a marking
feature by way of which the specifier non-head leaves a mark on the projected noun
phrase. The value of the marking feature is a nominal type hierarchy as in the
above-mentioned analyses. In his analysis determiner is a common supertype of a
number of nominal subtypes. Allegranza’s analysis likewise accounts for multiple
specifiers, and selection restrictions are based on the determiner type hierarchy. His
analysis also covers quantifying specifiers. Like Kolliakou’s analysis, Allegranza’s
analysis covers a wide range of noun phrases. His analysis is developed for Italian,
and again does not account for the Danish data without modifications.

Kathol (1998) proposes another ”DP” analysis for English. Kathol also bases
his analysis on a nominal type hierarchy, where determiner and nouns are subtypes
of a common type. But like Pollard and Sag’s analysis, his analysis only allows for
one specifier, which makes it unable to account for multiple specifiers.

Finally, Borjars (1994) proposes an analysis very similar to Pollard and Sag’s
account. Consequently it has the same drawbacks as their account. However, it
is interesting because it introduces definiteness as a syntactic primitive. It has
already been shown how definiteness plays an important role in specifying selection
restrictions. Borjars does, however, not explore the full potential of the feature.

The analyses referred to here serve to show that two properties of noun phrase
analysis are important. Firstly, an analysis is required in which the specifier, when
present, leaves a mark on the projected phrase. This can be achieved either by as­
suming that the specifier is the syntactic head, or by introducing a marking feature
by way of which the specifier marks the projected noun phrase. Secondly, an elabo­

136

rate classification of specifiers is needed in terms of which selection restrictions may
be formulated. Borjars’ account further supports the observation that definiteness
is a key feature in the analysis of noun phrases.

3 Proposed analysis

The analysis here builds on ideas from the accounts presented in section 2. A division
into modifier and specifier pre-nominals is assumed where specifiers are analyzed as
heads selecting their non-head sister. It is based on a subtyping of the HPSG
head type into a hierarchy of adjectival and nominal types. It sets itself apart in a
number of ways. First and foremost the analysis is distinguished by its emphasis
on definiteness. This is reflected by the detail with which definite pronouns are
subtyped, and by the adoption of a separate feature of definiteness pertaining to all
adjectival and nominal categories. The subtyping of adjectival-nominal is shown in
(3).

(3)
adjectival-nominal'

[DEF boolean^

The attribute DEF is defined for the adjectival-nominal type, which means that
it is inherited by all the subtypes of adjectival-nominal. The type hierarchy and
the assumption that specifiers are syntactic heads of noun phrase constructions
enable an account of the data in section 1. In the following two sample analyses
are presented. The sample noun phrases are hende den tossede malerinde (her the
crazy painter) and tre mindste skoler (three smallest schools).

In (4) the lexical entry and thus selection restriction for the personal pronoun
specifier hende (her) is shown.

137

(4) PHON (h e n d ^

SS ILOCI CAT

HEAD

perspron

P-SPR +
AGRli]"̂ ''
DEF +

SPEC

CAT
HEAD

nominalA-iperspron

AGRm"^''
DEF +

SPR +

CONT

nominal-obj ■

INDEX

ref

NUMB sin^u/ar
GEND f^n^inine

SPRE]

The value of HEAD in (4) shows that hende is of type perspron and DEF+. The
P-SPR attribute indicates whether hende projects a maximal noun phrase or not.
(4) further shows that hende is a specifier, the value of the SPEC attribute is a list
restricting its non-head selectee. The selection restriction is that the selectee must
be a nominal, but not a perspron. In addition it must be DEF-I- and SPR-I-, i.e.
already maximal..

In (5) the analysis of the noun phrase hende den tossede malerinde (her the crazy
painter) is given.

138

(5)

hd-spec-ph

HEAD m
SS|LO C|CAT SPEC()

SPR[D

PHON(/ien(ie)

PHON (h e n d e d e n to s s e d e m alerin de'^

HD-DTR
SS LOCI CAT

HEADS

perspron^
SPEC

m

P-SPRdH-
AGRm^sr

DEF +

CAT
HEAD

defart ■
SPR +

AGREES'’
DEF +

CONT INDEX

NON-HD-DTR

non inal-obj^
SPR +

PHON^den tossede malerinde'^

P-SPR +

NUMB singular

GEND-^®™”*”®

SS S LOC

CAT
HEAD

defart^
SPR +

AGR ^9r

DEF +

NUMB singular
GEND

CONT

inal-obj^

INDEX

re/L

NUMB singular
feminine

(5) shows that the noun phrase is indeed a maximal well-formed noun phrase.
The selection restriction has been resolved by the unification of the underspecified
selection constraint and the actual occuring constituent headed by a definite article,
defart. The value of the specifier head’s P-SPR attribute is structure shared with
the SPR value of the projected phrase, the latter indicating whether the phrase is
a maximal noun phrase, which it is in this case as it is SPR-t-.

In (6) and (7) the lexical entries for the cardinal specifier tre (three) are shown.

139

(6) PHON (tre)

SSILOCI CAT

HEAD

card'-

P-SPR +

AGRm“^''

DEF -

NUMB

SPEC

CAT
HEAD

—‘pronominal -
S P R -

CONT ^ominal-obj

AGRm
DECL
D E F -

SPRE)

(7) PHON(tre)

SS I LOC I CAT

HEAD

card
SPEC

P-SPR -

AGRm"^’"

DECLH
D E F a

NUMB

CAT
HEAD

-^pronominal
S P R -

CONT ‘̂ ominal-obj

AGRIT] ■
DECL a
DEF a

SPRØ

There are two entries for tre (three), and only (6) projects a maximal noun phrase
because it is P-SPR-I-. The selection restriction for this version is something which
is not pronominal and DEF—. The other version, (7), does not project a maximal
phrase. The constraint on its selectee is also something which is not pronominal,
however, there is no constraint on the value of DEF.

In (8) the analysis of tre mindste skoler (three smallest schools) is shown.

140

(8)

hd-spec-ph ■

HEAD m
SS|LOC|CAT SPEC{)

SPRH)

PHON(tre)

PHON^tre m in d s te sk o ler^

HD-DTR
SS LOCI CAT

HEADE

card ■

SPECIE

P-S PR E -

AGRE
agr

NUMB

HEAD
adj L

AGRE
DEF +

S P R -

NON-HD-DTR

S P R -

PHON ̂ mindste skolerj

ssa LOG I CAT
HEAD

adj
S P R -

P-SPR -

AGR

DEF +

NUMB
GEND (common

(8) shows that this phrase is not a maximal well-formed noun phrase. The selec­
tion restriction has been resolved by the unification of the underspecified selection
constraint and the non-head constituent headed by an adjective, i.e. adj. The value
of the specifier head’s P-SPR attribute is again structure shared with the SPR value
of the projected phrase. The projection is SPR— and consequently not a maximal
noun phrase. What is important to note is that the version of the cardinal which
projects maximal phrases cannot be used here as it constrains its selected constituent
to be DEF—, but mindste skoler (smallest schools) is headed by a DEF-I- adjective.

The two analyses show how specifier heads, the hierarchy and the definiteness
feature are exploited to achieve correct analyses of the data.

4 Test w ith LKB

The proposed analysis of Danish noun phrases has been implemented in the LKB
system which is a grammar and lexicon development environment for use with
constraint-based formalisms (Copestake 1199). The system has been extensively
tested with grammars based on HPSG theory. To test the analysis, a test suite

141

consisting of the data in section 1 has been parsed with the implemented grammar.
The results are shown in (9)

(9) 1 denne min begejstring 1
2 denne den sidste Rabbitbog 1
3 jeres den gamle grammofon 1
4 deres den nærmeste nabo 1
5 hende den tossede malerinde 2
6 ham den forsvundne dreng 2
7 de tre mindste skoler 2
8 * tre mindste skoler 0
9 de mange smukke ting 2
10 *de mange smukkeste ting 0
;;; Total CPU time: 1240 msecs

The figure after each phrase gives the number of parses found. Examples 5, 6
and 9 get two parses. This is because the definite article and demonstrative pronoun
have identical surface forms. Importantly the grammar correctly rules out 8 and 10.

5 Conclusion

In this article it has been pointed out that an important aspect of noun phrase
analysis is the specification of selection restrictions for noun phrase specifiers in order
to account for the combination of multiple specifiers. Danish data was presented
which showed that definiteness plays an important role in this respect. This was
reflected by the noun phrases containing multiple definite specifiers, and it was
further shown that definiteness also plays a role among numerals and adjectives. A
number of previous HPSG noun phrase accounts were discussed, and it was noted
that they point towards two important properties of noun phrase structure. Firstly,
specifiers must mark their projections. Secondly, a detailed classification of specifiers
is required. An analysis was then presented which incorporated these properties
together with a cross categorial definiteness feature to account for Danish noun
phrase structure. The analysis has been implemented in the LKB system, and the
results of parsing the Danish data were included, showing that the implementation,
hence, the analysis, indeed provides an adequate analysis of the presented Danish
noun phrases.

Footnotes

’Hzinsen (1994) provides a description of the semantics of these constructions.

^In Pollard & Sag (1994) specifiers eue categorized as functionals, i.e. words the semantic content
of which "is purely logical in nature (perhaps even vacuous)" (Pollard & Sag 1994:45). In Pollard
& Sag (1994:344-393), however, it is pointed out that many specifiers have semantic content and
may take their own complements and specifiers, giving rise to complex specifier phrases which do
in fact contain several specifiers. It is not quite clear whether a re-classification of such speci­
fiers as non-functionals is intended in which case the SPEC attribute would be appropriate for

142

both functional and substantive categories. However, what is important is that no examples are
provided of complex specifiers phrases containing specifiers like articles or demonstratives, which
means that multiple specifier sequences containing these are not accounted for. Even if these cate­
gories were contained in complex specifier phrases, the unaddressed problem consisting in defining
head-dependent relations remains. Allegranza (1998) addresses this issue, and concludes that the
establishment of such relations would be "quite arbitrary”.

References

Abney, S. 1987. The English Noun Phrase in its Sentential Aspect. MA. Thesis,
MIT.

Allegranza, V. 1998. Determiners as Functors: NP Structure in Italian. In S. Balari
& L. Dini (eds) Romance in HPSG, CSLI Lecture Notes, Vol. 75. CSLI Publica­
tions: Stanford, 55-108.

Börjars, K. 1994. Feature Distribution in Swedish Noun Phrases. Phd. dissertation,
Department of Linguistics, University of Manchester.

Chomsky, N. 1970. Remarks on Nominalization. In R. A. Jacobs, and P. S. Rosen­
baum (eds) Readings in English Transformational Grammar. Waltham, MA: Ginn,
184-221.

Copestake, A. 1999. The (new) LKB system. Stanford University.

Delsing, L. 1993. The Internal Structure of Noun Phrases in the Scandinavian Lan­
guages. Malmö: Team Offset.

Hansen, E. 1994. Kvalificeret bestemthed. Unpublished manuscript, Københavns
Universitet.

Jackendoff, R. 1977. X Syntax: A Study of Phrase Structure. Cambridge, Mas­
sachusetts: MIT Press.

Kathol, A. 1998. Determiners as Nominal Heads. In Gosse Bouma, Geert-Jan Krui-
jff & Richard Oehrle(eds) Proceedings of FHCG’98, Saarbriicken 1998, 136-143.

Kolliakou, D. 1995. Definites and Possessives in Modern Greek: an HPSG Syntax
for Noun Phrases. Ph.D. thesis, University of Edinburgh.

Netter, K. Towards a Theory of Functional Heads: German Nominal Phrases. In J.
Nerbonne, K. Netter and G. Pollard (eds) German in Head-Driven Phrase Structure
Grammar. Stanford: CSLI.

Pollard, C. & Sag, I. 1994. Head-Driven Phrase Structure Grammar. Chicago: The
University of Chicago Press.

Tonem 1 eller 2 eller 1,5?

Arild Noven (arild.noven@gri.no~). Per Arne Larsen (pelarsen@gri.no),
Bente Moxness (bente.moxness@gri.no), Kolbjørn Slethei

(kolbjom.slethei@gri.no)
~Voss International Language Technology A/S

Samandrag

Artikkelen presenterer eit eksperiment utført ved Nordisk Språkteknologi A/S der ein vurderte nytten av
eil nøytralt tonem som erstatning for tonem 1 eller 2 i ein norsk talesyntetisator. Arbeidshypotesen var at
val av dialekt er heilt avgjerande for utfallet, og Ålesunds-dialekten vart vald avdi han har ein minimal
skilnad mellom tonem 1 og 2. Eit nøytralt tonem 1,5 vart konstruert som ein interpolasjon mellom tonem
1 og 2, og 2 testsetningar, kvar med ulike kombinasjonar av tonem 1, 1,5 og 2, vart presentert for ei
gruppe utvalde forsøkspersonar. Forsøkspersonane vart så bedne om å vurdera kvaliteten på
testsetningane langs ein 5 punktsskala. Resultata viste at tonem 1,5 vart akseptert som fullgod erstatning
for dei ekte tonema.

1. Innleiing

Det å konstruera ein talesyntetisator byr på mange ulike typar utfordringar frå dei reint
tekniske til dei meir lingvistiske. Ein stor del av det prosesseringsarbeidet som vert
utført frå skriven tekst til ferdig lyd, er av lingvistisk og fonetisk art. Dei skandinaviske
språka har mange lingvistiske og fonetiske særtrekk som gjer eit slikt prosjekt
vanskelegare enn for mange andre europeiske språk. Tonelagsskilnad, utstrekt bruk av
komposita og den komplekse morfologien i slike ord er mellom dei tinga som gjer dette
arbeidet krevjande.
I 1984 kom den første versjonen av ein norsk talesyntetisator - den såkalla INFOVOX-
syntetisatoren - som resultat av eit samarbeidsprosjekt mellom KTH i Stockholm og
Universitetet i Bergen. Under utviklinga av denne syntetisatoren, vart det klart at særleg
to problemområde var avgjerande for kvaliteten, nemleg trykkplassering og val av
tonem. Sidan dei aller fleste norske dialektar er tonemiske, og bruk av korrekt tonem er
ein viktig faktor i ein talesyntetisator av høg kvalitet, var det avgjerande å finna regiar
som styrde tildeling av rett tonem til dei aktuelle orda.‘ Imidlertid viste dette seg å vera
eit ikkje-trivielt problem sidan både leksikalske og bøyingsmorfologiske faktorar spelar
inn. (Sjå også Carlson et al. (1982) og Carlson & Granström (1986).) Tabell 1 viser litt
av denne kompleksiteten ̂(Tonem 1 og 2 er markert med ' og ")

mailto:pelarsen@gri.no
mailto:bente.moxness@gri.no
mailto:kolbjom.slethei@gri.no

144

Bøyingsform Struktur Transkripsjon Struktur Transkripsjon

Infinitiv løp-e /" lø :p e / hopp-e /" h o p e /

Presens løp-er / 'lø ip e r / hopp-er /" h o p e r/

Preteritum løp- / 'lø :p / hopp-et /" h o p e t/

UbesL sing. løp- / 'lø :p / hopp- / 'h o p /

B est sing. løp-et / 'lø :p e / hopp-et / 'h o p e /

U best plur. løp- / 'lø :p / hopp- / 'h o p /

B est plur. løp-ene / 'lø ip e n e / hopp-ene / 'h o p e n e /

Infinitiv kjøp-e /" g ø ip e / hend-e /" h e n e /

Presens kjøp-er / " 5ø :p e r / hend-er /" h e n e r /

Preteritum kjøp-te /" g ø ip te / hend-te /" h e n te /

U best sing. kjøp- / '5 ø :p /

B est sing. kjøp-et / ' 5ø :p e /

Ubest. plur. kjøp- / '5 ø :p / hend-er / 'h e n e r /

B est plur. kjøp-ene / 'q ø ip e n e / hend-ene / 'h e n e n e /

U best sing. bøk- / 'b ø :k /

B est sing. bøk-en / 'b ø ik e n /

U best plur. bøk-er /" b ø :k e r / bøk-er / 'b ø :k e r /

B est plur. bøk-ene /" b ø :k e n e / bøk-ene / 'b ø ;k e n e /

Tabell 1. Tonelag 1 og 2 i høve til leksikalske og bøyingsmorfologiske faktorar.

Som det vil gå fram av denne tabellen, er det uråd å laga systematiske regiar for
tildeling av tonem når ein ser på endingane -er, -en, -et og -ene. All erfaring med bruk
av regiar for tildeling av tonem syner også at det er vanskeleg å finna eit ”vanntett”
regelsett. Dersom eit ord vert uttalt med feil tonem høyrest det unaturleg ut og
kvaliteten på syntesen vert dårleg.

145

2. Tonem 1,5

Idéen om eit nøytralt tonem som kan erstatta tonem 1 og 2 i ein talesyntetisator var
grunnlaget for ei undersøking utført av Björn Granström og Kjell Gustafson, presentert
på konferansen ”Nordic Prosody” i Odense i 1987, jfr. Granström & Gustafson (1987).
Med utgangspunkt i austnorsk dialekt, vart det nøytrale tonemet, tonem 1,5, konstruert
som ein mellomting av tonem 1 og 2 ved å interpolera FO-kurvene for desse som
illustrert i fig. 1.

FO

Figur 1. Toneml,5 interpolert mellom tonem 1 og 2 for austnorsk.

Arbeidshypotesen i undersøkinga var at dersom eit automatisk system for tildeling av
tonem fungerte dårleg, ville det vera betre om ein konsekvent brukte tonem 1,5 fordi
dette tonemet ville bli oppfatta som enten tonem 1 eller 2 avhengig av kva kontekst
ordet stod i. For å testa ut denne hypotesen vart det konstruert 2 basissetningar:

Basissetningar
I Du må gjenta når det skal lande
II Da tar jenta bilen ut på landet

Ut frå desse basissstningane vart det så konstruert 4 referansesetningar og 3
testsetningar:

Referansesetningar
1. Begge tonem korrekte
2. Første tonem feil

146

3. Andre tonem feil
4. Begge tonem feil

Testsetningar
1.
2.
3.

Begge tonem 1,5
Første tonem korrekt, andre tonem 1,5
Første tonem 1,5, andre tonem korrekt

Referanse- og testsetningane vart så presenterte parvis i randomisert rekkjefølgje til ei
gruppe på 14 forsøkspersonar. Dei siste 8 setningspara vart presentert ein ekstra gang i
starten av testen for at forsøkspersonane skulle venna seg til lyttesituasjonen. Resultata
frå desse setningane vart seinare eliminert frå testen. I eit setningspar vart første setning
kalla A, og siste B. Kvar forsøksperson skulle så avgjera kva setning som høyrdest best
ut langs ein 5-punkts skala:

1. A mykje betre enn B
2. A litt betre enn B
3. Begge omtrent like gode
4. B litt betre enn A
5. B mykje betre enn A

I konklusjonen for denne undersøkinga beiter det at tonem 1,5 vart vurdert som eit godt
kompromiss mellom korrekt og feil bruk av ekte tonem. Dette resultatet er tufta på ein
implisitt føresetnad om at resultata frå dei 3 testsetningane kan og skal vektast likt.
Imidlertid lyt resultata frå denne testen tolkast på litt ulike måtar avhengig av kva
applikasjon dette skal brukast i. Ein mogleg applikasjon er t.d. at ein har ei unntaksliste
av høgfrekvente ord som inneheld informasjon om korrekt tonelag, og at ein berre
brukar tonem 1,5 dersom ordet ikkje står i denne lista. Imidlertid vert det då vanskeleg å
tolka dei resultata som gjeld testsetning 2 og 3 fordi antal tilfelle der tonem 1,5 vert
brukt alltid vil vera langt større enn antal tilfelle der ein kan bruka korrekt tonelag henta
frå høgfrekvenslista. Ei liste av høgfrekvente ord kan berre innehelda nokre få tusen
ord, og dermed gjenspeglar ikkje resultata som gjeld testsetning 2 og 3 ein realistisk
applikasjon. Dersom ein skal få fram ei meiningsfull tolking av resultata frå Granström
og Gustafson si undersøking, er det berre testsetningar med konsekvent bruk av tonem
1,5 som er aktuelt å vurdera resultata ut frå. Figur 2 gjev ei framstilling av resultata
dersom ein samanliknar gjennomført bruk av tonem 1,5 med bruk av dei ekte tonema.

147

M Begge tonem 1,5

Begge Første Andre Begge
korrekt feil feil feil

Referansesetningar

Figur 2. Vurderingar av testsetningar samanlikna med referansesetningar.
Talemålsgrunnlag: Austnorsk.

Negativ verdi på skalaen tyder altså at referansesetninga vert vurdert som betre enn
testsetninga. Om ein tenkjer seg ein realistisk applikasjon der ein gitt grammatikk styrer
tildeling av tonem med ein treffprosent på 50, så vil kvar av dei 4 kategoriane for
referansesetningane vera like sannsynlige (p=0,25), d.v.s. at dei lyt vektast likt når ein
skal gjera opp status. Om ein no brukar tonem 1,5 konsekvent, ser ein at resultatet vert
dårlegare (negativ totalsum) enn om tonemtildelinga vert styrt av ein grammatikk som
tek feil i 50% av tilfella.
Dette er eit ganske anna resultat enn det forfattarane ønskte å presentera i denne
artikkelen. Det er grunn til å spørja kva grunnen til eit slikt negativt resultat kan vera.
Om ein studerer tonemkonturane for ulike norske dialektar, er det rimeleg å tenkja at
resultatet er avhengig av kva dialekt ein legg til grunn for undersøkinga. Figur 3 viser
tonemkonturane for 5 norske dialektar.

14 8

Trondheim

tonem 1

----------- tonem 2

Figur 3. Tonemkonturar for 5 norsk dialektar. Vertikal akse: FO. Horisontal akse: Tid.
(Figuren er tilpassa frå Fintoft, K. 1970. Acoustic Analysis and Perception of
Tonernes in some Norwegian Dialects. Oslo: Universitetsforlaget.)

Som det går fram av figur 3, har Oslo-dialekten nokså stor skilnad mellom FO-
konturane for tonem 1 og 2. Særleg gjeld dette den første og trykksterke fasen av
tonemrealiseringa som tilsvarar omtrent 1. halvpart av konturen. Det er denne fasen som
er perseptorisk viktig når det gjeld å kunna skilja dei 2 tonerna frå kvarandre, og av den
grunn er Oslo-dialekten lite eigna som utgangspunkt for eit nøytralt, mellomliggjande
tonem. Det er mange måtar å måla skilnad mellom tonemkonturar på, men 2 kriterium
synest vera naturleg å festa seg ved:

• Absoluttverdien av FO-skilnaden langs ulike tidspunkt i den 1. fasen av
realiseringa

• Spektral vs. temporal konturskilnad

Målt etter begge kriteria, ser ein at Ålesunds-dialekten har ein relativt liten skilnad
mellom tonemkonturane samanlikna med dei andre dialektane. Særleg tydleg vert dette
dersom ein fokuserer på den temporale skilnaden: Ved å parallellforskyva konturen for

149

tonem 1 langs tidsaksen, vil han falla saman med konturen for tonem 2. Dette er ikkje
råd å få til med tilsvarande konturar frå nokon av dei andre dialektane.

3. Nytt forsøk

Vi ønskte å undersøkja om andre dialektar enn Oslo-dialekten kunne vera betre eigna
for ei tilsvarande undersøking. Ålesunds-dialekten skilde seg naturleg ut i denne
samanhengen av dei grunnar som er nemnde ovanfor. Figur 4 viser tonemkonturane for
Ålesunds-dialekten der også konturen for tonem 1,5 er teikna inn.

FO
Tonem 1

Figur 4. Tonemkonturar for Ålesunds-dialekten.

Det går tydleg fram av figur 4 at avstanden frå konturen til tonem 1,5 og til ein av dei
andre konturane er klart mindre enn tilsvarande avstand i fig. 1. Undersøkinga vart
utført etter same lest som hos Granström og Gustafson, men med nokre viktige
modifikasjonar:

• Fastsetjing av testintem O-linje v.h.a. kontrollpar som var akustisk
identiske

• Bruk av standard statistiske metodar (Wilcoxons signed rank test)
• Statistisk kontroll av likeverdighet m.o.t. effekten av tonem 1,5 for dei 2

basissetningane I og II
• Presentasjonsrekkefølge går ut som variabel

Ei gruppe på 13 forsøkspersonar vart sett saman av personar med fonetisk og lingvistisk
bakgrunn, d.v.s. med både teoretisk og praktisk skulering i begge disiplinar. Alle
gjennomgjekk først ein test der det vart undersøkt om dei hadde tilstrekkeleg
"kompetanse" i å diskriminera tonelag på bakgrunn av ein lyttetest. Resultata frå 3 av

150

desse personane måtte utelatast frå testmaterialet fordi dei ikkje klarte den innleiande
testen.
Fastsetjing av testintem O-linje er viktig for å få til ei innbyrdes kalibrering av dei ulike
forsøkspersonane. Det var nemleg store individuelle skilnader mellom forsøkspersonane
m.o.t. korleis dei oppfattar setningar med akustisk identiske stimuli. Ved å spela av 6
setningspar som kvar inneheldt 2 akustisk identiske setningar, kunne ein registrera slike
individuelt betinga avvik frå ”0” som testresultat. Slike avvik må då skuldast
eigenskapar hos den einskilde person og ikkje eigenskapar ved testmaterialet. Ein
forsøksperson hadde 0,83 i snitt medan andre hadde -0,16 i snitt på denne testen. Det er
difor viktig å kalkulera inn denne skilnaden i den vidare utrekninga elles risikerer ein at
faktorar som er knytte til den einskilde forsøkspersonen øydelegg resultatet av
undersøkinga.
Ei psykoakustisk undersøking som denne lyt gjennomførast med standard statistiske
metodar for å vera vitskapleg gyldig. Den største veikskapen ved undersøkinga til
Granström og Gustafson er at dei dreg konklusjonar av talmaterialet utan å underkasta
det vanlege statistiske metodar for hypoteseprøving. Sett frå ein vitskapleg synsvinkel
vert dermed konklusjonane ugyldige, og det er ikkje råd å seia om dei resultata dei kjem
fram til skuldast faktiske skilnader eller tilfeldige samantreff. Av den grunn har vi heller
ikkje gjort ei direkte samanlikning mellom resultata frå dei to undersøkingane.
Det er ikkje sjølvsagt at dei 2 basissetningane ”Du må gjenta når det skal lande” og ”Da
tok jenta bilen ut på landet” er likeverdige m.o.t. effekten av tonem 1,5. Dette lyt også
undersøkjast med statistiske metodar. Resultatet viste ingen signifikant skilnad mellom
desse setningane på dette området’, og det aritmetiske gjennomsnittsresultatet for desse
2 basissetningane kan difor nyttast for kvar av dei 24 moglege setningspara i testen.
Figur 5 viser resultatet av undersøkinga. Berre dei resultata som tilsvarar resultata i
figur 2 er tekne med.

H Begge tonem 1,5

Begge Første Andre Begge
korrekt feil feil feil

Referansesetningar

Figur 5. Vurderingar av testsetningar samanlikna med referansesetningar.
Talemålsgrunnlag: Ålesund bymål.

151

Som det går fram av figur 5, kjem tonem 1,5 best ut i 2 tilfelle, medan dei ekte tonema
kjem best ut i dei 2 andre tilfella. Imidlertid er ingen av desse resultata statistisk
signifikante på 5% nivå, sjølv om tendensen er klart i favør av tonem 1,5. På 10%
forkastningsnivå er det siste resultatet (tonem 1,5 kontra begge tonem feil) så å seia
signifikant.

4. Konklusjon

Bruk av tonem 1,5 er like bra eller betre som bruk av ekte tonem i alle setningspara der
konsekvent bruk av tonem 1,5 vert samanlikna med bruk av ekte tonem.
Val av dialekt er avgjerande for utfallet av ei slik undersøking.

Fotnotar

Problemet med korrekt tildeling av tonem er like aktuelt for svensk talesyntese, sidan dei aller fleste
svenske dialektar også er tonemiske. Imidlertid er problema litt færre i svensk sidan nestan alle
kompositaord får tonem 2, mens det same ikkje er tilfelle for norsk.

 ̂Tabellen er utarbeidd av Kjell Gustafson og presentert i artikkelen ”Some innovations in a Norwegian
text-to-speech system”, pp. 81-85 trykt i Quarterly Progress and Status Report, Stockholm, 1/1989.

’ Wilcoxon signed-rank, tosidig testing. Minste verdi: p=0,32.

Litteratur

Carlson, R., Granström, B. & Hunnicutt, S. 1982. A multi-language text-to-speech
module. Proceedings ICASSP- Paris, 3,1604-1607.

Carlson, R. & Granström, B. 1986. Linguistic processing in the KTH multi-lingual text-
to-speech system. Proceedings ICASSP- Tokyo. 4, 2403-2406 .

Granström, B. & Gustafson, K. 1987. Toneme 1 Vi in a Norwegian Text-to-Speech
System. Nordic Prosody IV, Papers from a symposium, Odense: Odense
University Press.

Syntactic Analysis and Error Correction
for Danish in the SCARRIE project

Patrizia Paggio
Center for Sprogteknologi

patrizia@cst .ku.dk

May 10, 2000

Abstract
This paper reports on work carried out at CST in Copenhagen to develop

the Danish version of the SCARRIE prototype, addressing in particular the
issue of how a form of shallow parsing is combined with error detection and
correction to treat context-dependent spelling errors. The paper describes the
corpora used to develop the system, and shows some preliminary evaluation
results.

1 The SCARRIE project
SCARRIE was a EU-funded collaborative project, the purpose of which
was to develop a high-quality proof-reading tool for the Scandinavian
publishing industry. The consortium consisted of partners from Sweden,
Norway, and Denmark'. The project terminated in the spring of 1999,
and resulted in the development of three protot3rpes covering Norwegian,
Swedish and Danish. Although the three prototypes all address the same
basic issue, the functionality they provide differs slightly to reflect lan­
guage specific needs as well as different research interests and expertise
in the groups. In this paper, we shall deal with the Danish SCARRIE,
and focus on its grammar checking component. For a description of the
Norwegian prototype, see (de Smedt and Rosen, this volume).

SCARRIE builds on CORRie (Vosse 1992) (Vosse 1994), a proof­
reading system originally developed for Dutch and distributed by Sticht-
ing Cognitieve Technologie (the Netherlands), who acted as a subcon­
tractor in the project. The project has adapted the system to comply
with the language specific features of the languages covered, and with
the requirements of the project’s end users. The system processes text

153

in batch mode and produces an annotated output text where errors are
flagged and replacements suggested where possible. Text correction is
performed in two steps: first the system deals with spelling errors and
t}T)os resulting in invalid words, and then with grammar errors.

2 The Danish prototype
Localisation of the system to the Danish language has mainly consisted
in the development of a set of lexical and grammar resources. These
include first of all a dictionary of 251,000 domain-relevant word forms
that have been derived from a collection of 68,000 newspaper articles.
From the same text collection we have also extracted a separate list of
717 idioms. The list is used to identify multi-word expressions such as
complex prepositions, or idioms including words that would be invalid
in isolation (e.g. carte blanche). Both dictionary and idiom list were
developed through a cooperation between CST and the Danish language
and literature society (det Danske Sprog- og Litteraturselskab).

Another important component is the compound analysis grammar,
a set of regular expressions covering the most common types of com­
pound nominals in Danish. This is an important feature, as in Danish
compounding is very productive, and compounds are written as single
words.

Words which the system cannot find in the dictionary or the idiom
list, or analyse as compound forms, or assign the label of proper name,
are taken to be spelling errors. The system flags them as such and tries to
suggest a replacement. The algorithm used is based on trigram and tri-
phone analysis (van Berkel & de Smedt 1988), and takes into account the
orthographic strings corresponding to the invalid word under considera­
tion and its possible replacement, as well as the phonetic representations
of the same two words. Phonetic representations are generated by a set
of grapheme-to-phoneme rules (Hansen 1999) the aim of which is to as­
sign phonetically motivated misspellings and their correct counterparts,
identical or similar phonetic representations.

The last lingware component developed for the Danish prototype is
the phrase structure grammar, which is used by the parser to identify
context-dependent spelling errors (from hereafter grammar errors). Pars­
ing results are passed on to a corrector to find replacements for the errors
found. The parser is an implementation of the Tomita algorithm with
a component for error recognition whose job is to keep track of error
weights and feature mismatches as described in (Vosse 1991). Each in­
put sentence is assigned the analysis with the lowest error weight. As we
shall see in more detail below, the svstem can treat exammar errors of

154

two different kinds, i.e. feature mismatches and structural errors. In the
case of a feature mismatch, the system tries to find the correct form of
the misspelt word by overriding the offending feature, and by looking for
an alternative word form in the dictionary. In the case of a structural
error, on the other hand, specific error rules are applied to parse the
incorrect input and an error message is generated.

3 The errors
To define the coverage of the system, the project has assembled corpora
of parallel raw and proofread texts for the three languages involved. The
Danish corpus consists of newspaper and magazine articles published
in 1997 for a total of 270,805 running words. The articles have been
collected in their raw version, as well as in the edited version provided
by the publisher’s own proofreaders. Although not very large in number
of words, the corpus consists of excerpts from 450 different articles to
ensure a good spread of lexical domains and error types. The corpus
has been used to define the coverage of the grammar and to extract test
data.

The errors occurring in the corpus have been analysed according to
the taxonomy in (Rambell 1997). Figure 1 shows the distribution of the
various error types into the five top-level categories of the taxonomy. As
can be seen, grammar errors account for 30% of the errors. Of these,
70% fall into one of the following categories (Povlsen 1998):

• Too many finite verbal forms or missing finite verb
• Errors in nominal phrases:

- agreement errors,
- wrong determination,
- genitive errors,
- errors concerning pronouns;

• Split-ups and run-ons.

Another way of grouping the errors is by the kind of parsing failure
they generate. As mentioned earlier, we can make a distinction between
feature mismatches and structural errors. Agreement errors are typical
examples of feature mismatches. In the following nominal phrase, for
example:

(1) de ’'‘interessant projekter
(the interesting projects)

155

Error type No. %
Context independent errors 386 38
Context dependent errors 308 30
Punctuation problems 212 21
Style problems 89 9
Graphiwil problems 24 2
Total 1019 100

Figure 1; Error distribution in the Danish corpus

the error can be formalised as a mismatch between the definiteness of
the determiner de (the) and the indefiniteness of the adjective interessant
(interesting). Adjectives have in fact both an indefinite and a definite
form in Danish.

The sentence below, on the other hand, is an example of structural
error.

(2) i sin tid *skabet han skulpturer over atomkraften
(during his time wardrobe/created he sculptures about
nuclear power)

Since the finite verb skabte (created) has been misspelt as skabet (the
wardrobe), the syntactic structure corresponding to the sentence is miss­
ing a verbal head.

Run-ons and split-ups are structural errors of a particular kind, hav­
ing to do with leaves in the syntactic tree. In some cases they can only
be detected on the basis of the context, because the misspelt word has
the wrong category or carries some other grammatical feature that is
incorrect in the context. Although the system has a facility for identify­
ing and correcting split-ups and run-ons based on a complex interaction
between the dictionary, the idiom list, the compound grammar and the
syntactic grammar, this facility has not been fully developed yet, and
will therefore not be described any further here. More details can be
found in (Paggio 1999).

The next section describes the way in which agreement errors in NPs
and structural errors in verb groups are dealt with in the grammar,
and explaines how the treatment of these errors fits in with the general
analysis strategy adopted in the grammar.

4 The grammar
The grammar is expressed in an augmented context-free grammar for­
malism consisting of rewrite rules where symbols are associated with

156

features. It is also possible to add error weights to both rules and indi­
vidual features, and to specify error messages. The rules are applied by
unification, but in cases where one or more features of a given word do
not unify with relevant features in a grammar rule, the offending features
can be overridden.

Two kinds of rules may be used, “normal” rules describing the valid
structures of the language, and “error” rules describing invalid struc­
tures. Thanks to the feature overriding mechanism, however, normal
rules can also analyse sentences containing feature mismatch errors.

4.1 Feature mismatches
For example, consider the following rule, which is intended to account
for definite nominal phrases:

NP(def Gender PersNumber) ->
Det(def Gender PersNumber)
APCdef _ _)
N(indef Gender:2 PersNumber)

The rule is used to analyse NPs consisting of a definite determiner,
an adjective phrase and a noun. Determiner and adjective bear the
feature “def’ for definite, whereas the noun bears the feature “indeP
for indefinite. This reflects the fact that determiners, adjectives and
nouns all inflect for definiteness in Danish, but the noun has to be in
the indefinite form if preceded by a determiner. Furthermore, the three
nodes must share values for gender and person/number, as indicated by
the capitalised variables “Gender” and “PersNumber”.

The rule will parse a correct definite NP such as:

(3) de interessante projekter
(the interesting projects)

but also
(4) de *interessant projekter
(5) de interessante *projekterne

Both (4) and (5) violate the definiteness constraints, since the ad­
jective is indefinite in (4), and the noun is definite in (5). The feature
overriding mechanism makes it possible for the system to suggest inter­
essante as the correct replacement in the former case, and projekter in
the latter. What happens is that the parser selects the rule as appli­
cable because the syntactic backbone matches the input, but detects a
violation in one of the features. It then overrides the violating feature
on the incorrect word and looks for a suitable replacement by searching

157

for alternative forms of the same lemma in the dictionary. The resulting
analysis carries an error weight generated by the overriding operation.

Weights are used to control rule interaction as well as to establish
priorities among features that may have to be overridden. For example
in our NP rule, a weight has been attached to the Gender feature in
the N node. The weight expresses the fact that it costs more to override
gender on the head noun than on the determiner or adjective. The reason
is that if there is a gender mismatch, the parser should not try to find an
alternative form of the noun (which does not exist), but rather override
the gender feature either on the adjective or the determiner.

4.2 Structural errors
Error rules are very similar to normal rules, the only difference being that
they have to be associated with an error weight and an error message.

The purpose of the weight is to ensure that error rules are applied
only if normal rules are not applicable. Error messages serve two different
purposes. If they are preceded by a question mark, they only appear in
the log file for the developer to trace the analysis process. Otherwise,
they are shown to the end user when the rule they are associated with
has been applied. In other words if an error rule is applied to analyse
a sentence, the system will not look for a replacement, but present the
user with an error message indicating the kind of grammatical failure
that has been observed.

The following is an error rule example.
VGroup(_ finite Tense) ->

V(_ finite:4 Tense)
V(_ finite:4 _)
"Sequence of two finite verbs":4

A weight of 4 is attached to the rule as a whole, but there are also
weights attached to the “finiteness” feature on the daughters: their func­
tion is to make it costly for the system to apply the rule to non-finite
forms. In other words, the feature specification “finite” is made difficult
to override to ensure that it is indeed a sequence of finite verbal forms
the rule applies to and flags.

The rule will for example parse the verbal sequence in the following
sentence:

(6) Jeg vil *bevarer (bevare) min frihed.
(*I want keep my freedom)

As a result of parsing, the system in this case will not attempt to
correct the wrong verbal form, but issue the error message “Sequence of
two finite verbs” .

158

In many cases, in fact, it may be quite difficult to suggest a correction
for a wrong verb sequence, since there may be several reasonable ways
of amending it, some of which imply more than just replacing one form
with another.

To sum up, error rules can be used to describe an error explicitly and
to issue error messages. However, so far we have made very limited use
of them, as controlling their interaction with normal rules and with the
feature overriding mechanism is not entirely easy. To this sparse use of
error rules corresponds, on the other hand, an extensive exploitation of
the feature overriding mechanism. This strategy allows us to keep the
number of rules in the grammar relatively low, but relies on a careful
manual adjustment of the weights attached to the various features in the
rules.

4.3 Shallow analysis
In the current version of the grammar, only the structures relevant to
the error types we wanted the system to deal with - nominal phrases
and verbal groups - are accounted for in detail. The analysis produced
is thus a kind of shallow syntactic analysis where the various sentence
constituents are attached under the topmost S node as fragments. This
choice was made for two reasons. Firstly, we wanted the system to target
the error types represented in our corpus to tailor its functionality to the
needs of our end users. Secondly, we did not want to impair the system’s
efficiency by striving for too complex a model of syntactic analysis.

Below, we show the rules (the features attached to the various cate­
gories have been removed here for the sake of exposition) implementing
the fragment strategy just mentioned;

S -> Fragments VGroup Fragments
S -> Fragments VGroup
S -> InvVGroup Fragments
Fragments -> Fragment
Fragments -> Fragment Fragments
Fragment -> NP
Fragment -> PP
Fragment -> AdvP
Fragment -> ...

As can be seen, a sentence is built up of a verb group possibly pre­
ceded and followed by one or more fragments, in turn analysed as either
NPs, PPs and so on. The internal structure of verb groups - includ­
ing possible wrong structures - is specified in a number of rules rewrit-

159

Figure 2: A parse tree

ing VGroup. InvVGroup in the third sentence rule above, accounts for
subject-main verb inversion in interrogative sentences.

There are cases, of course, in which attaching a constituent directly
under the S node does not enable the system to spot an error for which we
would expect a flag. Adjective phrases are an example. Since agreement
errors in nominal phrases as we saw are rather frequent in the SCARRIE
database, we wanted the system to be able to identify and correct them.
Therefore, APs can also be analysed as nominal modifiers by the NP
rules. To indicate then that the fragment analysis is not optimal (it
should only be resorted to when the adjective is not part of a nominal
phrase), it is associated with an error weight, as well as a system-internal
error message (invisible to the end user):

Fragment -> AP "?Fragment AP rule":2

The weight penalises parse trees built by applying the rule. However,
in lack of a better solution, the rule is triggered e.g. to analyse the AP
in the following sentence:

(7) De projekter er ikke interessante.
(Those projects are not interesting)

The parse tree produced by the system is shown in Figure 2 . Note
that the error weight introduced by the Fragment AP rule is percolated
up to the top S node.

5 E v a lu a tio n a n d C o n clu s io n

The evaluation methodology adopted in the project capitalises on the
fact that we had access to a set of oarallel unedited and oroofread texts

160

(see (Paggio &: Music 1998)). This made it possible to develop a tool
that compares the results obtained by the system with the corrections
suggested by the publisher’s human proofreaders. The tool derives recall
measures (lexical coverage as well as coverage of errors), a precision
measure (percentage of correct flaggings), as well as suggestion adequacy
measures (hits, misses and no suggestions offered). The same automatic
procedure was used to evaluate the system during development, and to
validate it at the user site. Testing was done on constructed test suites
displaying examples of the errors targeted in the project and with text
excerpts from the parallel corpora.

The results obtained on the test suites are very positive, especially
with regard to the treatment of grammar errors. More extensive testing
(see (Paggio to appear) for more details) has shown that when the system
is run on a text, error coverage decreases especially because of punctu­
ation and other stylistic matters not treated in the project. There are
also, however, agreement errors which go unnoticed, mainly due to the
imprecision introduced by the fragment analysis approach. A large num­
ber of the false flags produced is due to the grammar’s limited coverage.
In particular, genitive phrases, which are not treated at the moment, are
often the cause of wrong NP analyses.

Considering the fact that relatively little time was spent on grammar
development in the project’s lifetime, we consider the results obtained
encouraging. There is, however, space for improvement, especially with
regard to extending the coverage of the grammar.

N o te s
^Main contractors were: WordFinder Software AB (Sweden), Center for
Sprogteknologi (Denmark), Department of Linguistics at Uppsala Uni­
versity (Sweden), Institutt for lingvistikk og litteraturvitenskab at the
University of Bergen (Norway), and Svenska Dagbladet (Sweden). A
number of subcontractors also contributed to the project. Subcontractors
in Denmark; Munksgz^d International Publishers, Berlingske Tidende,
Det Danske Sprog- og Litteraturselskab, and Institut for Almen og An­
vendt Sprogvidenskab at the University of Copenhagen (Denmark).

R e fer en ce s

Hansen, P. M. (1999). Grapheme-to-phoneme rules for the Danish com­
ponent of the SCARRJE project. H. E. Thomsen & S. Kirchmeier-
Andersen, eds. Datalingvistisk Forenings årsmøde 1998 i Købehavn,
Proceedings, number 25 in ‘LAMBDA’. Institut for datalingvistik.
Handelshøjskolen i Københaven, 79-91.

161

Paggio, P. (1999). Treatment of grammatical errors and evaluation in
SCARRJE. H. E. Thomsen & S. Kirchmeier-Andersen, eds, Datal-
ingvistisk Forenings årsmøde 1998 i Købehavn, Proceedings, num­
ber 25 in ‘LAMBDA’. Institut for datalingvistik, Handelshøjskolen
i Københaven, 65-78.

Paggio, P. (to appear). Danish grammar checking in SCARRIE. Proceed­
ings of ANLP 2000. Seattle, Washington.

Paggio, P. & Music, B. (1998). Evaluation in the SCARRIE project.
Proceedings of the First International Conference on Language Re­
sources & Evaluation. Granada, Spain, 277-282.

Povlsen, C. (1998). Three types of grammatical errors in Danish. Tech­
nical report. Copenhagen: Center for Sprogteknologi.

Rambell, O. (1997). Error typology for automatic proof-reading pur­
poses. Technical report. Uppsala: Uppsala University.

van Berkel, B. de Smedt, K. (1988). TViphone analysis: a combined
method for the correction of orthographical and typographical er­
rors. Proceedings of the 2nd conference on Applied Natural Language
Processing. ACL, Austin, 77-83.

Vosse, T. (1991). Detection and correction of morpho-syntactic errors
in shift-reduce parsing. R. Heemels, A. Nijholt & K. Sikkel, eds,
‘Tomita’s Algorithm: Extensions and Applications’, number 91-68
in Memoranda Informatica. University of Twente, 69-78.

Vosse, T. (1992). Detecting and correcting morpho-syntactic errors in
real texts. Proceedings of the Third Conference on Applied Natural
Language Processing. Trento, Italy, 111-118.

Vosse, T. G. (1994). The Word Connection - Grammar-based Spelling
Error Correction in Dutch. PhD thesis. Rijksuniversiteit at Leiden,
the Netherlands. ISBN 90-75296-01-0.

D e s ig n in g a S y s te m for
S w ed ish S p o k en D o c u m e n t R e tr iev a l

Botond Pakucs^’̂ Björn Gambäck^’̂
bottefispeech.kth.se gambackCsics.se

' Information and Language Engineering
Swedish Institute of Computer Science

Box 1263
S-164 29 Kista, Sweden

 ̂ Centre for Speech Technology
Royal Institute of Technology

Drottning Kristinas väg 31
S-100 44 Stockholm, Sweden

 ̂ Computational Linguistics
University of Helsinki

P.O. Box 4
SF-00014 Helsinki, Finland

Abstract

It is only during the last few years that attention has started to shift from pure text-
based retrieval towards other media. Information retrieval from spoken documents is
analogous to text-based retrieval; however, accessing audio documents causes some
extra problems, in particular with respect to document segmentation, choice of in­
dexing features, and robustness. In addition, retrieval of documents in Swedish, like
most non-English languages, adds the extra dimension of morphology; also, when
analysing spoken Swedish data, prosodic patterns have to be taken into cu:count. In
this paper we introduce SIREN, the Swedish Information Retrieval Engine, a very
flexible, modular IR system which has been designed with a specific eye towards
these issues.

1 Introduction

The field of information retrieval (IR) has been moving steadily forward for several
decades. During the 90’s we have seen severed major break-throughs. Until recently,
most of the work has been focused on texts; not only has most of the material processed
been in text format, but even when other media such as audio and video have been con­
sidered in a system, text has been the primary concern. Consequently, most multimedial
retrieval systems are modifications of existing text-based IR systems, disregarding the
particular problems caused by the new media types. However, the amount of material in
other formats increase all the time, increasing the need for tools that handle this infor­
mation both from a system-oriented and a user-oriented perspective. An important issue
for information management is how to represent these objects and collections of objects
to best support retrieval. Another issue is to let users search in several modalities. An
example would be when a person wants to search a news database: the database contains
both news in text format and audio sequences of spoken material. These are stored and
indexed in different ways, but the user wants to search both archives at the same time.

The term ‘Spoken Document Retrieval’ (SDR) has, in itself, rendered some confusion. We
will use it exclusively for the particular case of information retrieval, when the information

is to be retrieved from large volumes of spoken documents. Thus, what media the query
itself is formulated in is of no importance to us here; only the format from which the
sought information is to be accessed. In Section 2 we review the difficulties caused by
trying to access multimedia! documents, in particular audio documents, and some previous
attempts to overcome them. We are building a flexible toolkit specifically designed to
allow for different approaches to addressing these difficulties and for handling data in
different types of media. The toolkit is functional but still open to improvement; however,
Section 3 discusses the underlying design philosophy.

163

2 Problematic Issues

An obvious difference between information retrieval from written and spoken documents is
that the written ones actually are physic8d documents, while the boundaries of the spoken
ones, in contrast, have to be decided on inside larger audio files possibly containing quite
diverse information. We will start out by looking at this segmentation issue and also at
some other common problems in non-text-based retrieval, in particular with respect to
choice of indexing features and robustness.

2.1 Document Segmentation

Many research projects, such as the ones in the TREC SDR Track (Garofolo ef al,
1997), have left document segmentation aside and instead m2inually tagged and segmented
the documents. A straight-forward, automatic approach is to break down the audio
documents into equally long time slices (windows) and treat the windows as individual
documents (Schauble and Wechsler, 1995; Smeaton ef al., 1998).

However, the linguistically most correct solution would be to automatically achieve mean­
ingful segmentation of the audio documents through analysis of the prosodic information
inherent in the audio documents, as done by Falk (1997). Unfortunately, not much work
has been done on prosody in speech recognition. So far, the major success story was in the
German spoken dialogue machine translation system Verbmobil (Bub ef al., 1997), where
prosodic information was used in the semantic processing and transfer steps in order to
produce correct translations (Lieske ef al., 1997). The input to a spoken dialogue system
is structured in terms of turn-taking in the dialogue. Syntactic and semantic analyses can
be assigned to meciningful linguistic entities at the clausal or phrasal level, but first the
turn has to be segmented into a sequence of linguistically credible segments. The prosodic
indications of clausal boundaries are crucial to this process. The prosody module of the
Verbmobil system annotates the word lattices which have been output from the recogniser
with three different kinds of prosodic information; sentence modality, phrase boundaries,
and stress (Hess ef al., 1996).

Stolcke ef al. (1999) introduces a combined probabilistic and prosody-based approach for
recognising topic and sentence boundaries in speech. They employ a hidden Markov model
(HMM) to find the most likely states given the recognised words and prosody (duration
of pauses, etc., as well as pitch level, that is, FO patterns; see below). In a first step the
speech signal is “chopped” into small “sentence” segments which are assumed to belong
to one topic each. In a second step the sentences are combined into continuous stretches

164

belonging to one topic so that the sentence boundaries are classified according to whether
they represent a topic shift or not (Hakkani-Tiir et al., 1999).

A somewhat similar but purely probabilistic segmentation technique is used by
Delacourt et al. (1999) for recognising which persons are engaged in a conversation. They
try to segment the speech data at every point in which a speaker change occurs. This is
done in a two-step process where the first step applies a measure function reflecting how
similar two adjacent segments are (in this case with respect to melcepstral coefficients).
Dissimilarity indicates speaker change. In the second step a Bayesian likelihood criterion
is applied to each chcinging point candidate to verify the results of the first step.

The prosodic issues are also very important when analysing spoken data from a tonal-
type language like Swedish; the stress patterns, in particular, simply have to be taken into
account. Within an utterance, the frequency may take on four relative values depending
on the accent level of a phoneme. This may be defined either in absolute terms (due to,
for example, the sentence accent, or the stress level within a word), or in terms relative
to the frequency of the preceding phoneme.

[Hz]
v i l k a k ä n t i n e D t e i h a r r d ä mk ä rt a s t e kv e 1 a rn a

Figure 1: FO and FO-declination functions

As described in more detail in, for example. Gambäck et al. (1995), the fundamental
frequency contour (FO) is produced by superimposing the FO-variation on the F’O-
declination. The time points for the vocal chord excitations are then calculated from
the resulting frequency function. The relation between FO, the variation and the decli­
nation is defined as

F0(t) = FOdeclit) * FOvarit)

As a concrete example, take the values that would be produced for the sentence Vilka
kontinenter har de kortaste kvällarna?. Suppose that FOdedit) starts at 120 Hz and ends
at 80 Hz. F0{t) is 1.8 times the declination at the time point t = 2817 ms and 1.6 times
the declination at < = 1827 ms and t = 2544 ms. F0(f) returns to the declination curve
at t = 1953 ms, t = 2649 ms and t = 3013 ms. The function thus gets the form shown in
Figure 1.

165

2.2 Indexing Features

In text-based information retrieval methods, the most obvious and frequently used index­
ing features are the words. This approach is also the dominating one in spoken document
retrieval systems. However, in spite of rapidly improving speech recognition techniques,
automatically produced transcriptions contain a multitude of errors and operate with
limited dictionaries.

2.2.1 Word-based methods

For small domains, it is possible to select a priori fixed sets of keywords for recognition
and indexing. This is, however, not feasible if large and diverse domains are covered.
In such situations, a possible solution is to use a large-vocabulary word-based speech
recogniser to convert the audio data to text and then filter the transcriptions through a
language understanding system to reduce the recognition errors, as in the CMU Infor-
media project (Hauptmann, 1995). Still, when dealing with large and diverse domains
of spoken documents, there are just too many words for current speech recognition sys­
tems to handle efficiently. In addition, out-of-vocabulary (OOV) words tend to be proper
names or technical terms which generally have low frequencies in document collections.
Thus, it is difficult to train speech recognisers for them, even though these word types
are very common in user queries. This has lead to the investigation of subword unit
approaches.

2.2.2 Subword unit approaches

The drawback with the use of subword indexing features is that elaborated informa­
tion retrieval and linguistic techniques, such as stop word elimination and morphological
analysis, are not suitable. This is specially cumbersome when the spoken information
is in a language with more serious morphological properties than English. However,
Ng and Zue (1997) showed that with appropriate subword units, it is possible to achieve
performance comparable to that of word-based retrieval methods, if the underlying pho­
netic units are recognised correctly. Both syllable- and phoneme-based indexing features
have been tried.

Syllabic units as indexing features was proposed by Glavitsch and Schauble (1992).
These units are composed of non-overlapping, variable-length letter sequences, CVC-
features (where V and C stand for the maximum sequence of vowels and consonants,
respectively, within a specific word). The syllabic units can be generated with a rule-
based system (Glavitsch et al., 1994). A problem with this is that the CVC-features are
not based on acoustic data and do not take the characteristics of the recognition system
into consideration.

n-grams, that is, overlapping, fixed-length phonetic sequences are the most straight­
forward phoncmc-bascd subword units. With large enough length-units n, cross-word
features can be captured. As indicated by, for example, Ng and Zue (1997), trigrams tire
normally long enough to capture information sufficient for indexing, while not being so
long that they corrupt retrieval performance.

166

m-grams, non-overlapping, variable-length phonetic sequences with some maximum
length m, can be discovered automatically by applying iterative unsupervised learning
algorithms. Wechsler (1995) used an efficient algorithm to find variable length phone se­
quences for indexing. After frequency analysis, low frequency sequences were discarded,
while high frequency sequences were extended. In this way an indexing vocabulary cov­
ering most parts of the phonetic transcription was obtained.

bclass, broad phonetic class sequences, are derived via unsupervised hierarchical cluster­
ing of the original phones. Acoustically similar phones are grouped into the same class,
so that some of the typical speech recognition errors can be avoided. Ng and Zue (1997)
claimed that even after collapsing the number of phones from 41 down to 20 bclasses,
enough information is preserved to perform reasonable retrieved: Given perfect recogni­
tion, they got a precision of 0.82.

2.3 Robustness

The robustness issues facing spoken document retrieval systems are similar to when text
retrieval systems encounter optical character recognition errors in scanned text docu­
ments. Thus, even given an ideal speech recognition component, low quality audio data
will still effect the speech recognition accuracy and thus the retrieval performance. Ac­
cordingly, tolerance of the retrieval models to different disturbing factors such as noisy
speech, conversational speech, telephone bandwidth speech, and multiple speakers is im­
portant. Quite a few solutions have been proposed to cope with speech recognition errors
caused by low quality audio data; however, in the area of robust methods for spoken
document retrieval, there is still much left to be done.

In word-based systems, OOV-words can cause significantly weaker retrieval results.
THISL (Abberley et ai, 1998) applies query-time word-spotting based on posterior prob­
ability estimates derived from the recurrent network acoustic model, in order to detect
index terms not in the recogniser’s vocabulary. Jones et al. (1996) used a continuous-
speech large vocabulary recognition system in combination with the phone-lattice-based
word-spotting method of James (1995). They showed that the two methods are comple­
mentary and work best in combination.

In phoneme-based solutions, one possibility is to expand the query with errorful variants
of the original terms, in order to improve the chance of matching wrongly recognised
terms. A similar method is to expand the spoken document representation by including
high scoring recognition alternatives to increase the retrieval precision. Ng (1998) tried
to combine the various types of information captured by the different subword unit repre­
sentations. He obtained a marginal improvement in retrieval performance by using n-best
recognition hypotheses and linear combination of the individual retrieval scores obtained
with different subword unit methods.

Crestani and Sanderson (1997) aimed at taking advantage of some particular features
of the automatic transcriptions. They used the Abbot speaker independent continuous
speech recognition system which associates a measure of uncertainty to each word it recog­
nises (Robinson et al., 1996). These measures were used in a probabilistic term frequency
weighting scheme for improving retrieval efficiency. The results were encouraging, even
though the performance was very bawl on some particular queries. Later, they attempted

167

to merge the transcriptions produced by multiple recognisers and slight improvements in
retrieval performance were euJiieved (Sanderson and Crestani, 1998).

2.4 Retrieval result presentation

Presenting multimedia! retrieval results to the users introduces some new problems into
the IR field. Determining whether a retrieved text document contains an answer to a
query is quickly done by simple browsing. However, browsing information objects such
as TV or radio news broadcasts can be rather cumbersome due to the sequential nature
of the video/audio files.

Having decided on what piece of information to retrieve, we are still far from having
decided on how to present the information. Most interfaces to text-based retrieval systems
simply show the user a list of documents, sorted according to some kind of relevance
measure, which often is incomprehensible to the user. A notable exception is the SICS-
Telia prototype Easify where search results eire presented as matrixes, rather than lists
(Bretan et al., 1998). Easify applies a machine learning method to create collection
specific stylistics for genre prediction together with rapid topical clustering in order to
represent documents as members of topically and stylistically homogeneous clusters.

Present multimedial retrieval systems have no, or fairly simple, graphical user interfaces.
VoiceGraph is a graphiccd interface developed for audio and multimedia retriev2il (Slaugh­
ter et al., 1998). The interface was designed to facilitate rapid browsing of spoken doc­
uments. Another, web-based, graphical interfcice was developed for the Taiscéalai radio
broadcast retrieval system (Smeaton et al., 1998). In Taiscéalai, the retrieved documents
are presented as time series of window scores. The users are allowed to select parts of a
broadcast. The selections are delivered from the archive and transformed to a RealAudio
file which is played to the user.

3 System Design

Most multimedieil retrieval systems are modifications of existing text-based IR systems,
disregarding the particular problems caused by the new media types. However, in order to
manage the problems presented in Section 2 we need to test new solutions and experiment
with several different algorithms. So instead of using existing text-based platforms we
decided to design and develop a new flexible IR system. The requirements for a retrieval
toolkit can be formulated as:

• A modular design is desirable: it should be easy and fast to make small changes to
specific parts of the toolkit without reimplementing the whole system.

• The system must be extensible and open, since we want to be able to experiment
with new algorithms and new media types. Thus, adding new modules has to be
fairly straight-forward. •

• The toolkit has to run dynamically and flexibly, allowing for quick adaptations to
new requirements at any time by connecting/disconnecting modules.

168

Figure 2: The design of SIREN

Another desirable quality is transparency: we might want to examine the data flow
under certain conditions.

Due to the distributed nature of digital libraries, interoperability within a library
architecture is necessary. To achieve a high level of access and sharing, we need a
general framework for handling information across various domains such as different
communities and different types of information objects.

Portability is not necessarily a major requirement, but in itself a desirable quality
of software systems.

We chose the object-oriented Java environment in order to address the portability is­
sue.^ When implementing the search engine, we used the built-in Thread class features,
allowing us the option of adapting the system to the use of parallel search threads for
searching multiple index files. This is essential when several media types are searched
simultaneously.

The two major components of our IR toolkit are the indexing tool and the search engine
as shown in Figure 2. (A third component, 2m evaluation tool, is planned.) The IR
solutions and algorithms are based on well-founded results: We use a common inverted-
file structure for storing indexing and posting information. The index-term weighting
scheme is the tf*idf formula. The search engine implements the vector-space model and
the cosine metric matching function. Thus, the novelty of the approach lies not in the

'Certainly, the choice of programming language is crucial for system performance, and Java is not
well-known for its speed qualities. However, it is still under development, promising better speed prop­
erties. Also, modular system design coupled with the Java environment makes reimplementation of vital
components in more time-effective languages tractable.

169

algorithms used, but in the way these algorithms are implemented in the system, and in
the system design which allows for fast reimplementation and integration of new modules.

3.1 The modules

The main tools are built up of several small, independent modules, each of them taking
care of one well-defined atomic task. The main advantage of this modular design is the
possibility of reusing the modules in both the indexing and the query-formation process.

0 ^
C L A SS 1 — ext ends

Figure 3: The SIREN class structure

The modules are implemented as independent Java classes as shown in Figure 3. Some
examples of the tasks performed by the indexing tool: parse a document into a word-based
token stream; parse a document into a trigram-based token stream; remove stop-words
from the streeim; perform morphological analysis; sort the stream; index the token stream.

As indicated in Figure 2, the modules are connected together in a pipelined architecture,
using the Java built-ins PipedReader and PipedWriter for input and output, respectively.
In this way, pipe syncronisation is taken care off automatically. The connections between
the modules are dynamic, so that modules can be invoked “on the fly”. So could, for
example, the indexing tool be called with the following command sequence

java Siren clean token so rt index words.txt

which would lead to the file words.txt being passed through the cleaning, tokenisation,
sorting, and indexing modules. Modules can even behave in a mutually interchangeable
way, if they perform similar tasks. Thus, it is possible to change the indexing feature

from words to trigrams by just changing the token command to trigram when invoking
the tool as above.

A specific parser was implemented for reading the command lines. This tool scans the
input stream and activates the corresponding modules. The order in which the commands
are written on the line is critical. The system runs the modules in the same order as the
command line indicates. Running modules in a faulty order does not result in system
failure, but probably makes no sense in the overall indexing or retrieval process. In the
worst case, the index file could be updated with wrong index terms. The parser accepts
two different types of commands. The simple, one-word command calls one specific
module which is operating on the data stream. The second type of command needs an
additional argument which is assumed to be a file name. That file may be used for either
input or output, depending on the specific module’s design and purpose.

An advantage of the piped architecture is that the need of using and saving intermediate
files is eliminated. Implementing and integrating new modules is fairly straight-forward.
A new module is implemented as a new Java class and can take advantage of the built-
in token language. To integrate a new component, only new method calls have to be
declared, as long as the module supports PipedReader cind PipedWriter.

The main requirement on the modules is to extend the TokenTool class described in the
next section. The modules must also implement a run method. In addition, each module
needs to have a corresponding calling method. These methods have to be declared just
once. The system keeps track of the available methods through the Java built-in Reflect
class.

The system is open, thus, the pipes are open at both ends cind adding new modules with
specific preprocessing tasks, such as prosodic analysis is possible, as is also connecting
the pipe directly to a speech recogniser. Appending new modules for relevance feedbeick
or retrieval evaluation is also feasible.

170

3.2 The token language

The modules are communicating through a common token stream, a solution slightly
inspired by University of Glasgow’s SIRE system (Sanderson and Crestani, 1998). The
token strecim consists of simple ASCII text. The modules are operating on the stream by
modifying the tokens, by adding new tokens, or by removing some of them. Each token
holds one term and a number of additional attributes associated to it. The sorting module
assumes that the first component in every token is the indexing term. The modules are
not sensible to the order of the other attributes. A small example of a token stream is
given in Table 1.

The first column contains the indexing terms. In this example, a list of sorted trigrams.
The second attribute is an internal tag and carries information about the type of the
term. Here the tg tag indicates that the terms are in trigram-form. The typing is not
a strong typing. Any character combination is allowed except for tab and newline. The
number following indicates the term’s position in the original file (byte offset). The last
component is the term’s tf score in the document. Adding new attributes can be easily
done by just appending the tab separator and the desired piece of information. In the
above example, we might include some information about the index-terms’ weight scores.

171

Table 1: An example token stream

term tag offset t f

tha tg 1034 2
the tg 1010 19
thi tg 950 1
tic tg 1066 3

tig tg 927 1
tin tg 323 2
tio tg 1006 6
tis tg 274 1
tit tg 136 1
tl* tg 572 2
tly tg 369 2
tme tg 82 1
toe tg 293 1

The tokens are processed as they are by most of the modules. Converting the streeim to an
internal representation is needed in just a few cases, for example, in the sorting module.
This is a nice quality since it enhances execution performance. By using pipes as the
linking method, it is possible to inspect the data flow between two different modules by
calling a specially designed RevealThread module which saves or prints a copy of the
data flow.

Due to the ASCII nature of the token stream, the resulting data can be manipulated as
plain text. However, the underlying data representation is hidden from the modules in
a object-oriented manner. Specially built TokenTool class methods provide a better ab­
straction level in manipulating the attributes connected to the tokens. Thus, the modules
are separated from the data representation and rather use genercd IR concepts, such as
index-term, weight, frequencies, etc. This solution allows a more general implementation
of the IR modules 2ind operations, so that data manipulation is independent of the ad­
dressed media type. In addition, the system implementation also allows for an eventual
redesign and reimplementation of the data representation without major impacts on the
system design and on the system components.

4 Conclusions / Future Work

We have described SIREN, a flexible, modular information retrieval system designed to
allow for different approaches to addressing the particular problems which are encountered
when attempting to access non-text documents. The toolkit is already functional and
useful for text and spoken document retrieval. New modules with specific tasks will soon
be added, such as stylistic analysis and name recognition.

172

References

Abberley, D., Renals, S., and Cook, G. 1998. Retrieval of Broadcast News Documents
with the THISL System. In Proc. International Conference on Acoustics, Speech and
Signal Processing, Seattle, Washington. IEEE.

Bretem, I., Dewe, J., Hallberg, A., Wolkert, N., and Karlgren, J. 1998. Web-Specific Genre
Visualization. In Proc. 3rd World Conference on the WWW and Internet, Orlando,
Florida. AACE.

Bub, T., Wahlster, W., and Waibel, A. 1997. Verbmobil: The Combination of Deep
zmd Shallow Processing for Spontaneous Speech Translation. In Proc. International
Conference on Acoustics, Speech and Signal Processing, pp. 71-74, Miinchen, Germany.
IEEE.

Crestani, F. and Sanderson, M. 1997. Retrieval of Spoken Documents: First Experiences.
Technical report. Dept, of Computing Science, University of Glasgow, Scotland.

Delacourt, R, Kryze, D., and Wellekens, C. J. 1999. Speaker-based Segmentation for
Audio Data Indexing. In Robinson, T. and Renals, S., eds.. Proceedings of the Workshop
on Accessing Information in Spoken Audio, pp. 78-83, Cambridge, England. ESCA.

Falk, J. 1997. Pauses in Synthesized Speech: Automatic Prediction of Silent Intervals in
Swedish. Master of Art Thesis, Dept, of Linguistics, Göteborg University, Sweden.

Gambäck, B., Eineborg, M., Eriksson, M., Ekholm, B., Lyberg, B., and Svensson, T.
1995. A Language Interface to a Polyphone-Based Speech Synthesizer. In Proc. 4^h
European Conference on Speech Communication and Technology, volume 2, pp. 1219-
1222, Madrid, Spain. ESCA.

Garofolo, J. S., Voorhees, E. M., Stanford, V., and Jones, K. S. 1997. TREC- 6 1997
Spoken Document Retrieval Track Overview and Results. In Voorhees, E. M. and
Harman, D. K., eds.. Proceedings of the 6th Text Retrieval Conference, pp. 83-91,
Gaithersburg, Maryl2md. National Institute of Standards 2md Technology.

Glavitsch, U. and Schäuble, P. 1992. A System for Retrieving Speech Documents.
In Belkin, N., Ingwersen, P., and Mark Pejtersen, A.-L., eds., Proc. 15th Interna­
tional Conference on Research and Development in Information Retrieval, pp. 168-176,
København, Denmark. ACM SIGIR.

Glavitsch, U., Schäuble, R, and Wechsler, M. 1994. Metcidata for Integrating Speech
Documents in a Text Retrieval System. SIGMOD Record, 23(4):57-63.

Hakkani-Tiir, D., Tiir, G., Stolcke, A., and Shriberg, E. 1999. Combining Words and
Prosody for Information Extraction from Speech. In Pröszéky, G., Németh, G., and
Méndli, J., eds., Proc. 6th European Conference on Speech Communication and Tech­
nology, volume 5, pp. 1991-1994, Budapest, Hungary. ESCA.

Hauptmann, A. G. 1995. Speech Recognition in the Informedia^*^ Digital Library: Uses
and Limitations. In Proc. 7th International Conference on Tools with AI, Washington,
DC. IEEE.

173

Hess, W., Batliner, A., Kiessling, A., Kompe, R., Noth, E., Petzold, A., Reyelt, M., and
Strom, V. 1996. Prosodic Modules for Speech Recognition and Understanding in Verb-
mobil. In Sagisaka, Y. et ai, eds.. Computing Prosody: Approaches to a Computational
Analysis and Modelling of Prosody of Spontaneous Speech, pp. 363-384. Springer, New
York, New York.

James, D. A. 1995. The Application of Classical Information Retrieval Techniques to
Spoken Documents. Doctor of Philosophy Thesis, Downing College, Engineering Dept.,
University of Cambridge, England.

Jones, G. J. F., Foote, J. T., Sparck Jones, K., and Young, S. J. 1996. Retrieving Spoken
Documents by Combining Multiple Index Sources. In Frei, H. et al., eds., Proc. 19th
International Conference on Research and Development in Information Retrieval, pp.
30-38, Zurich, Switzerland. ACM SIGIR.

Kokkinakis, G., Fakotakis, N., and Dermatas, E., eds.. 1997. Proc. 5th European Con­
ference on Speech Communication and Technology, Rhodes, Greece. ESCA.

Lieske, C., Bos, J., Gamback, B., Emele, M., and Rupp, C. 1997. Giving Prosody a
Meaning. In Kokkinakis et ai, eds. 1997, pp. 1431-1434.

Ng, K. 1998. Towards Robust Methods for Spoken Document Retrieval. In Proc. 5th
International Conference on Spoken Language Processing, Sydney, Australia.

Ng, K. and Zue, V. 1997. Subword Unit Representations for Spoken Document Retrieval.
In Kokkinakis et ai, eds. 1997, pp. 1607-1610.

Nikolaou, C. and Stephanidis, C., eds. 1998. Proc. 2nd European Conference on Research
and Advanced Technology for Digital Libraries, Heraklion, Greece.

Robinson, T., Hochberg, M., and Renals, S. 1996. The Use of Recurrent Networks in
Continuous Speech Recognition. In Lee, C.-H. and Soong, F. K., eds.. Advanced Topics
in Automatic Speech and Speaker Recognition, chapter 7. Kluwer, Dordrecht, Holland.

Sanderson, M. and Crestani, F. 1998. Mixing and Merging for Spoken Document Re­
trieval. In Nikolaou and Stephanidis, eds. 1998, pp. 397-407.

Schauble, P. and Wechsler, M. 1995. First Experiences with a System for Content
Based Retrieval of Information from Speech Recordings. In Proc. IJCAI Workshop on
Intelligent Multimedia Information Retrieval

Slaughter, L., Oard, D., Warnick, V., Harding, J., and Wilkerson, G. 1998. A Graphical
Interface for Speech-Based Retrieval. In Proc. 3rd Digital Library Conference, Philadel­
phia, Pennsylvania. ACM.

Smeaton, A., Morony, M., Quinn, G., and Scaife, R. 1998. Taiscéalai; Information
Retrieval from an Archive of Spoken Radio News. In Nikolaou tind Stephanidis, eds.
1998, pp. 429-442.

Stolcke, A., Shriberg, E., Hakkani-Tiir, D., Tiir, G., Rivlin, Z., and Sonmez, K. 1999.
Combining Words tmd Speech Prosody for Automatic Topic Segmentation. In Proc.
Broadcast News Workshop, Herndon, Virginia. DARPA.

Wechsler, M. 1995. Eine neue Indexierungsmethode fiir Information Retrieval auf Au-
diodokumente. In Proc. Hypertext-Information Retrieval-Multimedia, pp. 117-128.

Statistics and Phonotactical Rules in Finding OCR Errors

Stina Nylander

Uppsala University & SICS

stina@ stp .l in g .u u .s e

Abstract

This report describes two experiments in finding errors in optically scanned Swedish without lexicon.
First, statistics were used to find unexpectedly frequent trigrams and correction rules were created.
Second, Bengt Sigurds model of Swedish phonotax was used to detect words with phonotactically illegal
beginning or end.

The phonotax did not perform as well as the statictic rules did on their training material, but outscored
them by far on new text.

A correction tool was created with the phonotax as means of error detection. The tool displays every
occurrence of an error string at the same time and gives the user the possibility to give different
corrections to each occurrence.

This work shows that it is possible to find errors in optically scanned text without relying on a lexicon,
and that word structure can provide useful information to the correction process.

1. Introduction

Optical character recognition (OCR) is a technique for moving text resources from
paper medium to electronic form, something that is often needed in our computerised
society. Companies and authorities want to make old material machine readable or
searchable. Unfortunately, it does not get us all the way. With good paper originals,
OCR can achieve 99% of the characters correctly recognised but the result will still
contain in average one error word per 20 words which means 5% incorrect words or
about one error per sentence (Kukich, 1992). Depending on the application of the
optically scanned text, large post processing efforts can be necessary. Since OCR is
often used to move large amounts of text to electronic form, the proofreading is a task
both demanding and dull. This makes the need for good tools of spell checking and
correction large and urgent.

Most spell checkers and OCR post processing systems are lexicon based. A lexicon of
reasonable size is used to match against the text, and any word token not in the text is
presented as a possible error. Probability scores or similarity measures are then used to
generate correction suggestions.

mailto:stina@stp.ling.uu.se

I will concentrate on the error finding process and not try to generate correction
suggestions. I want to find ways of proofreading text without relying on a lexicon.
Instead I will try to define rules that identify character sequences that are unlikely to be
correct word tokens. I made two experiments: using statistical methods to find
unexpectedly frequent character sequences, and using phono- or graphotactical rules to
find unlikely character combinations. Obviously these results can be generalised for all
kinds of proofreading tasks: e.g. handwriting recognition or dictation tasks.

The work described in this report has been done within a Master thesis at the Language
Engineering Programme at Uppsala University. The work has been carried out at SICS
and was funded by the Digital Library project.

175

1.1 OCR errors

Many recognition errors are caused by graphical similarity : a r g u i n e n t (argument),
t e a t u r e (feature), m e a n (mean), s e m a n t i c s (semantics), s y s t e m e t
(systemet), t e x t f ö r s t å e l s e (textförståelse), d i s a m b iq u e r a s (disambigueras).

Proofreading by hand is difficult. The graphical errors are by definition difficult to
detect by ocular scanning through the text: the visual difference between bodv and body
is very small. Other problems are print quality, font and the age of the original that
sometimes produce eirors that make it impossible to guess the original word like
ap p T i j d o - t i L - s (approaches.) or Umt (that).

Another group of errors that occurs in optical scanning of text is split errors; spaces are
inserted in a word and produces a number of strings, many of them incorrect: p ro n u n c
i a t io n (pronunciation), i n t e (inte), ö r e I i g g e r (/ore/igger).However,
many or even most of these errors still produce string tokens that are unlikely or
impossible words in the language under consideration.

1.2 Approaches to Error Correction

Most approaches to correction of scanning errors are lexicon based. A lexicon of
reasonable size is used to match against the text, and any word token not in the lexicon
is defined as incorrect. This leads to many false alarms, since a lexicon never can cover
everything. Many correct words and proper names will be presented as errors by the
system. To find real word errors — i.e. errors that result in another correct word —
sequences of parts of speech are evaluated for likelihood of occurrence, and unlikely
sequences are marked as possible errors.(Meknavin et al., 1998; Tong & Evans 1996;
Huismann, 1999).

The research made shows that OCR post processing problems are highly language
specific, Meknavin et al. show that one of the biggest problems working with Thai is to
find the word boundaries (1998), while those working with English put the largest effort
in spotting the errors (Tong & Evans, 1996; Golding & Shabes, 1996), or providing
good correction suggestions (Takahashi et al., 1990). Lee et al. argues that the Korean
writing system is syllable based and that recognition and error correction therefore
should be syllable based rather than character based (1997), and Hogan points out that if
you work with minority languages, in his case Haitian Creole, it is not likely that you
even use OCR software developed for your language, which makes post processing
even more necessary.

176

We want to find ways of proofreading text without relying on a lexicon by finding
character sequences that are unlikely to be correct word tokens. We tried two
experiments: using statistical methods to find unexpectedly frequent character
sequences, and using phono- or graphotactical rules to find unlikely character
combinations.

2. Statistics

The hypothesis is that differences in observed frequency between correct text and
optically scanned text for a character n-gram would indicate that the n-gram in question
was incorrectly recognized by the scanning process.

The NoDaLiDa conference proceedings were selected as experimental material. The
proceedings contain both correct text as provided by the author in machine readable
form and optically scanned text. Two optically scanned papers were handcorrected to
obtain testing material: How Close Can We Get to the Ideal o f Simple Transfer in Multi­
lingual Machine Translation (MT)? (Andersen, 1989) of about 2500 words, henceforth
NODA89-09, and the first part of A self-extending lexicon: description o f a word
learning program (Ejerhed & Bromley, 1985) of about 1800 words, henceforth
NODA85-06. The statistical experiment was made on English text material, since we do
not have enough Swedish text provided in machine readable form to establish
frequencies for the correct text.

Since it is necessary to be able to count the number of errors automatically in studies
like this, proofreading and error counting by hand is simply too costly in time, a simple
error measure was defined for the experiment: the number of errors is the difference in
number of word tokens between the optically scanned text and the corrected text plus
the number of strings that only appeared in the optically scanned text. The real word
errors would not be included in the resulting number of errors and split errors would be
counted as the number of parts the original words was split into.

177

The n-gram frequencies of the corrected text and the optically scanned text were
compared and n-grams that showed large frequency differences between text versions
were displayed to the editor, together with a concordance of all the occurrences of the n-
gram. This allowed the editor to formulate a correction rule for the n-gram under
consideration.

Two sets of rules were formulated for each article, one with rules that replaced a
character trigram with another string of optional length, the other with rules that
replaced a string of optional length with another. The rules that rewrite trigrams were
generated with the support of a graphical tool that generated a list of suspect trigrams,
for each trigram showed a concordance of all the occurrences of the trigram, and, with a
correction given by the user, could generate a correction rule. The rules that rewrites
longer strings were generate by hand.

The rules were then used to correct both the article that had been used to generate the
rules and the other, to see if the rules were useful in another context than the one they
had been generated in.

The number of errors were counted by means of a perl program before and after
correction to estimate the performance of the rules. The number of errors generated in
the correction process were counted separately to keep track of over correction. As
generated errors were considered strings that appeared only in the version corrected
with the rules, neither in the correct version nor in the optically scanned version. Over
corrections that result in correct words (or already present errors) will thus not be
counted.

The tests described above show that while rules based on observed frequencies of
character sequences do provide a noticeable improvement on the training material and
presumably will be useful for proofreading a given text, they are too specific for use on
other material. When it comes to the trigram rules the problem could be that the trigram
as context is too small and that many errors, and even more corrections, affect more
than three characters, but even if the rules that treated longer strings worked a little
better on unknown errors, they were much too text specific too. All the rules deal more
or less with a given error in a given word, which is even more true for the rules that
rewrote strings of optional length: the longer string that is rewritten, the less generic is
the rule. This approach needs a very large text material to generate the rules from and a
huge number of rules to be of any significant use in correcting new texts.

178

3. Graphotactical Rules

Instead of trying to find potential error strings by computing frequency data and
comparing correct text with optically scanned text, we used Bengt Sigurd’s model of
Swedish phonotactics (1965). The model was adapted to graphemes, i.e. the phoneme
/// was replaced by all the different Swedish spellings (sk, sj, stj, skj etc.) and the same
for the phonemes /j/ and 7 9 /. The SUC corpus (Källgren, 1990) was used to check which
vowels that followed the different spellings of these phonemes, stj being followed only
by fl, ch by a,o,e,i, etc. This added 63 initial consonant combinations to Sigurds 55. The
legal initial vowel clusters were listed empirically by extracting all words from SUC
that started or ended in a sequence of vowels and added 2 2 initial sequences to the
model. Altogether this gives around 530 different initial consonant sequences + vowel
or initial vowel sequences.

Sigurd has 102 primary final consonant combinations. To this has been added 11
combinations to cover the Swedish final doubling of consonants after long vowel, -x
and -xt as final consonant clusters since x is realized as two phonemes, Tks/, and is thus
as letter not a part of Sigurds description (Benny Brodda even says that the letter x has
no place in a phonological description of Swedish (Brodda, 1979)). The legal final
vowel clusters were listed empirically by extracting all words from SUC that ended in a
sequence of vowels. With these adaptions made, the model could be used to find strings
beginning or ending with illegal consonant clusters.

In addition rules were added to find strings with consonants only, strings with mixed
alphanumeric characters, strings with mixed case and strings with punctuation
characters in non-final positions. With these adaptations made, the model could be used
to find strings beginning or ending with illegal consonant clusters.

Breaches of the graphotactical rules were extracted from the text and marked as
potential errors. The user was displayed the list of possible errors, asked to suggest a
correction, and to mark which occurrences should be corrected.

A corpus of optically scanned Swedish text containing 71 000 words was scanned for
graphotactical clashes. We found 2495 words with possible errors (822 words with
illegal prefixes, 737 with illegal suffixes, 336 words containing punctuation marks or
other special characters and 600 words that mixed letters and digits or upper and lower
case characters). Of these, many are abbreviations, foreign words, or correct Swedish
words with unusual spelling.

179

State-of-the-art OCR systems give a result of up to 99% correct character recognition,
which gives on average one error per 20 words (Kukich, 1992). One error per 20 words
would for our corpus give 3550 errors, and while we found 2495 possible errors, about
370 of them were abbreviations (which could easily be filtered out), about 75 were
correct non-compound words, and about 1 0 0 were acceptable alphanumeric
combinations. This leaves us about 1900 likely errors — a precision of around 75% at a
recall of more than 50% if the error estimate holds! And the graphotactic rules can be
improved — at the moment they only deal with initial and final clusters.

The rules were also tested on a single article, Inte bara idiom containing 2200 words
(Allén, 1983), corrected by hand. The article contained 89 errors, 4% of the total
number of words, of which 24 were real word errors and 1 was a split error, both error
types that the rules can not handle. The rules presented 42 possible errors of which 19
were errors, 1 was a correct Swedish word, 14 were correct foreign words and 8 were
abbreviations. This means that, when the abbreviations have been filtered out, the rules
managed to find 29% of the non word errors and only presented one correct Swedish as
an error.

4. Implementation

The implementation of the graphotactical experiment described above is a correction
tool for Swedish (html) text written in Perl/Tk. The program detects non word errors
with the phonotactical rules described above and enables the user to proofread a text in
a non linear way. All occurrences for each possible error are displayed to the user at the
same time, with a small context. This gives the user the possibility to decide if all the
occurrences really are to be corrected, or if one occurrence is correct (maybe an unusual
abbreviation or an acronym). Each occurrence can then be given a different correction if

B E D
jfördelaMicj

necessary.

180

4.1 Possible Improvements

At the moment there is no possibility of undoing a made correction, since the program
does not keep track of where the correction is made in the text. The program can not
find the position in the text again, and thus can not undo the correction. Another
consequence of this is that the user can do only one correction per occurrence.

It is not possible to go back to the previous error word and to see the concordance over
that word again. The program does not keep the error words and can thus not go back
and reconstruct the concordance.

When correcting an error the user should be able to change the scope of the error. If the
program presents översättn as a possible error and the context looks like översättn ing,
the user should be able to mark översättn ing as the error string and replace it with the
correct string översättning without space. At the moment the user can not change the
scope of the error string, thus split errors cannot be corrected even when observed by
the user.

5. Discussion

The above experiments show that it is possible to find errors in text without relying on a
lexicon, and without the large numbers of false alarms we have learnt to expect from
such systems. And - which should not be surprising to those of us who are linguists! -
it is also clear that knowledge of the structure of words improves the results. The
phonotactical rules might not reach the same recall as a lexical error finding approach,
strings that do not violate the Swedish phonotactics might still be non words, for
example sernantik (semantik) and systernet (systemet). The precision of this method
although, will spare the user many of the false alarms and still clean up the text from a
substantial part of the recognition errors.

References

Allén, S. 1983. Inte bara idiom. In Proceedings of the 4th Nordic Conference on
Computational Linguistics. Uppsala.

Andersen, P. 1989. How Close Can We Get to the Ideal of Simple Transfer in Multi­
lingual Machine Translation (MT)? In Proceedings of the 7th Nordic Conference on
Computational Linguistics. Reykjavik.

181

Ejerhed, E. & Bromley, H. 1985. A self-extending lexicon: description of a word
learning program. In Proceedings of he 5th Nordic Conference on Computational
Linguistics. Helsinki.

Hogan, C. 1999. OCR for Minority Languages. In Proceedings of the 1999 Symposium
on Document Image Understanding Technology. Annapolis, Maryland.

Huismann, G. 1999. OCR Post Processing. Groningen University. Groningen.

Kukich, K. 1992. Techniques for Automatically Correcting Words in Text. In ACM
Computing Surveys, Vol. 24, No. 4, 377-439.

Källgren, G. 1990: "The first million is hardest to get": Building a Large Tagged
Corpus as Automatically as Possible. In Proceedings of COLING 90. Helsinki.

Lee, G., Lee, J-H., Yoo, J. 1997. Multi-level post processing for Korean character
recognition using morphological analysis and linguistic evaluation. Pattern Recognition
30(8): 1347 - 1360.

Meknavin, S., Kijsirikul, B., Chotimonkol, A. Nuttee, C. 1998. Combining Trigram and
Winnow in Thai OCR Error Correction. In Proceedings of COLING 1998. Montreal.

Sigurd, B. 1965. Phonotactic Structures in Swedish. Lund University. Lund.

Takahashi, H., Itoh, N., Amano, T. & Yamashita, A. 1990. A Spelling Correction
Method and Its Application to an OCR System. Pattern Recognition vol 23 3/4.

Tong, X. & Evans, D. 1996. A Statistical Approach to Automatic OCR Error Correction
in Context.

An Information Retrieval System

with Cooperative Behavior

Paulo Quaresma and Irene Pimenta Rodrigues
pq@di.uevora.pt ipr@di.uevora.pt

Departamento de Informatica
Universidade de Evora
7000 Évora
Portugal

CENTRIA/AI Center
Universidade Nova de Lisboa
2825 Monte da Caparica
Portugal

Abstract
In this paper we will present a system that is able to perform cooperative information retrieval actions

over a text knowledge base. The knowledge base is composed by four levels: Interaction, Domain,
Information Retrieval and Text. The interaction level is responsible for the dialogue management,
including the inference of attitudes. The domain level is composed by rules encoding knowledge about
the text domain. The information retrieval level includes knowledge about IR actions over sets of
documents. The text level has knowledge about the words in each text.

Cooperation is achieved through two main strategies: 1) clustering the answer sets of documents
accordingly with the domain and IR-level knowledge; 2) keeping the context of the interaction and
inferring the user intentions.

1. Introduction

In this paper we present a cooperative information retrieval system in the law
domain. The information retrieval system is composed by a text knowledge base built
from the Portuguese Attorney General documents.

As an example, the following dialogue demonstrates the major features of our system
(the example will be explained in more detail in the last section).

User - Ul: Documents about pensions for relevant services?
System - U2; Pensions that were given or refused?

User - U3: Both.
System - U4; Pensions for militaries or civilians?

User - U5: Civilians
System - U6 : There are 129 documents, listed in the right frame.

User - U7: where there was a drowning?
System - U8 : Since there are 45 documents of the 129 above that match the concept.

I've listed them in the usual frame.
User - U9: No, I mean to look for all documents that match the concept.

System - UlO: There are 347 documents listed in the right frame.
User - Ul 1; Documents about drugs?

mailto:q@di.uevora.pt
mailto:ipr@di.uevora.pt

183

System - U12:1 assume that you want a new query about drugs since there are no
documents with the concept drugs and pensions for relevant services for
civilians. Do you want to see documents about the use of drugs while
driving?

User: - U13 yes.

In order to handle dialogues similar with this one, our system needs to be able to
keep the context of the interaction and to cooperatively supply suggestions for further
refinement of the user queries. The refinement process is based on the domain
knowledge and the ability to compute clusters of documents associating a keyword
(from a juridical thesaurus with 6000 expressions) to each cluster.

In order to perform a cooperative interaction with the user, the system should be able:
• To infer what are the user intentions with the queries. For instance, when a user

asks for documents with a particular keyword, he may be interested in documents
that do not have that exact keyword and he may not be interested in all
documents with that keyword.

• To supply pertinent answers or questions as a reply to a user question. The
system must supply some information on the set of documents selected by the
user query in order to help him in the refinement of his query.

As a consequence our system needs:
• To record the user interactions with the system. User interactions will provide the

context of sentences (questions and answers), allowing the system to solve some
discourse phenomena such as anaphoras and ellipses.

• To obtain new partitions (clusters) of the set of documents that the user selected
with his query(ies). The clustering process should be based on the text knowledge
representation.

In the next section we will describe the text knowledge base. Then, in section 3 and
section 4 the interaction structure and the inference of attitudes will be described. In
section 5, the clustering process will also be described. In section 6 , an example of a
cooperative session will be presented. Finally, in section 7, conclusions and future
work will be presented.

2. Knowledge Base

The knowledge base is composed by four levels: Interaction, Domain, Information
Retrieval and Text.

1. The interaction level is responsible for the dialogue management. This includes
the ability of the system to infer user intentions and attitudes and the ability to
represent the dialogue sentences in a dialogue structure in order to obtain the
semantic representation of the dialogue;

2. The domain level includes knowledge about the text domain and it has rules
encoding that knowledge. For instance, in the legal domain it is necessary to
represent under which conditions a pension for relevant services may be given to
someone; those pensions are usually attributed to militaries or to civilians such
as firemen, doctors, and nurses;

184

3. The Information Retrieval Level includes knowledge about what we should
expect to find in texts about a subject; for instance that in texts about pensions
for relevant services, the pension may be attributed or refused;

4. The Text Level has knowledge about the words and sequence of words that are
in each text of the knowledge base. This level is based on SINO, a text search
engine with inverted files from the AustLII Institute [Greenleaf et al. 1997] that
was extended to the Portuguese language. The extended SINO is able to access a
900,000 Portuguese lexicon and it is able to handle morphological information
(verbal forms, plurals, etc.)

These four levels of knowledge are integrated via a dynamic logic-programming
module, which is responsible for the management of the interaction with the users.

Dynamic logic programming [Alferes et al. 1998] defines how a logic program can be
updated by other logic programs. In our approach, each event is represented by a logic
program (composed only by facts), which is used to update the previous program and to
obtain a new one. In fact, events are represented by an update situation and there is no
need to explicitly represent time points. Inertia rules are also guaranteed by the dynamic
logic programming semantics.

3. Interaction structure

The system builds the interaction structure to record both user and system questions and
answers. This structure is used to compute the meaning of an user query and to allow
the user to return to a previous point of the interaction and to build a new branch from
there.

The Interaction Structure (IS) is made of segments that group sets of interactions. At
present we are able to deal with 3 different kinds of segments:

• Basic — has 2 arguments: Speaker;Action Representation
• New — has 2 arguments: Interaction Structure; Interaction Structure. The new IS

inherits its attributes from the second argument. Ex: New([],basic(User,Ql))
• Specify — has 2 arguments: Interaction Structure; Interaction Structure. The new IS

inherits its attributes from both interaction structures. Ex: Specify(Basic(User,Ql),
Basic(System, Q2))

3.1. Rules to build the interaction structure

Given an action Al from an agent A, the update of the new action is:

action(basic(A, A 1)).

This fact gives rise to the update of the new Interaction Structure according to the above
rules:

185

is(specify(Ois,Is)) <- is(Ois)/past, action(Is)/now,
bel(system,specify(Ois,Is)/now.

is(new(Ois,Is)) <- is(Ois)/past, action(Is)/now,
bel(system,new(Ois,Is))/now.

These two rules encode that the new interaction structure is a structure that includes the
semantics of the new action and that the system is able to infer that at this point of the
interaction is believable.
The conditions for this system belief can be defined in many different ways, but our
system normally beliefs that users intend to specify previous actions.

bel(system, specify(Ois.Is)) <- not neg bel(system, specify(Ois,Is)).
bel(system, new(Ois,Is)) <- bel(system, incompatible(Ois,Is)).

neg bel(system, specify(Ois,Is)) <- bel(system, new(Ois,Is)).
neg bel(system, new(Ois,Is)) <- bel(system, specify(Ois.Is)).

Where "not" means default negation and "neg" means explicit negation.

^ ^ ^ p e n s S o por servipos relevantes
■-gjpensfiQ por servigos relevantes c m I

pensao por servigas rele-^antes AND c m I AND atogado

As it is shown, the system displays a graphic representation of the interaction in order to
help the user to keep in mind the interaction context. Moreover, it allows the user to
select a node in the tree for defining the context of his next query. This feature has
shown to be very useful since our users use it very frequently.

4. Inference of user intentions

In order to be collaborative our system needs to model user attitudes (intentions and
beliefs). This task is also achieved through the use of logic programming framework
rules and the dynamic LP semantics [Pereira and Quaresma 1998].

The system mental state is represented by an extended logic program that can be
decomposed in several modules (see [Quaresma and Lopes 1995] for a complete
description of these modules): •

• Description of the effects and the pre-conditions of the speech acts in terms of
beliefs and intentions;

• Definition of behaviour rules that define how the attitudes are related and how they
are transferred between the users and the system (cooperatively).

186

For instance, the rule which describes the effect of an inform and a request speech act
from the point of view of the receptor (assuming coojterative agents) is:

bel(A,bel(B,P)) <- inform(B,A,P)/before.
bel(A,int(B,Action)) <- request(B,A,Action)/before.

In order to represent collaborative behaviour it is necessary to model how information is
transferred from the different agents:

bel(A,P) <- bel(A,bel(B,P))/now, (not bel(A,P))/before.
int(A,Action) <- bel(A,int(B,Action))/now, (not neg int(A,Action))/before.

These two rules allow beliefs and intentions to be transferred between agents if they are
not inconsistent with the previous mental state.

After each event (for instance a user question) the agents' model (logic program) needs
to be updated with the description of the event that occurred. The act will be used to
update the logic program in order to obtain a new model. Using this new model it is
possible to obtain the intentions of the system.

4.1. System reasoning steps

Any user act (utterance or other) will cause a system update that will give rise to
following reasoning steps:

1. Update of the user act;
2. Update of the new interaction structure using the interaction structure mles and the

updated act;
3. Update of system intentions that were inferred from the effects of the action rules;
4. Execution of the system intended actions.

4.2. Cooperative inference o f user Goals

In order to infer the user goals the system uses two representation levels: Domain
Knowledge and Information Retrieval knowledge.

The Domain level

This level is used to obtain the domain models that are consistent with the user query.

Example:

pension(X)

will give the models: {pension, military},(pension, civilian}, {pension}

187

They are computed assuming that we have the domain rules:

pension(X) <- military(X), action(X,A), behind_duty(A).
pension(X) <- civilian(X), action(X,A),

save_life(Y,A), life_at_risk(X,A), X !=Y.

This knowledge level is built from the laws used in the texts. For instance the law
describing the requisites to obtain a pension for relevant services can be encoded by
the previous rules. These rules state that:

• A military may have a pension for relevant services if he has been the agent of an
action, and that action was behind is duty.

• A civilian may have a pension for relevant services if he has been the agent of an
action that saves someone life and he has his live at risk.

These models are used to ask the user to refine his query.

Information Retrieval Level

This level of knowledge is built with rules that can be obtained by processing the text
documents looking for keywords that give rise to disjoint sets of documents. By now we
obtain these rules using a thesaurus with keywords for text juridical classification.

Example o f rules:

pension(X) <- pension_given(X).
pension(X) <- pension_refused(X).

false <- pension_refused(X), pension_given(X)

These rules state that a document with the concept pension either mentions the concept
attributed or rejected.

As it was explained in the previous sub-section, the system computes the models that
are consistent with the user query and with the interaction structure. Then, if there are
more than one possible model, the system asks the user to refine his query and to refine
it.

5. Clustering

A service that an information retrieval system always provide is the organisation of
retrieval results. SINO can also rank the output according to estimated relevance values.
However, if there are large document groups with similar rankings, it is a good option to
build clusters and to label the groups with some relevant keywords.

188

Clustering helps users by showing them some kind of pattern in the distribution and it
allows the user to include or exclude sets of documents from further searches.

We use the already existing juridical classification of the Portuguese Attorney General
documents to characterize each cluster and to inform the user on possible further
choices for refining his query.
Our clustering method is based on the Scatter/Gather browsing paradigm that clusters
documents into topically-coherent groups. It is able to present descriptive textual
summaries that are build with topical terms that characterise the clusters. The clustering
and reclustering can be done on-the-fly, so that different topics are seen depending on
the subcollection clustered.

6. Example

The following dialogue is an example of a user session in our system, which
demonstrates its major features.

User
System

User
System

User
System

User
System

User -
System ■

User -
System -

User: -

- Ul: Documents about pensions for relevant services?
- U2: Pensions that were given or refused?
- U3: Both.
- U4: Pensions for militaries or civilians?
- U5: Civilians
- U6: There are 129 documents, listed in the right frame.
- U7: where there was a drowning?
- U8: Since there are 45 documents of the 129 above that match the concept.

I've listed them in the usual frame.
U9: No, I mean to look for all documents that match the concept.

■ UlO: There are 347 documents listed in the right frame.
- Ul 1: Documents about drugs?
- U12:1 assume that you want a new query about drugs since there are no

documents with the concept drugs and pensions for relevant services for
civilians. Do you want to see documents about the use of drugs while
driving?

U13 yes.

Given a user utterance, such as Ul, the system is able to cooperatively interact with
user in order to refine its query.

The system reply to Ul will be U2. This reply is achieved by recognizing that this
query can be refined since the texts that mention pensions can be divided into two
disjoint sets, one where pensions were given and another one were pension were
refused. This kind of knowledge is encoded in what we have called the Information
Retrieval level.

After the user answer (that could be: given, rejected or both), by using knowledge of
the Domain level the system will generate question U4. This is achieved by knowing
that pensions by relevant service have different conditions when there is a military or a

189

civilian. This is juridical knowledge independent of the texts present in the text base
and represented in the domain level.

As we described in previous sections, the system is also able to decide if the user
intends to continue its previous query (its utterance is to be interpreted in the context of
the previous dialogue) or to open a new query (a new interrogation context).

If, after U1 the user asks U7, the system will be able to decide that the user intends to
look for text where there are a pension and a drowning. But if the user utters U ll
instead of U7 the system will conclude that the user intends to open a new interrogation
context.

This is achieved by using the Textual level that encodes knowledge about the texts
words and expressions (concepts). Using our retrieval information system SINO, it is
possible to see that are some texts where the concepts pension and drowning appears
but no texts where the concepts pension and drugs appears. This is what the user
expects the system behave in most cases. When this is not the case the user may clarify
its query in order oblige the system to behave differently. For instance after U7 the
system will reply U8 and the user may reply U9.

U9 will be understood by the system as a user clarification and it will forget the
semantic content of sentences U1-U8 by opening a new context with U9. In order to
interpret the sentence U9 in particular to solve the nominal anaphora the concept, the
dialogue structure of sentences U1-U8 will be used.

7. Conclusions and Future Work

The Information Retrieval system presented in this paper is implemented and it has a
public access from the WWWeb.
A preliminär evaluation was done by taking into account the system logs and user
comments. By analyzing the system logs we obtained that;

Most queries (90%) are done using the multimodal interface. Most users do not use
the natural language interface, they prefer to use choice menus, or to use free text
queries (keywords with booleanconnections).
The interaction context is frequently used by our users (on average twice on each
session). The users use it in order to return to a previous interaction point.
The system suggestions for query refinement are used in 90% of the cases.
Most of the system suggestions (70%) are obtained using the information retrieval
level.

Regarding the portability of our IR system into other domains, the main issues are:

♦ A robust natural language grammar enabling to obtain the speach act associated to a
user multimodal act. (it may involve to add some vocabulary and some knowledge
representation rules, mainly a domain thesaurus).

♦ A knowledge base modeling some domain knowledge.
♦ The computation on-the-fly of document clusters with a topical expression

associated with each. This will be our main source of knowledge to compute the
system sugestions for further refinement.

190

References

Allen, J. & Kautz, H & Pelavin, R. & Tenenberg, J. 1991. Reasoning about Plans.
Morgan Kaufman Publishers, Inc..

Alferes, J. & Pereira, L. 1996. Reasoning with Logic Programming. Lecture Notes in
Artificial Intelligence, 1111. Springer.

Alferes, J. & Leite, J. & Pereira, L. & Przymusinska, H. & Przymuzinski, T. 1998.
Dynamic Logic Programming. Proceedings of KR'98- Knowledge
Representaion.

Cohen, P. & Levesque, H. 1990. Intention is choice with commitment. Artificial
Intelligence, 42(3).

Carberry, S. 1988. Modelling the user's plans and goals. Computational Linguistics,
14(3):23-37.

Greenleaf, G. & Mowbray, A. & King, G. 1997. Law on the net via AustLII - 14 M
hypertext links can't be right? Proceedings of Information Online and On
Disk'97.

Grosz, B. & Sidner, C. 1986. Attention, intention, and the structure of discourse.
Computational Linguistics, 12(3): 175—204.

Kamp, H. & Reyle, U. 1993. From Discourse to Logic: An Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse
Representation Theory. Dordrecht: D. Reidel.

Litman, D. & Allen, J. 1987. A plan recognition model for subdialogues in
conversations. Cognitive Science, (11): 163—200.

Lascarides, A. & Asher, N. 1991. Discourse relations and defeasible knowledge. In
Proceedings of the 29th Annual Meeting of ACL, 55—62.

Pinto, J. & Reiter, R. 1993. Temporal reasoning in logic programming: A case for the
situation calculus. Proceedings of the lOth ICLP. MIT Press.

Pereira, L. & Quaresma, P. 1998. Modeling Agent Interaction in Logic Programming. In
Proceedings of the Ilth International Conference on Applications of Prolog.
Tokyo, Japan.

Quaresma, P. & Lopes, J. 1995. Unified logic programming approach to the abduction
of plans and intentions in information-seeking dialogues. Journal of Logic
Programming, (54).

Rodrigues, I. & Lopes, J. 1992. Discourse temporal structure. In Proceedings of the
COLING'92.

Rodrigues I. & Lopes, J. 1993. Building the text temporal structure. In Progress in
Artificial Intelligence: 6th Portuguese Conference on AI. Springer-Verlag.

Rodrigues, 1. & Lopes, J. 1997. AI5, An Interval Algebra for the temporal relations
conveyed by a text. In Mathematical Linguistics II, Eds Carlos Martin-Vide,
John Benjamins.

Song, F. 1991. A Processing Model for Temporal Analysis and its Aplication to Plan
Recognition. PhD thesis. University of Waterloo, Waterloo, Ontario, Canada.

An evaluation of the Translation Corpus Aligner, with special

reference to the language pair English-Portuguese

Diana Santos & Signe Oksefjell
SINTEF Telecom and Informatics & IBA, University of Oslo

Dian;i.Santos@infoi matics.sintef.no & Signc.Oksefiell@hia.no

Abstract
In this paper we describe the evaluation of a language-dependent aligner. We begin by introducing the
alignment program, explaining why it would be interesting to evaluate it with particular emphasis on
the language pair English-Portuguese. A short presentation of the corpus used to test the aligner is also
given. We then describe three experiments that were performed in the evaluation process, presenting
the results and di.scussing the methodology. The paper ends with a discussion of more general
conclusions relative to an evaluation of this kind.

1. Introduction
Two criteria that are often employed in the evaluation of NLP programs are
performance and usability. Another criterion, less frequently mentioned, is the adequaey
of handling particular languages. The present study describes a set of experiments
devised to perform such an evaluation.

Although researchers concerned with parallel corpus building and exploration
will generally be happy to use a system available for their languages without evaluating
it thoroughly, especially when the system is freely distributed - as is the case of the
present system, the kind of work reported originates from two relevant concerns. The
first one is about methodological aspects related to the development of NLP systems.
The second concern is evaluation and comparison of products. In fact, there is a blatant
lack of serious evaluation work of products and systems concerning the Portuguese
language, which is a situation we have been trying to change in the project
Computational Processing of Portuguese at SINTEF.'

The Translation Corpus Aligner (TCA) was developed in connection with the
English-Norwegian Parallel Corpus (ENPC) project with the aim of automatically
aligning English and Norwegian texts (see e.g. Hofland 1996, Hofland & Johansson
1998). Although the program was originally written for the language pair English-
Norwegian, it has been further developed to handle other language pairs, including
English-Portuguese. It includes a language-dependent component in the form of an
anchor word list.

In the present paper we set out to evaluate the TCA for the language pair
English-Portuguese. In particular, we want to

• investigate the effect of the anchor word list;
• compare the results of the program with and without the anchor word list;
• find out how much a proofreader has to check manually after alignment
In order to perform the evaluation, we used the English-Portuguese part of the

ENPC, which currently includes 16 English texts, about 12,000 words each, that have
translations into Portuguese.^

mailto:Signc.Oksefiell@hia.no

192

2. A short description of the TCA
The alignment program automatically matches original sentences with their translations.
In the process of linking corresponding sentences, the program makes use of an anchor
word list that contains word pairs of the languages in question. The one used here was
not originally made for Portuguese and English, but was adapted from the English-
Norwegian anchor word list. In the alignment process, a value is given to the
combination of sentences based on matches in the word list. The program goes through
the texts and reads chunks of sentences in each language, resulting in matrices in which
the program seeks the highest values for a match between sentences. In addition to the
anchor word list, these values depend on the number of characters within the s-
units/sentences in each language, on special characters (such as ?!;, etc.), on proper
names, and on cognates. One of the strengths of the program is that it does not require
any preprocessing in the form of "hard regions", e.g. paragraph alignment, and therefore
can get back on track after an alignment error (or in spite of a translation discrepancy).

To take an example, we could imagine the following chunks of text to be
aligned:

English original (cxlracl from Doris Lessing's
The Good Terrorist)

Portuguese translation by Bcrnardctte Pinto Lcitc

<s>Shc faced him, undefianl but confident, and
said, "I wonder if they will accept us','"</s>
<s>And, as she had known he would, he .said, "It
is a question of whether we will accept
them."</s>c/p>
<pxs>Shc had withstood the test on her, that
bony pain, and he let her wrist go and went on to
the door.</s>

< pxs> E la cncarou-o, sem de.safio mas confiantc, c
pcrguntou:</.sx/p>
<pxs>— Achas que nos accitam'?</s> </p>
<pxs>— E, conforme sabia que Jasper
responderia, este rctorquiu;</sx/p>
<pxs>&mdaslv, E tudo uma questäo dc nös os
accitarmos a clcs.</sx/p>
<pxs>A licc resistira ao teste sobre a sua pcssoa, ä
dor össca, c cle largou-lhc o pulso c dirigiu-sc para a
porta.</s>

Figure I. Texts to be aligned

We would expect that some words in the English extract would match some of
the Portuguese words in the anchor word list; these matches would in turn enhance the
possibility of the program linking the correct sentences. For the second English sentence
in the extract above, for instance, we will get the following matches in the word lisl:^

and c
is, 's / é, csld
question* / pergunt*
wc nös
accept* accit*
them / Ihes, os, as

quest*

The TCA assigns a unique identification to each s-unit with its corresponding s-
unit(s) in the translation. When the original sentence has only one corresponding
sentence in the translation, we get a 1:1 correspondence. When the original sentence has
been translated into two sentences, we get a 1:2 correspondence:

<s id=DL2.1.sl6 corresp='DL2TP.1.sl7 DL2TP.1.sl8'>And, as she had known he
would, he said, "It is a question of whether we will accept them."</s>

<s id=DL2TP.1.sl7 corresp=DL2.1.sl6>tmdash;
responderia, este retorquiu:</s>

E, conforme sabia que Jasper

193

<s id = DL2TP. 1. sl8 corresp = DL2.1. sl6>&mda’sh;
aceitarmos a eles.</s>

E tudo uma questao de nos os

Each text has a unique code, normally starting with the authors’ initials, e.g. a
text by Doris Lessing has a code DLx. All texts will be referred to by their code.

3. Human intervention required
The program handles 1:1, 1:2, and 1:0 correspondences, i.e. one s-unit matching one,
two or zero s-units in the translation; the latter two have to be checked manually. The
remaining matrices, containing 1:1 correspondences only, are assumed to be correct and
are not systematically checked. Hence, the file that is proofread only includes matrices
that do not contain 1:1 correspondences throughout.

Table 1 shows the percentage of matrices that the proofreader has to check, an
average of 48.8%, for the 16 English-Portuguese texts. This apparently discouraging
percentage needs some explanation since it does not reflect the actual manual
intervention that takes place. The picture becomes skewed simply because we
immediately associate half of the matrices with half of the sentences in a text. This is
not the case, however. Each matrix contains approximately 10-12 sentence pairs, and as
will be shown in the matrix below (Figure 2), the proofreader will only have to
investigate the s-units that are not 1:1 correspondences. This is to say that although the
proofreader has to investigate almost half of the matrices, he will not have to investigate
half of the texl/s-units, but merely a small percentage.

Table I. Number of matrices to check

Text Matrices in
output nic''

Matrices
to check

%

ABRI 120 78 65
AHI 131 98 74
ATI 1 13 30 27
BCl 94 39 41
DLl 90 54 60
DL2 139 100 72
FFl 88 76 86
JBIP 97 32 33
JBIPP 97 32 33
JHl 61 20 33
MAI 74 6 8
NGl 74 37 50
PDJ3 108 49 45
RDOl 143 52 36
STl 128 87 68
WBI 87 12 14
Total 1,643 802 48.8

To take an example, three of the sentence pairs in the matrix in Figure 2 have to
be manually checked, and if necessary, corrected. This can be seen from the low values
given in the diagonal of the matrix below (top left to bottom right). Moreover, the
numbers below the matrix reflect this; the English sentence 4, for instance, is said to
correspond to 0, sentence 5 to Portuguese sentences 4-h5, etc. It can be seen, then, that

194

sentence 4 in the English original is not linked to any sentence in the translation, and
wrongly so. We will therefore have to match it to the translation - sentence 3 in
Portuguese - manually, correcting the alignment to a 1:2 correspondence. The other two
1:2 correspondences found in the matrix did not have to be corrected.

S4 20 71 51 23 56 48 106 133 51
1 2 3 4 5 6 7 B 9 10 Port, trans.

1 97 I 6 0 1 2 0 0 0 2 1 1
2 18 I 1 2 0 0 0 0 0 1 0 0
3 58 I 2 0 0 1 0 1 0 2 2 0
4 7 I 0 0 0 0 0 0 0 0 0 0
5 7ff I 2 0 1 4 3 1 2 3 1 0
6 85 I 3 1 1 4 2 2 6 3 1 3
7 96 I 2 2 1 3 1 2 1 7 2 1
8 124 I 1 0 0 1 0 1 0 4 6 0
9 51 I 1 0 1 2 1 2 2 1 1 2

10 164 I 1 1 1 4 2 2 2 6 2 0

Eng . orig.
1,1 2,2 3,3 4,0 5.,4+5 6, 6+7 7,:B B,9 9,10

1: <s>For her part she did not have to be told that she
rend=italic>her look</hi>, described by him as silly.</s> (DL2.1.11)

1; <s>Quanto a ela, sabia que estava com o <hi rend=italic>seu olhar</hi>,
que ele descrevia como de aparvalhado.</sx/p> (DL2TP.1.12)

2; <s>"Stop it," he ordered.</s> (DL2.1.12)

2; <p><s>— Péra irndash; ordenou ele.</s> (DL2TP.1.13)

3: <s>His hand shot out, and her wrist was encircled by hard bone.</s>
(DL2.1.13)

3: <s>Estendendo a m3o, apertou com forga o pulso da rapariga, causando-lhe
dor . </sx/p> (DL2TP. 1.14)

4: <s>It hurt.</s> (DL2.1.14)

5: <s>She faced him, undefiant but confident, and said, "I wonder if they
will accept us?"</s> (DL2.1.15)

4: <pxs>Ela encarou-o, sem desafio mas confiante, e perguntou:</sx/p>
(DL2TP.1.15)
5: <pxs>tmdash; Achas que nos aceitam?</sx/p> (DL2TP.1.16)

6: <s>And, as she had known he would, he said, 'It is a question of whether
we will accept them. "</sx/p> (DL2.1.16)

6: <pxs>fitmdash; E, conforme sabia que Jasper responderia, este
retorquiu :</sx/p> (DL2TP. 1.17)
7: <pxs>fiimdash; É tudo uma questäo de nos os aceitarmos a eles.</sx/p>
(DL2TP.1.18)

7: <pxs>She had withstood the test on her, that bony pain, and he let her
wrist go and went on to the door.</s> (DL2.1.17)

8: <pxs>Alice resistira ao teste sobre a sua pessoa, å dor éssea, e ele
largou-lhe o pulso e dirigiu-se para a porta.</s> (DL2TP.1.19)

8: <s>It was a front door, solid and sure of itself, in a little side
street full of suburban gardens and similar comfortable houses.</s>
(DL2.1.18)

195

9: <s>Era uma porta de entrada solida, segura, situada numa ruazinha
secundaria com jardins de suburbios e casas serr.elhantemente
confortaveis.</s> (DL2TP.1.20)

9: <s>They did not have slates missing and broken windows.</sx/p>
(DL2.1.19)

10: <s>N3o Ihes faltavam telhas nem tinham vidros partidos.</s></p>
(DL2TP,1.21)

Figure 2. Example of a matrix calculated by the Translation Corpus Aligner’

After the percentage of matrices to be checked had been calculated, the next step
was to find out how many corrections one actually had to make. Table 2 gives the
percentages of corrections that were made after alignment.

Table 2 presents, for each text, the number of s-units that need to be corrected
after alignment with the anchor word list. Since not all s-units have actually been
inspected by the proofreader (the percentage of matrices was shown in Table 1), the two
rightmost columns give the number of s-units inspected manually, and the
corresponding correction percentage.

Table 2. Number of corrccled s-units after running the program with the anchor list

Text Corrcclio
ns

Total
number of
s-unil.s

Corrected s-
units (Vc of
total)

Number of
s-units in
the matrices
inspected^'

Corrected
s-units (%
of
inspected)

ABRl .33 1,139 2.9 740 4.4
AHI 42 1.263 3.3 934 4.5
ATI 19 1.102 1.7 297 6.4
n c i 2.S 893 2.8 366 6.8
DU 11 855 1.3 513 2.1
DL2 61 1,307 4.7 941 6.5
FFI 4« 713 6.7 613 7.8
JBIP 12 934 1.3 308 3.9
JBIPP 23 927 2.5 305 7.5
JHI 15 584 2.6 192 7.8
MAI 2 7.30 0.3 58 3.4
NGI 12 702 1.7 351 3.4
PDJ3 14 1,041 1.3 468 3.0
RDOl 42 1,396 3.0 502 8.4
STI 50 1,204 4.2 818 6.1
WBI 5 727 0.7 101 5.0
Average 2.9 5.5

We see that the proofreader has to make changes in about 5.5% of the s-units
inspected, which corresponds to about 2.9% of all s-units present in the corpus. Again it
should be pointed out that the number of s-units found in the matrices that are inspected
is considerably lower than the number of s-units actually inspected.

4. The importance of the anchor word list
We now proceed to evaluate the importance of the anchor word list, by comparing the
amount of revision and modification required when running the alignment program with
and without language specific information (that is, with an empty anchor list). In order

196

to estimate the differences, we ran the program with and without the anchor word list
and then compared automatically the differences with the final (post-edited) version.

Table J. Number of differences in the alignment of English-Portuguese te)Hs.

Text No. of
"skips"’

No. of
differences
(final
version vs.
raw version
with anchor
word list)

No. of
differences
(final version
vs. raw
version w/o
anchor word
list)

No. of
differences
(with vs.
w/o anchor
word lisl)

ABRl 8 33 139 126
AHI 3 44 111 88
ATI 4 27 38 39
BCl* 2 38
DU 2 14 31 30
DL2* 6 64
FFI* 22 60
JBIP* 3 18
JBIPP 5 31 45 50
JHl 2 25 19 35
MAI 0 4 12 14
NGI* 0 15
PDJ.1 2 19 11 26
RDOl 2 67 72 65
STl* 3 68
WBI « 6 14 9

The results are shown in Table 3. The texts marked with a star (six out of
sixteen) could not be aligned without the anchor word list. Further, Table 3 shows the
differences between the final, proofread versions of the ENPC texts and the versions
with and without the anchor word list prior to revision.**

Due to the simplicity of the (programming) approach (only comparing the target
part), missing s-units in the Portuguese translations, such as the (rare) example in Figure
3, were not identified;

6; <s>If we got married, we could no longer go back, whether we wanted to or
not.</s> (ABRl.1.1.242)

6: <s>Se nos casassemos, nao poderiamos mais voltar, quer quisessemos ou
nao.</s> (ABRITP.1.247)

7: <s>Neither he nor I.</s> (ABRl.1.1.243)

8: <s>He white; I coloured.</s> (ABRl.1.1.244)

7: <s>Ele era branco, eu mestiqa.</s> (ABRITP.1.248)

Figure 3. Example of missing Portuguese translation, overlooked by the com para_alinham ento .p l
program

It is clear that the English-Portuguese anchor word list does help the alignment
program and reduces the number of changes to be made by the proofreader, though
perhaps not as markedly as one might expect. However, the fact that 6 out of the 16
texts did not make it through alignment indicates that the program to a large extent
depends on the anchor word list, and not only on the other factors mentioned in Section
2.

197

By using the anchor word list, the percentage of sentences to be corrected drops
from 4 to 2% of all the sentences that are manually inspected (which, in turn, can be
considered approximately one eighth of all sentences).*^ Again, let us stress that the
anchor word list was not originally made for the language pair English-Portuguese.
Neither of the anchor word lists was corpus driven; the original anchor list, for English-
Norwegian, was manually encoded based on the intuition of the linguists working on
the ENPC previous to the choice of the actual texts.

5. Considering the anchor word list in detail
Would more attention to the English-Portuguese pair pay off? What would one do in
order to optimize the performance for this language pair, and what would be the net
gain? This is what we set out to test in the next step.

We have thus created a program which, for each English source text and its
corresponding Portuguese translation, counts

• the number and percentage of the English anchor entries in the English text
• compared to the entries in the anchor list
• in terms of the s-units the matches refer to

• the number and percentage of the Portuguese anchor entries in the
Portuguese text

• compared to the entries in the anchor list
• compared to the total number of target s-units

• the actual successful matches (i.e., the cases where both members of the
anchor pair occur in a translation pair)

• the ratio of successful matches vs. all possible matches
• in terms of the occurrences of the source member of the anchor list
• in terms of the occurrences of the target member of the anchor list

In order to compute these numbers, several decisions have to be made:
First of all, the anchor word list is unwrapped from the source side, i.e., the cases

of A,B / C arc transformed into A / C and B / C, resulting in 1,022 pairs (from an
original anchor list containing 882 lines). On the other hand, this is not done for the
Portuguese side, since it is understood that E / F, G would succeed in either case. In
Figure 4, we provide some illustration of what the unwrapping does:"

's / c. esia 's / ((e)l(esld))
is/ttitKcsta))

Enpli.sh* / incl* Enplish.* / inpl.*
became, becom* / lorn*, voU*, He* became / ((lorn.*)Hvoll.*)l(ric.*))

becom.* / ((lorn.*)l(voIt.*)l(nc.*))
has, have, 'vc / lenho, lens, lem, icmos, icm has / ((tenho)l(lcns)l(lem)l(temos)l(tcm))

have / ((lenho)l(tens)l(lem)l(lemos)l(iem))
've / ((lenho)l(tens)l(tem)l(temos)l(lem))'‘

7*, seven / 7*. sole 7.* : ((7.*)l(seie))
seven : ((7.*)l(sele))

Figure 4. Original and modified anchor list

Then, pattern matching is done so that the matches are only counted in word
contexts. Parts of words were not counted as successful matches (so are does not
succeed in mare, for example), except when the pattern expression explicitly says so
(like in becom*).

198

In addition, the matching ignores case. This is justified due to the low
probability of occurrence of non-capitalized instances of words that require
capitalization (such as *english or *inglalerra).

The most important decision, as well as the one which may be less obvious, is
that we only count 1:1 matches as being successful. That is, "successful pairs" in Table
4 below include only those in which the source member is found in a source s-unit
which has one single sentence corresponding to it and in which, moreover, (one of) the
target member(s) of the anchor word list is found. The reason for this restrictive
computation of anchor list successes is twofold: If mappings of 1:2 or 1:3 were found,
• they would have been subjected to the revisor’s consideration anyway
• it would be considerably more difficult to quantify both the success (should one use

a pondered average of target s-units instead of natural numbers?) and the usefulness
of the information in the anchor word list' ’

Finally, it should be noted that the anchor list included the entry &mdash /
&mclash, which might not look specific to the English-Portuguese pair. However, some
punctuation - and its translation - is language specific (Santos, 1998b), and therefore
the anchor pair including &mdash was kept in the list for evaluation.'■*

5.1 Looking at the occurrences of anchor items in the corpus
Table 4 presents the quantitative results for each pair of texts. As far as the English
matches are concerned, the first column displays how many members of the anchor list
are actually present in the source text (the percentage relative to the total number of
anchor pairs is given in the second column). The number of occurrences in the text of
the source expressions of the anchor word list is given in the third column under
"English matches". The number of different (target) s-units corresponding to some
match of the English expressions in the source text is shown in the fourth column (i.e.,
more than one match of the same English expression per target s-unit is disregarded).
As far as Portuguese matches are concerned, the corresponding information is provided:
The next two columns give the number and percentage of target expressions of the
anchor list which were found in the target texts, together with the number of actual
matches. The most interesting information is found under the heading "Successful
pairs", which displays how many times pairs in the anchor list were actually found in a
translation pair, and what the percentage is relative to the simple occurrence of one
element of the pair.

The success matches correspond roughly to a fourth of the source units in which
they are found and to less than a tenth of the target units in which they appear. I.e., the
relevance of the target expressions seems to be considerably lower than that of the
source expressions. This can be explained by several distinct factors. First of all, the
English terms were originally chosen with a view to finding a good translation
correspondence with respect to Norwegian. This is not necessarily the case for the
English-Portuguese pair. Then, the linguist adapting the list” failed to note that some
target expressions were too general (matching, for example, unrelated and very frequent
Portuguese prepositions - example in (4) below), which obviously diminishes the
percentage of relevant pairs. Note that this does not necessarily diminish the program's
performance, since there is no reason to suppose that the TCA looks for every
occurrence in the target language, as we did here for evaluation purposes.

199

Tabic 4. Coverage of the anchor lisl for (he English-Porlugucsc corpus

Text English matches Portuguese matches Successful pairs
anchor list s-units anchor list s-units number source target

ABRl 695 68% 7,194 6,454 780 76% 50,226 3,585 49.8% 7.1%
AHl 655 64% 6,865 6,206 723 71% 51,147 2,981 43.4% 5.8%
ATI 624 61% 5,988 5,361 739 72% 48,585 3,177 53.1% 6.5%
BCl 700 68% 4,646 3,933 795 78% 38,381 2,500 53.8% 6.5%
DLl 609 60% 6,400 5,783 716 70% 45,860 3,328 52.0% 7.3%
DL2 623 61% 7,014 6,375 739 72% 48,279 2,761 39.4% 5.7%
FFl 690 68% 6,063 5,246 776 76% 39,095 2,505 41.3% 6.4%
JBIP 616 60% 6,056 5,434 737 72% 47,353 3,507 57.9% 7.4%
JBIPP 616 60% 6,063 5,437 758 74% 42,989 2,866 47.3% 6.7%
JHl 623 61% 5,040 4,417 743 73% 39,991 2,996 59.4% 7.5%
MAI 615 60% 5,448 4,833 735 72% 39,231 3,011 55.2% 7.7%
NGl 675 66% 6,536 5,857 746 73% 43,566 3,717 56.9% 8.5%
PDJ3 718 70% 7,632 6,910 803 79% 55,941 4,072 53.4% 7.3%
RDOl 538 53% 6,522 5,980 665 65% 43,813 3,880 59.5% 8.8%
STl 692 68% 6,024 5,318 786 77% 49,826 2,781 46.1 % 5.6%
WBl 629 62% 4,662 4,030 728 71% 32,463 2,675 57.4% 8.2%
Average 645 63% 748 73% 51.6% 6.6%

In any case, we find a significant number of matches, even if several pairs (at
least around a fourth) do not appear in the files. If we divide the number of successes by
the number of pairs whose source expression is present in the source text, we get on
average 5 matches per pair. Later on we will look more closely at the signifieance of
some elements of the anchor list.

Still, tlie number of successful pairs in Table 4 does not really offer a good
illustration of the contribution of the anchor list, since they take each success
independently of the place it occurs in. For example, for a particular s-unit there might
be 10 successful matches with ten different pairs, while for another not a single one.
This means that the values in the last two columns do not express the percentages of s-
Linits that received positive match in the anchor list, but simply the percentage of
occurrence of (source or target) expressions that have been useful for alignment.

So, we made our program also count the (target) s-units for which there was one
or more matches for any anchor pair (i.e., the s-units which corresponded to success in
finding both the source expression and the target expression). The program also
provided the percentage of s-units in terms of the number of translation pairs in the file.
These results, which are much easier to interpret, are displayed in Table 5: The first
column shows the number of matching anchor-list pairs (after restructuring), and the
percentage is given in column 2. The third column shows the number of s-units which
had one or more successful matches in the anchor list, and column 4 lists the total
number of translation pairs in each file (counted in the target file) for ease of reference.
Column 5 is simply the result of dividing the value of column 3 by that of column 4,
giving the percentage of translation pairs with successful matches in the anchor list.

We see from this table that the great majority of sentences have hits in the
anchor pairs, which may indicate that, when a pair actually occurs in the text, it gives
some positive result for the alignment process.

200

Table 5. Coverage of ihe successful anchor pairs in terms of anchor list and s-units

Text Successes
anchor list s-units total %

ABRl 563 55% 1014 1139 89%
AHl 488 48% 1069 1263 85%
ATI 496 49% 1030 1102 93%
BCl 557 55% 823 893 92%
DLl 492 48% 783 855 92%
DL2 482 Al% 1120 1307 86%
FFl 512 50% 706 713 99%
JBIP 479 47% 882 934 94%
IBIPP 464 45% 879 927 95%
IHl 490 48% 572 584 98%
MAI 508 50% 711 730 97%
NGl 526 51% 653 702 93%
PDJ3 586 57% 970 1041 93%
RDOl 430 42% 1221 1396 87%
ST) 521 77% 870 1204 72%
WBl 515 50% 719 853 84%
Average 506 50% 91%

5.2 Looking at some anchor pairs in particular
Wc expect, however, that not all anchor pairs have the same import, and in fact

we see from Table 5 that, on average, only half of them work for each text. That is why
we wanted to lake a closer look at the results.

From a rough inspection of the results, and along with more accurate pairs, the
two following cases were easy to detect;

• systematic translations were forgotten (like the weapon .sense of arm* or the
artist* continuation of art*)

• translation involves too much restructuring, due to language differences, so
that lexical clues are not the right plaee to look (as is the case o f /o r be).

In order to look more closely at the results, we selected several frequent cases -
pairs that were most successful (in ab.solute terms) - and looked at their distribution in
the different texts. Table 6 shows the number of occurrences in the English source and
those that corresponded to a match in the Portuguese translation. Texts in the Brazilian
variant are identified in bold in the table.

Table 6 shows that some pairs are more useful than others, and also how this
may vary for individual texts. Although we have to leave a detailed discussion of these
results for another forum, we provide here some preliminary comments.

One case that is worth discussing is Heu, which is interesting in that eu is
considerably more rare in Portuguese (being a null subject language) than I in English.
One can, however, notice that there is a considerable difference in utility (or translation
correspondence) from text to text, and even note that, as expected, in the Brazilian
variant there is a less marked tendency to dispose of the personal pronoun than in
European Portuguese.

The opposite happens with dashes (coded —) in terms of relative
frequencies; dashes are used much more frequently in Portuguese than in English. It is

201

interesting to argue for a different behaviour of the aligner in such cases, i.e., a different
weighting of pairs related to criteria such as these. (The lower the frequency of the
target item, the higher the probability that, being there, it is a translation of the source
term.)

Table 6. The distribution of some frequent anchor pairs

pair AB AH AT BC D1 D2 FF JB JB’ JH MA NG PD RD ST WB
&mdash 57 65 53 66 66 36 8 37 37 8 7 130 17 436 20 36
&mdash 247 454 343 305 236 507 12 47 130 36 33 127 210 445 389 234

16 25 46 50 22 22 10 30 33 7 6 107 7 426 4 32
s 82 75 38 2 40 71 11 98 92 0 69 50 67 62 39 16
e, esta 504 520 300 304 320 432 100 576 608 236 584 264 504 316 504 144

30 35 12 2 21 27 3 55 57 0 33 29 34 33 15 11
I 238 171 73 84 43 115 39 316 316 11 217 110 124 322 80 205
eu 105 61 32 20 11 39 1 85 122 4 37 53 35 109 43 71

87 40 19 17 8 19 1 62 104 3 32 43 22 94 30 63
be 65 92 41 21 65 66 64 54 54 48 38 61 80 24 61 19
ser, estar 172 116 132 60 152 120 84 172 248 160 116 172 172 68 220 60

18 17 14 5 13 9 9 19 29 15 11 24 20 3 8 11
been 62 45 33 21 53 42 62 28 28 35 13 41 55 19 45 24
sido. 64 36 40 64 72 48 28 40 64 72 32 36 100 68 84 12
eslado 13 0 7 7 10 4 5 4 11 10 4 5 18 6 7 2
could 29 19 48 18 33 41 45 25 25 54 13 33 68 46 32 21
p o i l i a . * , c i c . 132 120 216 96 114 66 168 126 138 180 42 222 180 150 108 90

12 10 28 8 7 6 18 10 9 24 6 20 25 19 9 10
is 65 51 14 41 29 47 25 60 60 53 130 25 45 19 35 21
c, estii 504 520 300 304 320 432 100 576 608 236 584 264 504 316 504 144

34 29 12 26 13 17 7 38 41 28 69 17 24 15 16 11
his 81 81 167 142 66 57 157 59 59 158 37 95 153 95 99 94
scu*. 220 272 488 364 264 212 268 124 364 360 136 488 496 272 208 224
dele* 19 12 64 52 24 13 37 7 23 61 12 44 60 25 15 26
there 52 54 42 23 47 44 43 38 38 47 64 58 51 79 23 31
la, all 144 88 84 32 124 120 28 172 68 36 80 112 140 180 152 68

14 11 5 2 14 7 2 11 10 8 8 21 10 18 3 6

It is, however, also possible to see great variation without having either a
significant frequency reduction or increase of the corresponding terms in the two
languages, as the cases of been and sido/estado show. More detailed studies of the
subtleties of the translation into Portuguese of could and of there can be found,
respectively, in Santos (1998a) and Ebcling & Oksefjell (1998).

5,3 Looking at some instances of successful matches
One thing worth noticing is that, even though much of the data presented above

could be explained with some linguistic ingenuity, it is not the case that all instances
that were counted as successful matches are actually linguistically motivated. In fact, it
was easy to detect three interesting situations from a crude inspection of the results:

First, even though the result might be correct, some of the resulting pairs
"succeeded" without any sort of linguistic motivation; cf. (1) - (4):

202

(1) little / pequen.*?: A siia /rente, pe lo lado escpierdo do caminho, ia urn gnipo de
criangas, a mats velha a emptirrar urn carrinho, com duos criangas mats pequenas,
uma de coda lado, agarradas ao vardo. (Translation of: Ahead of him, trudging along
on the left of the path, was a little group of children, the eldest girl wheeling a pushchair
with two smaller children, one each side of her, clutching the bars, PDJ3)

(2) be / ((ser)l(estar)): Let iim ser (b e in g ’, n.) humano sempre sera um estranho. Jamais
"pertencera". (Translation of: In there, one will always be a stranger, will never
"belong", A B R l)

(3) look.*? / olh.*?: Ndo hd qtiebra-liiz, apenas a Idmpada por cima cjiie dd d minha cara
um aspecto pdlido e doentio, com o///e/rff5.(Translation of: There ’s no shade on the
light, just a bare bulb overhead, which makes my face look pallid and ill, with circles
under the eyes, M A 1.)

(4) couple.*? / par.*?: Depots de alguns anos para (’for’) se eslabelecer, ele comega a
escrever. (Translation of: A fter a couple of years to settle down he begins to write
again, A BR l).

Secondly, it was also noted that the use of the Kleene star, instead of a more
rigid morphologically closed list, allowed for correct matches which would certainly not
have been listed by a linguist (due to considerations of frequency), as is the case of (5)-
(6). Incidentally, a particularly valuable feature of the anchor list format was the ease of
specifying cross-categorial translations (i.e., part-of-speech change in the translation).
(5) buil.*? / constru.*?: Terminada a obra, os construtores seruo morlos. (Translation of:

Once the job is finished the bu ilders are killed, A B R l.)
(6) crim .*? / crim.*?: Enido, perto do fin a l de 1347, uma petpiena fro la de cerca de uma

duzia de galeras genovesas cliegou d Sicilia vinda de um lugar dislanle, lalvez da
Criineia, e em poucos dias a populagdn de Messina comegou a morrer ds cenlenas.
(Translation of: Then, towards the end of 1347, a small fleet of about a dozen Genoan
galleys arrived in Sicily from som ewhere far away, perhaps the C rim ea, and within a
few days the people of Messina began to die in their hundreds, A B R l)

Thirdly, example (7) displays a match which works despite the linguistic data it
is supposed to mirror and/or despite the inaccurate translation. In fact, earlier in (7) was
translated simply by cedo (’early’), leaving out the comparison (a literal translation
would use wais cedo), but the fact that one has chosen to simply list the absolute form
made the anchor pair more useful.

(7) earli.*? / cedo: Ela irabalhava mais c/ue tiualquer um, acordava cedo (’early’), era a que
ia dormir mais larde. (Translation of: She worked harder than anybody else, got up
earlie r , came to bed long after the others, A B R l)

In conclusion, it was possible to detect several pairs that led to "successes"
without having been thought of as pairs beforehand. In some cases this increases
performance, in others it diminishes it. Without looking at every pair that counted as a
success, it is difficult to estimate the actual percentage of these cases.

The overall performance of the aligner did not appear significantly diminished,
though, since, as mentioned above, there can be many possible unrelated "successes" for
each s-unit. This rather illustrates that the TCTA’s approach, while not 100%
linguistically motivated, seems to compensate on accounts of both simplicity and
robustness.

203

6. Concluding remarks
Even though it was already known from the beginning that the TCA had been of
extreme help in aligning the English-Portuguese texts of the ENPC, we think that the
evaluation performed was interesting.

On the one hand, it measures the actual consequences of using this particular
program for a given language pair, which is something that had not been done before. It
is then up to the individual user to decide whether s/he should use this tool in his or her
project.

On the other hand, this investigation also gives origin to some reflections
concerning the evaluation process proper and the role of language dependency in NLP
tools:

• One of the undeniable conclusions of the present study is, in fact, that it is a
time-consuming and complex task to evaluate a particular program, and that it is
often necessary to create auxiliary tools to evaluate it. It is, therefore,
understandable that, in most cases, tool developers have no time to implement a
thorough evaluation of the tools they develop because they employ their time in
improving them (adding more functionalities, for example), not evaluating them.
It is, therefore, understandable that, in most cases, tool developers have no time
to implement a thorough evaluation of the tools they develop. Furthermore, it is
often unclear whether the time used in this kind of evaluation is worthwhile,
given that the program has a satisfactory behaviour for the task it was meant to
perform.

• While adapting a particular language-dependent tool for other typologically
similar languages, it seems that performance degradation is rarely so severe that
it prohibits reuse of the tool. It is, however, seldom quantified what the changes
are, and how well the "new" tool works when adapted to the new language (in
this ca.sc, new pair of languages). That is why the present study may be
interesting beyond the particular tool and pair of languages considered.

• Our preliminary conclusion is that even language-dependent tools rely to a lesser
extent on languages than one would expect. Therefore, it is often feasible (and
useful from an engineering point of view) to adapt that program to similar
languages without considerable loss of performance. But see Santos (in press)
for a more detailed discussion of language dependency and its methodological
consequences.
As to the particular work reported here, we note that there are two other ways in

which we could proceed for a thorough evaluation of the TCA for the English-
Portuguese language pair:

• The first way would be to experiment with the constitution of the anchor list,
creating new anchor lists, including for instance only the 20 most frequent pairs,
or only the translations of the most frequent English content words, and compare
the performances obtained.

• The second way would be to apply new texts and their translations to the TCA,
and see whether this would result in any appreciable decrease in performance.
Unfortunately, both tasks will have to wait for another occasion, since they

amount to considerable work.'^ Another revealing experiment would be to mimick the
whole evaluation process for the English-Norwegian pair and compare the results.

204

7. Acknowledgements
We are grateful to Knut Hofland for making his program widely available and

for answering our questions about it. In addition, the present paper was considerably
improved by Stig Johansson’s comments on both structure and content. We also thank
Ana Frankenberg-Garcia for commenting on a previous draft.

Notes
' See hllp://www.porlugues.met.pt/.
■ One of the English lexis has been counlcd twice since two translations of it have been included in the
corpus; one into European Portuguese and one into Brazilian Portuguese. For a complete list of authors
and texts in the corpus sec the ENPC homepage at httn://wsvw'.hf.uio.no/ihn/prosiekt/. For a more detailed
description of the ENPC, sec Johansson ct al. (1999).
 ̂ This is the original format of the TCA wordlist. means truncation, "/ "separates source and target

items, separates items inside each language.
'' In other words, the total number of matrices in the text.
' The first line of underscored numbers gives the number of characters in each Portuguese sentence, the
second line the sentence number. The vertical italicized lines give the sentence number of each English
.sentence and its length in number of characters.

We assume that the percentage of s-unils inspected is equal to the percentage of matrices shown,
therefore computing the present numbers by multiplying the total number of s-units by the percentage of
matrices to check (displayed in Table I). This is an approximation, because the same s-unil can belong to
two contiguous matrices.
’ It is important to note that in the proce.ss described so far, so called skip-attributes had already been
inserted in the text Files. Skip attributes are commands for the program to "skip" a particular sentence, and
they are one of the few tags and attributes added by the ENPC project to the basic recomcndalions pul
forward by the Text Encoding Inilalivc (Sperbcrg-McQueen & Burnartl, 1994). The purpose of skip-
attributes (in cither language) is to mark that a sentence has not been translated, or has been invented.
Although this is a sort of human intervention, it is hard to quantify, because it is usually inserted in an
interactive mode when and if the program does not manage to continue. Here we have chosen to disregard
them.
* Thc.se differences were computed automatically with the help of a simple Perl program
(c o m p a ra _ a lin h a m e n t:o . p i) , running after the Unix command d i f f was invoked between the
resulting files.
 ̂Assuming that for each matrix to be observed, 3-4 sentences have to be read by the human reviewer, this

means a fourth of all sentences present in the matrices. Then, only half the matrices arc revised:
'/2* 1/4= 1/8

Knut Holland (p.c.) rcvi.scd and improved the list, using a program that computed a threshold of
usefulness for very frequent items, and removing those which would not help the alignment.
" The "." and the parentheses in the reformulation arc simply the rendition of the same .semantics in Perl
syntax and have no signiFicancc for the success of the pattern matching.
'■ From the unwrapping we sec clearly that, given that Portuguese has more verbal inflections than
English (whereas the opposite happens to Norwegian), one should have written the pairs has/tem and
have, 'v e /te n h o , te n s , tem os, tem instead.

For example, one would expect the presence of the target member of the pair in a sentence contiguous
to the right one (the one in the Final alignment) as a measure of the negative influence a particular word-
pair would have. When one sentence is aligned with two sentences, one of which would quantify as
success in terms of our computations, one could expect a favourable import from the anchor word list if
the alignment is right, and the opposite if it is not right. So, a good measure of the anchor list doings
would have to take into account the percentage of e.g. 1:2 alignments that were correct. To do this would
most probably require mimicking the way the program works, which is outside the scope of the present
paper.
■* In fact, even "invariants" such as numbers can actually result in a different translation. Floors arc

counlcd differently in different languages: ground floor in Portuguese is Norwegian First lloor; soccer’s
First division in Norway is second division in Portugal; a person measured in feel will not have a

http://www.porlugues.met.pt/

205

corresponding height in meters, etc. And Figure 4 reminds us that seven hundred docs not get translated
into sete centos but into setecenlos (as opposed to Norwegian, which has two words as well).
' ' Incidentally, one of the authors of the present paper (D.S.).

In order to compare the performance of the system with a revised version, one has to manually
proofread the results first. For the case of the ENPC we had access to the proofread files, which is
obviously not the general case.

References
Ebeling, J. & Oksefjell, S. 1998. On the translation of English there-sentences into

Norwegian and Portuguese. What does a translation corpus tell us?. In Ydstie, J.
T. & Wollebxk, A.C. (eds.), Working Papers in Applied Linguistics 4/98, Oslo:
Department of linguistics, Faculty of Arts, University of Oslo. 188-206.

Hofland, K. 1996. A program for aligning English and Norwegian sentences. In
Hockey, S, Ide, N. & Perissinotto, G. (eds.). Research in Humanities
Computing. Oxford: Oxford University Press. 165-178.

Hofland, K. & Johansson,
automalic alignment
Corpora and Cross-
Amsterdam: Rodopi.

Johansson, S, Ebeling, J.
Norwegian Parallel
(eds.). Languages in
linguistic studies in
Press. 87-112.

S. 1998. The Translation Corpus Aligner: A program for
of parallel texts. In Johansson, S. & Oksefjell, S. (eds.),
linguistic Research: Theory, Method, and Case Studies.
87-100.

& Hofland, K. 1996. Coding and aligning the English-
Corpus. In Aijrner, K., Altenbcrg, B. & Johansson, M.
contrast. Papers from a symposium on text-based cross-
Lund (Lund, 4-5 March 1994). Lund: Lund University

Johansson, S., Ebeling, J. & Oksefjell, S. 1999. English-Norwcgian Parallel Corpus:
Manual. Oslo: Department of British and American Studies, University of Oslo,
hUp:/Av\\\v.hf.uio.no/ib:i/r)ro.sickt/ENPCmanual.html.

Santos, D. 1998a. Perception verbs in English and Portuguese. In Johansson, S. &
Oksefjell, S. (eds.). Corpora and Cross-lingui.stic Research: Theory, Method,
atid Case Stttdies. Amsterdam: Rodopi. 319-342.

Santos, D. 1998b. Punctuation and multilinguality: Reflections from a language
engineering perspective. In J. T. Ydstie & A.C. Wollebtek (eds.). Working
Papers in Applied Linguistics 4/98, Oslo: Department of linguistics. Faculty of
Arts, University of Oslo. 138-160.

Santos, D. In press. Towards language-dependent applications. Machine Translation
14(1999).

Sperberg-McQueen, M. C. M. & Burnard, L. (eds). 1994. Guidelines for electronic
text encoding and interchange. TEl P3. Chicago & Oxford: Association for
Computers and the Humanities / Association for Computational Linguistics /
Association for Literary and Linguistic Computing.

Automatic proofreading for Norwegian:
The challenges of lexical and grammatical variation

Koenraad de Smedt, University of Bergen <desmedt@uib.no>
& Victoria Rosén, University of Bergen <victoria@uib.no>

Abstract

In this paper we present some techniques, experiences and results from the SCARRIE project, which has
aimed at developing improved proofreading tools for the Scandinavian languages. The focus is on
methods which were used for spelling and grammar checking and particularly some novel analyses and
treatments dealing with the extensive lexical and grammar variation in Norwegian Bokmål.

The major findings are that (1) since in Bokmål, lexical variants may differ with respect to grammatical
features, stylistic replacement at the word level causes a need for grammar checking, and (2) the different
systems for gender agreement in Bokmål can be handled in an economical way by a single grammar and
lexicon if the features in the lexicon are interpreted dynamically depending on the subnorm or style
preferred by the author.

1. Introduction

Among language technology applications, proofreading can be equally challenging as,
for instance, machine translation. In a fair number of cases, errors in texts cannot be
adequately corrected without understanding the intention of the author in the given
context. In practice, however, automatic proofreading systems excel not by their
understanding of the text but by their consistency and tirelessness in processing high
volumes without becoming 'blind' to relatively simple errors as humans tend to become.

But even with limited expectations, the user may may find a proofreading system
unacceptable if the number of false alarms is higher than the number of actual errors
spotted, or if many suggestions for correction are inappropriate. It is therefore useful to
invest in research aimed at improving the coverage of the system as well as the system's
ability to propose corrections that are appropriate in the given context, whether
grammatical or stylistic.

The SCARRIE project is a language technology project aimed at building high-quality
proofreading tools for the Scandinavian languages (Danish, Swedish and Norwegian).
The project was sponsored by the European Commission through the Telematics
programme. The project ran from December 1996 through February 1999. The
coordinator was WordFinder Software AB (Växjö, Sweden). The other main partners
in the project were the HIT-programme at Universitetet i Bergen, Institutionen för
lingvistik at Uppsala Universitet, Center for Sprogteknologi (København) and Svenska
Dagbladet (Stockholm). Although the projeet aimed at eventual commercial
exploitation, it did involve a great deal of linguistic and computational research.

mailto:desmedt@uib.no
mailto:victoria@uib.no

207

At the end of the project, prototypes and evaluation reports were delivered for these
languages. The prototypes correct simple misspellings and mistypings by means of
advanced spelling and sound based matching criteria. They also have good coverage in
their recognition of new compounds and derivations. Furthermore, they can detect
repeated sequences, correct diacritical marks, correct words in the context of idioms and
multi-word expressions, correct words based on different styles or norms, and perform
limited grammar correction.

We will in the remainder of this paper only report on the Norwegian part of the project.
Earlier publications (Rosén & De Smedt 1998, De Smedt & Rosén 1999) have
highlighted different aspects of the linguistic and computational methodologies which
are at the basis of SCARRIE for Norwegian. In this paper, we concentrate on the
problems of proofreading for a language which shows rich variation not only in the
lexicon but also in grammar. The specific problems related to grammar correction and
style which are discussed below have to our knowledge never before been thoroughly
researched with natural language processing methods.

2. Lexical and inflectional variants in Bokmål

Designing a system for automatic proofreading is difficult for any language, but
Norwegian Bokmål presents a special challenge. Bokmål allows rich variation in the
form of stems as well as inflectional endings. As we will see, this variation has
grammatical consequences. First, we observe that many word stems in Bokmål have
variants, as shown in for instance (1) and (2).

(1) inelk / mjølk (milk)

(2) gress/gras (grass)

There is also variation in inflection, as exemplified in (3) and (4).

(3) bok+en / bok+ci (bookn-DEF)

(4) arbeid+et / arbeid+a / arbeid+de (work-ned)

When computing the possible combinations of different stems and endings, we observe
that the situation becomes more complex and the number of allowed variants increases,
as demonstrated in (5).

(5) melk+en / melk+a / mj0lk+en / mjølk+a (milk+DEF)

When compounding also enters the picture, word forms can easily have a dozen or more
variants. At sentence level it is obvious that even more possible combinations may be
found. Consider sentence (6) containing thirteen words; this sentence as a whole has no
less than 165,888 possible spellings when all combinations of variants are enumerated.

(6) De lavtlønte sykelijemsansatte ble helt utmattet og slukket tørsten med den surnete
fløtemelken.
(The low-paid hospital employees became totally exhausted and quenched their
thirst with the soured cream milk.)

208

Not all combinations of variants are equally acceptable in all contexts, because variation
is not free, but bound to more or less established subnorms within Bokmål. In other
words, for almost all words that have variants, it is the case that the choice between
them is not neutral, but depends on the author’s style. Although the situation is vastly
complex, we have in SCARRIE for Norwegian distinguished between three basic styles:
radical, conservative and neutral. The stem melk, for instance, is conservative or
neutral, whereas mjølk is radical; the ending +en is conservative or neutral, while +a is
radical or neutral. Example (6) has only neutral variants; entirely conservative or
radical variants of this sentence, as well as a great number of inconsistent combinations,
can easily be constructed. As a final remark on basic styles, we mention that SCARRIE
for Norwegian also handles a school book norm (læreboknormalen) in Bokmål, but this
is another, quite complicated story which we will not go into here.

The fact that lexical items are associated with a norm or style value has a number of
consequences. First, the user of a proofreading system should be able to state a
preferred style. The system should be sensitive to that style so that whenever it makes a
suggestion for a correction of a spelling error, it proposes a form that fits with the
author's style. Second, we can observe that some forms are rarely or never used because
they are infelicitous combinations of different styles, such as mjølken in (5), which
combines a radical stem with a non-radical ending. Even though such forms may be
allowed in Bokmål, they will need to be replaced under all major styles (conservative,
neutral and radical) if consistency is to be achieved. Third, variants may have different
grammatical features; this final complication is an important theme of this paper.

3. Lexicon

SCARRIE uses full-form lexicons which contain all inflectional forms of words except
genitives (which are very regular). In order to restrict the system's suggestions for
correction to those word forms that occur in the author's chosen style, it would be
possible to construct separate lexicons for each subnorm. However, since there is
considerable overlap between subnorms, this would be a wasteful and inflexible
solution. Moreover, separate lexicons would not allow straightforward correction of
word forms belonging to other styles than the author's stated preference. Therefore, one
integrated lexicon was constructed with replacements depending on style. Table 1
presents a simple example, consisting of the lexical entries belonging to the lemma bok
(book).

209

Table 1. Lemma f o r (w i t h o u t frequency information)

word form style code compound codes replacement grammar code

bok N N,sg,indef N_f_sg_indef

boka C2 N,sg boken N_f_sg_def

boken C3 N,sg boka N_fm_sg_def

bøkene N N,pl N_f_pl_def

bøker N N,pl,indef N_f_pl_indef

The entries for the indefinite singular hok (book), plural definite bøkene (the books) and
plural indefinite bøker (books) all have a style code N which means they are normal
forms and do not need to be replaced under any styles. The entry for the singular
definite boka (the book) specifies that under style code C2 (conservative), it should be
replaced by boken. Conversely, the entry for boken specifies that under style code C3
(radical), it should be replaced by boka. In other subnorms, both word forms are
acceptable and therefore never replaced. For forms with more variants, the coding in
the lexicon can be quite complex; for more examples from the lexicon, we refer the
reader to Rosén & De Smedt (forthcoming).

We focus now on grammar checking, which obviously relies on grammatical
information associated with lexical entries. The last column in Table 1 contains
grammar codes that are used by a parser which can for instance detect lack of agreement
in the NP, as in (7).

(7) * Den lille bøkene (the little+SG+DEF books+PL+DEF)

Before discussing the grammar codes in the lexicon in more detail, the grammar
correction mechanism itself will first be sketched.

4. Grammar correction in SCARRIE

Various approaches to grammar correction have been tried out for the various languages
covered in the SCARRIE project. The system for Norwegian is based on the CORRie
platform, which has a built-in LR parser based on augmented context free grammar
(Vosse 1992, 1994). Grammar rules for Norwegian were written for use with this
parser. The following kinds of grammatical errors can be automatically corrected by the
Norwegian SCARRIE grammar;

1. Lack of gender, number and/or definiteness agreement between (a) determiner,
adjective phrase and noun in NP, (b) subject or object and nominal or adjectival
complement in S, and (c) noun and postposed possessive in NP.

2. Errors involving (a) the wrong sequence of verb forms in VPs and (b) finite vs.
non-finite verb forms.

3. Errors involving case forms for object pronouns in topicalized position and for
corresponding subject pronouns in inverted position.

Although native speakers of Norwegian would clearly recognize these kinds of errors,
they are not uncommon as results of mistypings and editing routines and are
occasionally overlooked by human proofreaders. An example of lack of gender
agreement is (8), corrected as (9).

(8) * Et morsomt gutt ler. (A(neuter) funny(neuter) boy(masculine) laughs.)

(9) En morsom gutt ler.

Grammar correction of Norwegian in SCARRIE is based on the detection and
correction of mismatches of grammatical features. Error weights attached to phrase
structure rules make it possible not only to find such feature mismatches, but also to
suggest corrections for them. Each feature on the right hand side of a phrase structure
rule may have an error weight associated with it, the default being 1. A weight higher
than 1 indicates that the feature 'carries more weight'. An example of such a rule is (10).

210

(10) NP(Gender Number Definiteness NCase)
-> Det(Gender Number Definiteness:! [dem quant])

AP(Gender _ Number Definiteness)
N(Gender:5 Number Definiteness NCase)

Trying to correct a feature mismatch by changing the gender of the noun will now
produce a total weight of 5, whereas changing the gender of both the determiner and the
noun gives a total of 2. The system chooses the analysis with the lowest error weight,
and looks up the word forms et and morsomt in the lexicon. It will find other word
forms in the same lemmas with the feature masculine, and can therefore suggest the
correction in (9).

The features in the grammar rules refer to features associated with word forms in the
lexicon. However, this coding in the lexicon (cf. the last column in table 1) is not
straightforward. The reasons for this will become apparent after a discussion of
systematic gender variation in Bokmål.

5. Gender systems

Besides the considerable variation in stems and endings. Bokmål has several systems
for gender agreement. We can distinguish between three major gender systems. The
most obvious lexical characteristic is that feminine singular nouns sometimes behave
like masculine ones, both with respect to endings and agreement. This variation is
schematically shown in table 2.

211

Table 2. Main gender systems in Bokmål

3 gender system 2.5 gender system 2 gender system

ei lita bok *ei lita bok *ei lita bok

*en liten bok en liten bok en liten bok

boka mi boka mi *boka mi

*boken min boken min boken min

The first two rows deal with the indefinite form. Here we see that the indefinite form
hok occurs in all styles. However, it agrees with feminine determiners and adjectives in
one system, while it agrees with masculine determiners and adjectives in the other
systems.

The bottom two rows show the definite variants boka and token, which are both
acceptable in the 2.5-gender system. In the 2-gender system, boka is not acceptable,
while token is unacceptable in the 3-gender system. We have outlined above how
lexical entries with replacements can deal with this variation depending on specified
styles. In addition, however, we have to take care of agreement, just like we have to for
the indefinite form.

The main question is, how can we achieve this variation of the treatment of gender,
which not only seems to require different allowable word forms under different styles,
but also different grammatical features for the same entry under different styles? One
might think it was necessary to use multiple lexicons, multiple grammars, or both. We
will show how in fact a more practical and economical solution was devised, consisting
of a flexible interaction between a single lexicon and a single grammar.

This solution requires that lexical entries are coded appropriately to reflect the described
variation. Unfortunately, the consequences of this variation were never taken care of by
lexicographers before the need for a proper natural language processing treatment
manifested itself. In Bokmalsordboken and in NorKompLeks, which the Norwegian
SCARRIE lexicon is based on, all feminine words are coded as both m and/.
Unfortunately, this does not differentiate between those nouns that are obligatorily / i n a
3-gender system (e.g. hok, jente), and those that may be either /n o r / in such a system
(e.g. art, krokodille, nytte, etc.). This coding does not allow for correct agreement in a
3-gender system.

6. Grammatical codes for gender

We wil now turn our attention to the way in which the codes in the lexicon (cf. the last
column in table 1) are related to the features used in the grammar rules. We have opted
to create new codes and add them to the SCARRIE lexicon of fully inflected word
forms. Here we differentiate between the two classes mentioned before: only words like
krokodille are treated as m or/, which means they have the full inflectional pattern of
both genders. All other feminine nouns are treated as only / in the lexicon, except for

212

the form with masculine inflection (e.g. token), which receives a special code/m, as
shown in the last column of table 1.

However, the codes in the lexicon are not to be taken at face value; they are interpreted
by subnorm-dependent translation tables that convert them to the feature structures
required for grammatical analysis. For example, it could be specified that a code as in
(11) is to be translated to the grammatical expression (12) which matches expressions in
rules such as (10).

(11) N_f_sg_indef

(12) N(f sg indef nocase)

The effects of the different gender systems are achieved by using not just one translation
table, but different translation tables dependent on the author's chosen style. An
overview of the subnorm-dependent translations for the relevant entries of the lemma
bok is shown in the table 3 (with the feature nocase omitted for simplicity).

Table 3. Style dependent translations of grammatical codes

word form code in lexicon 3 gender system |2.5 gender system 2 gender system

bok N_f_sg_indef N(f sg indef) |N(m sg indef) N(m sg indef)

boka N_f_sg_def N(f sg def) jN(f sg def) N(m sg def) *

boken N_fm_sg_def N(m sg def) * jN(m sg def) N(m sg def)

When we use the translation table for the 3 gender system, the code for bok in the
lexicon gives rise to the value / for the gender feature. Using grammar rules like (2),
this enforces agreement with a feminine determiner, as it should in this system. In a 2.5
or 2 gender system, the code gives rise to the value m. This enforces agreement with a
masculine determiner.

Next, consider the entries for boka and boken. The forms marked with an asterisk are
not acceptable in the given systems and will be replaced, as was discussed in an earlier
section. The remaining forms are coded such that boka agrees with the feminine and
token with the masculine determiner.

7. Interaction between agreement checking and replacement

The two mechanisms described above, style dependent replacement in the lexicon and
style dependent agreement checking in the grammar, each deal with specific aspects of
the described variation. Still, it is not sufficient to specify these mechanisms
separately. Rather, these mechanisms must interact in order to correct entire phrases
such that not only the resulting word forms are allowed under the given subnorm, but
also appropriate agreement results.

Consider the correction of the phrase boken min in radical Bokmål, for instance. The
phrase is grammatically correct, but the inappropriate use of the word form boken

213

triggers correction. However, simply substituting bokci for boken would result in an
agreement error where there there previously was none: *boka min.

Therefore, after a word form has been substituted, the sentence must be checked
grammatically. Since substituting one word form for another may result in changes in
grammatical features, the new features are used in the syntactic analysis. In the example
given, this may cause detection, and subsequent correction of the lack of agreement. In
this way, substitution of boka for boken triggers also the substitution of mi for min,
resulting in the final correction to boka mi.

8. Parsing and grammatical correction

The usefulness of the approach taken will be shown with the help of a few examples of
how sentence (13) is corrected in different styles.

(13) Heimeleksen din erferdig. (Your homework is finished)

This example contains the word heimeleksen, whieh has a radical stem and a
conservative ending. It will be corrected in different ways depending on style. A
correction in style 2 (conservative Bokmål), as it appears in the output from SCARRIE,
is given in (14).

(14) #l#Heimeleksen din er ferdig.
— 1.Hjemmeleksen

In this correction, the radical form heimeleksen is replaced by hjemmeleksen. There is
no grammatical error in this case. In style 3 (radical Bokmål), however, the same
sentence is corrected differently. The word form heimeleksen must be replaced with
heimeleksa, as shown in (15).

(15) #l#Heimeleksen #2#din er ferdig.
— 1.Heimeleksa 2.di

This correction implies replacing a masculine form by a feminine form. Although the
original sentence was grammatically fine, the replacement heimeleksa has a gender
feature that now is in conflict with that of the determiner. Rules such as (10) detect
such mismatches and the correction of din to di ensues.

A final parsing example (16) is meant to show how insufficient coverage in the
grammar, together with massive lexical and structural ambiguity may lead to problems
in grammar checking.

(16) Resultatet er det vi har kalt for fiksering i problemløsning.
(The result is what we have called fixation in problem solving)

Sentence (16), which is error free, nevertheless receives the suggestions for correction
shown in (17).

(17) Resultatet er det vi #3#har #4#kalt for fiksering i problemløsning.
— 3.har?4.kalte

Parsing this sentence results in no less than 28 trees, none of them error free. The

214

reading which the parser chooses for correction is one in which halt for is analyzed as
the NP halt fo r (called lining). With a better coverage of the grammar, the parser should
have chosen an error free analysis.

9. Results and discussion

The overall results of testing SCARRIE for Norwegian were very favorable compared
to existing systems, as was reported in more detail in Rosén & De Smedt
(forthcoming). Without giving further details on other test results, we mention that
grammar checking was tested on a test suite containing 20 different NP agreement
errors (of several types, including types discussed above), 12 VP errors and 32
style/subnorm errors. All except 2 style errors received perfect corrections.

However, the system's grammar checking exhibits considerable discrepancy between
lab performance, which has shown great potential, and tests on realistic texts, which
show poor reliability. The reasons why grammar checking performs poorly on
authentic texts are the following:

1. The coverage of the grammar is too limited. The projected time for working on
grammar checking was only 4 person months, while the actual time spent on it
was less than 3 person months. Any project aiming at developing a truly wide
coverage grammar from scratch should be measured in person years rather than
months.

2. Lexical and syntactic ambiguity cause a large number of analyses of correct
sentences. For sentences with errors, the number of possible analyses becomes
even larger. It is very difficult for an automatic system to choose the 'proper'
incorrect analysis for correction. We believe that this is a problem not only for
our own approach, but for any grammar checking which is insensitive to
meaning. We think it will also affect shallow parsing systems. Such systems
will, if they are scanning for NPs, always run the risk of wrongly analyzing the
kind of pseudo-phrase shown in example (16).

3. The grammar formalism used by the parser is limited, for instance in its
treatment of long-distance dependencies. It is difficult to attain wide coverage
without at the same time allowing unwanted rule interactions which result in
spurious analyses.

10. Summary and conclusion

From a language technology perspective, we analyzed the problems that variation in
Bokmål poses for proofreading and found new solutions that dealt with the problems in
a systematic and linguistically motivated way. Some parts of the solutions implied
adaptations of the underlying CORRie engine which was used for all languages
involved in the project, while other parts were achieved by a creative and efficient
design of the lexical and grammatical data for Norwegian.

In this paper, we concentrated on correction of NP agreement in Norwegian, for various
reasons. First, an error corpus for Norwegian (Rosén & De Smedt 1998) revealed that a
number of these errors indeed occurs in writing. Second, the CORRie parser which was

215

used has good feature-based mechanisms for handling agreement, which is at the core of
our treatment of NPs. Finally, agreement is non-trivial in Bokmål due to the interesting
variations and therefore its computational processing poses challenging research
questions.

We have described two mechanisms which together handle the variation at the lexical
and grammatical levels. One mechanism makes use of lexical replacement depending
on style. The other mechanism is agreement checking using a robust LR parser and
grammar. We have shown that in Bokmål, both mechanisms are necessary; lexical
replacement in Bokmål is dependent on subsequent agreement checking, because
variant word forms do not necessarily have the same grammatical features.

Of particular importance is the interaction of the grammatical and lexical levels for
handling linguistic variation. By using translation tables dependent on style, we obtain
a flexible interface between the lexicon and the grammar. In fact, multiple lexicons or
multiple grammars are simulated in this way, which is a powerful feature.

Some remarks are to be made on the limitations of the system. First, grammar checking
in SCARRIE for Norwegian slows the system down by a factor of ten compared to
running a spelling check without using the parser. Second, even though the current
grammar checking performs very well on construed examples, it is not reliable on
authentic texts. Due to massive lexical and structural ambiguity, sometimes errors are
not detected, or, even worse, they are corrected to something unintended. Therefore,
realistic grammar checking is legitimately the subject of more in-depth research.

11. References

De Smedt, Koenraad & Rosén, Victoria 1999. Datamaskinell skrivestøtte. In: Birgitta
Lindgren (ed.) Språk i Norden 1999 (pp. 20-32). Oslo: Novus.

Landrø, Marit Ingebjørg & Wangensteen, Boye 1993. Bokmålsordboka (2nd ed.). Oslo:
Universitetsforlaget.

Rosén, Victoria & De Smedt, Koenraad 1998. SCARRIE: Automatisk korrekturlesning
for skandinaviske språk. In: Faarlund, J.T., Mæhlum, B. & Nordgård, T. (eds.) Mons 7:
Utvalde artiklar frå det 7. Møtet Om Norsk Språk i Trondheim 1997 (pp. 197-210).
Oslo: Novus.

Rosén, Victoria & De Smedt, Koenraad, forthcoming. *Er korrekturlesningsevnen di
god? Resultater fra SCARRIE. Proceedings o f MONS 8, Tromsø, Nov. 18-20, 1999.

SCARRIE, Norwegian homepage: http://fasting.hf.uib.no/scarrie/

Vosse, Theo 1992. Detecting and correcting morpho-syntactic errors in real texts. In;
Proceedings o f the Third Conference on Applied Natural Language Processing, Trento
(pp. 111-118). Association for Computational Linguistics.

Vosse, Theo 1994. The word connection. Enschede: Neslia Paniculata.

http://fasting.hf.uib.no/scarrie/

Word Alignment Step by Step

Jorg Tiedemann

Department of Linguistics, Uppsala University

ioere(a)slD.ling.uu.se

Abstract

In this paper the current stage o f the Uppsala Word Aligner (UWA) is described. The system is developed
within the project on parallel texts, PLUG, which has its focus on the analysis o f bi-lingual text
collections with Swedish either as the source or the target language. UWA comprises a set o f knowledge-
lite approaches' for word alignment and lexicon extraction. A distinctive feature is its modularity. In the
article, the main principles o f the alignment software are introduced, different configurations and
approaches are described, and examples o f alignment results are presented.

1. Introduction

}Vord alignment aims at the identification of translation equivalents between linguistic
units below the sentence level within parallel text (Merkel 1999), mainly bilingual text
ibitext). Those units include single-word units (SlVUs) and multi-word units {MWUs)
and will be referred to as link units further on. The basic terminology for describing
parallel text and word alignment in this paper follows Ahrenberg et al (1999) and
Ahrenberg et al (forthcoming). In particular, each word correspondence in the bitext
describes a link instance, or simply a link. A pair of link units that is instantiated in the
bitext will be referred to as link type. Word alignment systems usually assume
segmented bitext {sentence aligned bitext). Common bitext segments are sentence
fragments, sentences, and sequences of sentences that have corresponding units in the
translation.

Dep>ending on its purpose, a word alignment system attempts to maximize the number
of discovered links (-> word instance alignment) (e.g. Ahrenberg et al 1998, Melamed
1999) or the number of extracted link types (-> bilingual lexicon extraction) (e.g
Melamed 1995, Resnik and Melamed 1997, Tiedemann 1998a). Lexicon extraction
aims at providing correct translations whereas word alignment has to deal with
insertions, deletions, and other modifications within the bitext as well. Furthermore,
word alignment systems may focus on specific types of link units, e.g. terms (Dagan
and Church 1994, van der Eijk 1993) and collocations (Smadja et al 1996).

The task of word alignment is not trivial especially because it goes beyond simple one-
to-one word correspondences in many cases. Multi-word units (MWUs) have to be
handled due to the use of non-compositional compounds, associated idiomatic
expressions, multi-word names and so on. The difference in compounding between
different languages increases the difficulties with the identification of appropriate

217

correspondences further. In addition, the text type is decisive for the word alignment
process. Technical text tends to include specific terms and simple structures that are
translated directly while e.g. literary texts include many language-specific idioms.

Concurrently, Martin Kay’s proposal for approaching machine translation can be
applied to word alignment as well:

“The keynote will be modesty. At each stage, we will do only what we know we can do
reliably. Little steps for little feet!” (M.Kay 1980)

The alignment of MWUs can be approached in different ways. Smadja et al (1996)
propose the compilation of source language collocations using statistical co-occurrence
measures {static segmentation). The appropriate correspondent is found by iterative
extension of the link unit in the target language segment {dynamic segmentation).
Another approach applies collocation lists for both languages, which have been
compiled in advance from the bitext (Ahrenberg et al 1998, Tiedemann 1998). MWUs
are then handled like single tokens for both languages. A third possibility is to expand
link units iteratively for both languages in order to find the most appropriate link.
Melamed (1997) uses iterative processing in order to optimize the underlying translation
model. The iteration is alternated in order to cover MWUs in both languages.

The word alignment system, which is introduced in this paper, supports all the three
approaches to text segmentation as far as contiguous phrases are concerned. The
approach to dynamic segmentation differs from Melamed in the usage of ranked
candidate lists instead of translation models. Furthermore, classified stop word lists are
used for improving the result and reducing the search space.

2. The Uppsala Word Aligner (UWA)

The Uppsala Word Aligner is developed within the co-operative project on parallel
texts, PLUG^ (Sågvall Hein, forthcoming). The goal of PLUG is to develop, apply, and
evaluate software for the alignment and generation of translation data. Word alignment
is one of the major issues at hand. UWA is based on earlier studies on bilingual lexicon
extraction (Tiedemann 1997, 1998a). It combines several knowledge-lite approaches to
word alignment. The system is integrated into the Uplug toolbox (Tiedemann
forthcoming), which provides a convenient environment for the work with modular
corpus tools.

As mentioned earlier, word alignment walks with small feet. Therefore, the proposal is
to combine different approaches, to collect available knowledge sources, and to reach
the goal by little steps.

218

The principles of baby-steps

1. Prepare carefully before taking the first step.
2. Use all available tools that can help.
3. Check alternatives before taking the next step.
4. Take safe steps first; try risky steps later.
5. Remove everything that is in the way.
6. Improve walking by learning from previous steps.
7. Reach the goal with many steps rather than one big one.
8. Continue trying until you cannot get closer.

Based on these general principles, UWA was designed as a modular and iterative (rule
6+8) system. The bitext runs through initial pre-processing steps before the alignment
starts (rule 1). Alignment candidates are collected from any appropriate source (rule 2).
Candidates are ranked by their reliability, e.g. association scores (rule 3). The most
reliable candidate is aligned first (rule 4). The alignment process is split into a sequence
of separated steps (rule 7). Aligned link units are removed from the search space (5).

In the following the three main phases of the UWA are described: text segmentation,
candidate collection, and alignment of link units.

2.1 Text Segmentation

UWA assumes sentence-aligned bitexts. However, an initial sentence alignment step
can be added.

UWA provides modules for the work with static and dynamic text segmentation. In the
case of dynamic segmentation, the text will be simply tokenized, i.e. segmented into
SWUs and punctuation marks. In case of static segmentation, this phase accounts for a
subsequence segmentation of the bitext into link units. It includes tokenization, the
recognition of MWUs, and the actual segmentation of the text into link units. The
recognition of MWUs can be automated. UWA applies iterative processing for the
compilation of word collocations. The association between word units and their
subsequent words is measured in terms of mutual information scores. As proposed in
Ahrenberg et al (1998), classified lists of functional words are used to reduce search
space and to exclude ungrammatical constructions. Consider the small example of
classified stop words for English phrase generation, which is illustrated in figure 1.

Figure 1: Classified stop word lists (lower case).
skip token =
skip at = '(or,and,but,not)'
skip before = '(i,you,he,she,it,we,they)'
skip after = '(mine,yours,his,hers,its,ours,theirs)
non-phrase-starter = '(my,your,his,her,our,their)'
non-phrase-ender = '(the,a,an)'
skip at string type = '(numeric)'

219

Stop words are divided into 6 types. ‘Skip token' items are not considered at all in any
segmentation. Furthermore, the segmentation will stop at 'skip at’ tokens. They are
considered to be single word units and the segmentation process continues with the
subsequent token. ‘Skip before' defines link unit breaks in front of each instance of each
word that is specified. Similarly, ‘skip after' defines breaks after each instance of words
in the list. ‘Non-phrase-starter’ and ‘non-phrase-ender’ are not allowed in the
beginning or at the end of any phrase, respectively. However, those words may appear
within phrasal constructions as e.g. in ‘in my mind’ or ‘in a row’. Note, that the definite
article is allowed in the beginning of a phrase. In this way correspondences between
definite forms of English and Swedish nouns can be recognized^. Furthermore, each
category may include all tokens of a certain string type. In the example above, all
numeric tokens will be added to the ‘skip at’ list. In cases of overlapping definitions the
stronger restriction is chosen. In the current stage of the system only four of the classes
above are used: ‘skip token’, ‘skip at’, ‘non-starter’, and ‘non-ender’.

In figure 2 a sample of an automatically generated list of English collocations is
presented. It is based on an English subtext from the PLUG corpus (Tiedemann 1998b)
with about 66,000 words. The minimal frequency was set to 4.

Figure 2: Generated phrases with frequency>4 (case-folded).
MI f req collocation
10.039 4 the yom kippur
10.039 4 raymond aron
10.039 4 danny kaye
9.717 5 yom kippur
9.717 4 the golan heights
9.717 4 golan heights
9.454 e world war ii
9.454 6 the mishkenot sha
9.454 4 lyndon Johnson
9.454 4 american public opinion
9.395 4 justice cohn
9.231 7 tel aviv
9.231 7 mishkenot sha
9.231 5 the ottoman empire
9.231 5 ottoman empire

In the current stage, the system provides contiguous phrases only. Static text
segmentation applies a simple left-to-right process. It starts with the left-most token in
the bitext and looks for the longest valid link unit. The segmentation continues to the
right of the last validated link unit until the complete bitext is processed. Here, single
word units always represent valid link units and sentence breaks always mark the end of
the current link unit.

220

2.2 Identification and Collection of Candidate Pairs

In this part the system compiles and collects translation equivalents. Sources are pre­
compiled collections and generated lists of candidate pairs. In the current implementation,
UWA applies the following sources:

• pairs of associated word units (applying co-occurrence measures)
• cognate lists (applying string similarity measures)
• single word bitext segments
• pairs of low frequency units
• machine readable bilingual dictionaries (MRBDs)
• previously aligned word pairs (iteration)

Collections of candidate pairs are compiled by investigations on the association between
link units. UWA applies co-occurrence measures and string similarity scores in order to
find alignment candidates. The number of possible candidates is reduced by some general
restrictions in order to improve the performance:

link distance', link units have to occur within a certain distance between their
positions in the bitext segment

string length', each link unit has to exceed a minimal length
length difference ratio (LDR)'. the ratio between the length of the shorter link unit

and the length of the longer link unit has to pass a certain threshold value
string type', each link unit has to present a certain string type (e.g. ‘contains at

least one alphabetic character’)
frequency', the number of occurrences of each link unit has to exceed a certain

value (for co-occurrence measures only)
co-occurrence frequency: each pair of link units has to co-occur at least a certain

number of times (for co-occurrence measures only)

The value of each of the parameters above can be adjusted to the type of investigation in
progress. Certainly, string length and LDR should be restricted for investigations on string
similarity, whereas frequency thresholds are important for co-occurrence measures.

UWA supports three word association scores: the Dice coefficient, mutual information,
and t-score. The current investigations were focused on the application of the Dice
coefficient.

2 prob{S, T)Dice = -
prob{S) + prob{T)

In our case S and T represent the link units in the source and the target language under
consideration. The probabilities of S and T to occur in the text, and the probability of both
units to co-occur in the same bitext segment (sentence alignment) can be estimated by
appropriate frequency counts. Simple stemming functions are used in order to reduce the
inflectional variety of words in different languages and to improve the statistical
calculations.

221

String similarity can be measured by different metrics (Melamed 1995, Borin 1998).
UWA uses the Longest Common Subsequence Ratio (LCSR). UWA applies dynamic
programming for computing the length of the longest common subsequence (LCS) of two
strings (Stephen 1992). This value, divided by the length of the longer string, provides a
measure for string similarity between them. In figure 2, the LCSR calculation is
illustrated. In the figure, the application of the algorithm with MWUs is demonstrated as
well.

Figure 2: The longest common subsequence ratio of ‘see example’ and ‘se exempel’.

s e e e X a m P 1 e
s L 1 1 1 1 1 1 1 1 1
e 1 2 2 2 2 2 2 2 2 2

1 2 ' 2 H 3 3 3 3 3 3 3
e 1 2 3 3 Wi 4 4 4 4 4 4;
X 1 2 3 3 4 5 5 5 5 5
e 1 2 3 3 4 5 5 5 5 5 5
m 1 2 3 3 4 5 5 1 * 6 6 6
p 1 2 3 3 4 5 5 6 ■ 7 7
e 1 2 3 3 4 5 5 6 7 7
1 1 2 3 3 4 5 5 6 7 8_

LCSR = ■
length[LCS(S^,S^)]

max[length{S^),length(S2)]
= 8/11 = 0.72

Further investigations on string similarity metrics have been carried out (Tiedemann
1999) but they have not yet been applied in the word alignment process.

Another source of alignment candidates can be found in single word bitext segments.
UWA considers each bitext segment with exactly one link unit in one language to be a
valid alignment candidate.

Low frequency link units cannot be recognised by statistical association scores. However,
they represent a large portion of general text corpora. UWA applies a simple heuristic in
order to extract alignment candidates of low frequent text units. Assuming two frequency
thresholds // and U with /p < the system removes all units that occur less than /; times in
the complete text from each bitext segment. Now, each bitext segment with exactly one
remaining link unit on each side is considered to be a valid alignment candidate, if both
link units occur less than 0 times. However, finding appropriate values for ti and is not
trivial. Mainly, the distance between ti and t2 is significant for the quality of extracted
pairs.

Furthermore, MRBDs of any origin can be added to the collection of alignment
candidates. Certainly, their quality is decisive for the quality of the word alignment. This
includes that the chosen MRBDs should be suitable to the type of text under
consideration.

222

As mentioned earlier, UWA supports dynamic text segmentation. If this alternative is
chosen, the system generates all combinations of possible link units. The number of
possible units can be reduced drastically by the use of classified stop word lists. The
same principles as for static text segmentation are applied (except co-occurrence
thresholds). Consequently, only contiguous phrases are identified. Association scores
are computed for each possible link unit combination. This includes co-occurrence
measures as well as string similarity measures. In this way, a list of alignment
candidates is collected that includes all link unit combinations that pass a certain
threshold value.

2.3 Word Alignment

The actual word alignment is based on the previously collected alignment candidates.
Each bitext segment runs through a sequence of alignment steps. Candidates of word
instance alignments can be compiled by associating possible link units. These units may
include parts of the static segmentation or may be compiled dynamically. The same
restrictions as in the candidate collection phase are applied in order to reduce the search
space.

The alignment starts with the most reliable candidates. Each aligned token is removed
from the text and only non-aligned tokens remain for the next step. In the current version
of the system, 9 alignment steps are defined:

1 . align one token units
2 . align identical numerics
3. align cognates (string similarity scores, high threshold)
4. align strongly associated units (co-occurrence measures)
5. align low frequency pairs
6 . align pairs from MRBDs
7. align cognates (string similarity scores)
8 . align associated units (co-occurrence measures)
9. align remaining one token units

Each alignment step can be adjusted by several parameters such as LDR, link distances,
string length and type. The alignment candidates are ranked by their probability (if an
appropriate value is defined, e.g. Dice scores) and the most reliable pairs will be aligned
first. Position weights can be used to modify probabilistic scores. The distance between
the actual position and the estimated position of the aligned link unit, multiplied with a
certain factor, is used to reduce the association score of each candidate pair. The
reduction factor can be adjusted for each alignment step separately.

2.4 Iteration

Previously aligned word pairs that have been removed from the text can be added to the
collection of alignment candidates (principle 6). The iteration process can be described as
follows:

223

1 . compile a bilingual lexicon from previously aligned words
2 . compute alignment candidates by means of word association scores using

the remaining tokens in the corpus
3. start the word alignment process all over again including an additional

alignment step that applies the newly compiled lexicon
4. continue with (1) until no new alignments can be found (principle 8)

2.5 Evaluation

UWA stores information about each link. Each aligned unit is represented by a unique
identifier corresponding to its origin in the bitext and its byte-span within the text
relative to the beginning of the bitext segment. Reference data in form of a “gold
standard” were manually defined for each bitext under consideration. UWA includes an
evaluation module that compares results from a word alignment process with the gold
standard. The module produces a protocol with information about each pair from the
gold standard and summarizes the alignment result by counting the number of correct,
partially correct, incorrect, and not aligned pairs. Finally, evaluation metrics are
calculated. In this paper, recallpwA, precisionpwA. and F-measure as their geometric
mean were applied as proposed in Ahrenberg et al (forthcoming). Furthermore,
information about the actual alignment step is stored for each aligned pair. In this way,
the alignment process can be retraced and the quality of each step be investigated.

3. Experiments

UWA was tested with English/Swedish and Swedish/German bitexts from the PLUG
corpus. For an illustration, word alignment results from an English->Swedish sub­
corpus are presented here. The bitext is a literary text of some 130,000 words'*. The gold
standard comprises 500 random source language units that were linked manually using
the Plug Link Annotator (Merkel et al forthcoming). In table 1, results of several word
alignment experiments with different UWA settings are summarized.

precisionpwA (%) recallpwA (%) F {%) time (min)®
static, no iteration 82.28 32.00 46.09 70

static 78.73 42.22 54.96 108
static+steps 79.88 43.91 56.67 115

semi-dynamic 77.34 43.05 55.32 131
semi-dynamic -rsteps 78.84 44.77 57.11 131

dynamic 78.73 43.80 56.28 250
dynamic -rsteps 78.27 44.29 56.57 261

parameter optimisation -rMRBD 83.51 51.61 63.80 132
Table 1; Word alignment results for different UWA configurations.
The differences between each alignment configuration need to be explained. The first
experiment represents the most basic configuration without iteration. The first three
experiments apply static text segmentation only. Dynamic segmentation was applied in
calculating string similarity measures and in the word alignment phase for the alignment

224

experiments that are denoted with semi-dynamic. The two dynamic approaches apply
additionally dynamic text segmentation for the compilation of associated link
candidates. The term +steps indicates the use of all alignment steps as described in
section 2.3. The other experiments, except the last one, apply a simplified alignment
procedure with one step for each candidate collection only. In the last approach, an
empirically optimized UWA configuration and an additional basic dictionary were
applied. Here, semi-dynamic text segmentation was used.

The results in table 1 confirm the practical use of the alignment principles that were
described above. The approaches that apply a fine-tuned sequence of alignment steps
(-hstep) contribute to the performance (in terms of F-values) at almost no expense
(considering e.g. the processing time). Furthermore, the combination of static and
dynamic text segmentation seems to be the most worthwhile approach. However, the set
of alignment parameters has to be investigated further in order to discover potential
improvements.

4. Conclusions

The Uppsala Word Aligner represents a highly adjustable word alignment system for
fast and robust alignment of words and contiguous phrases from bilingual parallel texts.
It supports different configurations and parameter settings for systematic investigations
on translation units below the sentence level. The system applies knowledge-1 ite
approaches that can be adjusted to different language pairs easily. Furthermore,
supplementary modules and knowledge sources can be added. UWA is integrated in a
modular corpus toolbox that provides convenient tools for experimentation, generation,
and data organisation. It also includes a module for automatic evaluation using a
previously defined gold standard. Thus, empirical investigations of different approaches
and configurations are supported in a very efficient way.

UWA is implemented mainly in Perl and was tested on Linux. It will be available for
academic research purposes at the end of the PLUG project.

' Knowledge-lite approaches in this case comprise techniques with minimal linguistic resources needed.

 ̂The PLUG project is jointly funded by ‘The Swedish Council for Research in the Humanities and Social
Sciences” HSFR and ‘The Swedish National Board for Industrial and Technical Development” NUTEK.

 ̂The definite form of Swedish nouns is created by morphological modification.

The word count includes both languages.

’ The processing time includes phrase generation (8:42 min) and cognate extraction (23:54 min for static
segmentation and 39:59 min for dynamic segmentation). However, these data are reusable and therefore,
do not need to be compiled again for each alignment experiment.

225

References

Ahrenberg, L„ Andersson, M. and Merkel, M. 1998. A simple hybrid aligner for
generating lexical correspondences from parallel texts. In Proceedings o f
COLING-ACL '98, Montreal, Canada, pp. 29-35.

Ahrenberg, L., Merkel, M., Sågvall Hein, A., and Tiedemann, J. 1999. Evaluating LWA
and UWA. PLUG deliverable 3A.1. Internal report.

Ahrenberg, L., Merkel, M., Sågvall Hein, A., and Tiedemann, J. forthcoming.
Evaluation of Word Alignment Systems. In Proceedings o f the International
Conference on Language Resources and Evaluation, LREC-2000, Athens, Greece,
2000.

Borin, L. 1998. Linguistics isn't always the answer: Word comparison in computational
linguistics. In Proceedings o f the 77'* Nordic Conference on Computational
Linguistics NODALI98, Center for Sprogteknologi and Department of General
and Applied Linguistics, University of Copenhagen, pp. 140-151.

Dagan, I. and Church, K. W. 1994. Termi^ht: Identifying and Translating Technical
Terminology. In Proceedings o f the 4"' Conference on Applied Natural Language
Processing, Stuttgart/Germany.

van der Eijk, P. 1993. Automating the Acquisition of Bilingual Terminology. In
Proceedings o f the 6 '* Conference o f the European Chapter o f the ACL, 1993,
Utrecht/The Netherlands.

Kay, M. 1980. The Proper Place of Men and Machines in Language Translation. Xerox
PARC Working Paper, reprinted in Machine Translation 12 (1-2), 1997, pp. 3-23

Melamed, I. D. 1995 Automatic Evaluation and Uniform Filter Cascades for Inducing
N-best Translation Lexicons. In Proceedings o f the 3'”'̂ Workshop on Very Large
Corpora, Boston/Massachusetts.

Melamed, I. D. 1997. Automatic Discovery of Non-Compositional Compounds in
Parallel Data. In Proceedings o f the z Conference on Empirical Methods in
Natural Language Processing (EMNLP-2), Providence.

Melamed, I. D. 1999. Bitext Maps and Alignment via Pattern Recognition.
Computational Linguistics, 25(1), pp. 107-130.

226

Merkel, M., Andersson, M., and Ahrenberg, L. forthcoming. The PLUG Link Annotator
- Interactive Construction of Data from Parallel Corpora. In Proceedings from the
Parallel Corpus Symposium, April 22-23, 1999, Uppsala University.

Merkel, M. 1999. Understanding and enhancing translation by parallel text processing.
Linköping Studies in Science and Technology. Dissertation No. 607. Linköping
University. Dept, of Computer and Information Science.

Resnik, P. and Melamed, I. D. 1997. Semi-automatic acquisition of domain-specific
translation lexicons. In Proceedings o f the Conference on Applied Natural
Language Processing, Washington, D.C.

Smadja, F., McKeown, K. R., Hatzivassiloglou, V. 1996. Translation Collocations for
Bilingual Lexicons: A Statistical Approach. Computational Linguistics, 22(1).

Stephen, G. A. 1992. String Search. Technical report TR-92-gas-Ol, School of
Electronic Engineering Science, University College of North Wales, Gwynnedd.

Sågvall Hein, A. forthcoming. The PLUG Project: Parallel corpora in Linköping,
Uppsala, Göteborg: Aims and achievements. In Proceedings from the Parallel
Corpus Symposium, April 22-23, 1999, Uppsala University.

Tiedemann, J. 1997. Automatical Lexicon Extraction from Aligned Bilingual Coipora.
Diploma thesis, Otto-von-Guericke-University, Magdeburg, Department of
Computer Science.

Tiedemann, J. 1998a, Extraction of translation equivalents from parallel corpora. In
Proceedings o f the i f ' ' Nordic Conference on Computational Linguistics
NODALI98, Center for Sprogteknologi and Department of General and Applied
Linguistics, University of Copenhagen, pp. 120-128.

Tiedemann, J. 1998b. Parallell corpora in Linköping, Uppsala and Göteborg (PLUG).
Work package 1. PLUG report. Department of linguistics, Uppsala university.

Tiedemann, J. 1999. Automatic Construction of Weighted String Similarity Measures.
In Proceedings o f the Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Coropora, University of Maryland, College
Park/MD,pp. 213-219.

Tiedemann, J. forthcoming. Uplug - A Modular Corpus Tool for Parallel Corpora. In
Proceedings from the Parallel Corpus Symposium, April 22-23, 1999, Uppsala
University, Sweden.

227

Appendix A: UWA in the Uplug environment

Appendix B: MWU links from the English/Swedish test corpus (random sample)

source
Kippur War
The Prime Minister
Kippur attack
Kosher food
Kultur paradise
capitalist democracy
careers be
central tragedy
did mean
The Soviet Union
anything
centralized state capitalism
The Times
chamber music
The United States
choke points
The West Bank
circus style
The White House
citrus green
The Zionist movement
citrus groves

ta rg e t
Kippur-kriget
Premiärministerns
Kippur-anfallet
Koschermat
Kultur-paradis
kapitalistiska demokratierna
karriärer
centrala tragedi
betydde
Sovjetunionen
vad som helst
centraliserad statskapitalism
New York Times
kammarmusik
The United States
chokepunkterna
Västbanken
cirkusstil
Vita huset
citrusgrönska
Sioniströreisen
citruslundarna

On Using the Two-level Model

as the Basis of

Morphological Analysis and Synthesis of Estonian

Heli Uibo

Institute of Computer Science, University of Tartu, Estonia

heli u@ut.ee

The paper deals with the problems of describing the Estonian morphological system in the two-level

formalism, developed by Kimmo Koskenniemi, The outlines of Estonian morphology are drawn. The

basics of the two-level model are given and illustrated with real examples from the experimental Estonian

two-level morphology (EETwoLM) composed by the author. A detailed example of step-by-step

morphological synthesis is given referring to all the relevant lexicons and rules. The compilation and

testing processes using the XEROX finite-state software tools are described. Examples of morphological

analysis and synthesis are demonstrated. The present stage of the system is characterised and the future

perspectives are drawn. Finally, the suitability of the two-level model for the description of Estonian

morphology is discussed.

1. Introduction

The module of morphological analysis and/or synthesis is unavoidable in any

language engineering tool for Estonian because of its rich morphology. For example, in

information retrieval systems, it is usually desirable to make queries using semantic

entities, not using special morphological forms of a word. As the word stem often has

several shapes in Estonian, the morphological component should belong to any

information retrieval system.

Example 1. To make a query for all occurrences of the word “rida” (“row”), without a

morphological synthesiser, three different queries are needed (we assume the possibility

to add star (*) to the end of the stem instead of inflectional suffices):

mailto:u@ut.ee

rida* Cstem in strong grade)

rea* Cstein in weak grade)

ritta (singular additive (“to the row”), quite often used with this word)

The development of EETwoLM is not the first attempt to computerise the

morphological analysis and synthesis of Estonian. Ulle Viks (1994) has done important

research in the field of morphological classification of Estonian on the basis of pattern

recognition theory starting from the 1970s. Viks (1992) has compiled the first

morphological dictionary for Estonian as a practical output of the investigations.

Further, E. Kuusik and U. Viks (1998) have implemented the rule-based morphological

analysis and synthesis for Estonian. Heiki-Jaan Kaalep (1996) has developed the speller

for Estonian using the results of Viks (1992).

Nevertheless, the growing popularity of the two-level model encourages us to

consider its suitability to Estonian morphology. From the practical point of view, the

appropriate description of Estonian morphology in the form of lexicons and two-level

rules makes the significant move towards the application of Xerox language engineering

tools to Estonian language (www.xerox.com/xrce/mltt).

229

2. The Brief Overview of Estonian Morphology

Estonian language is a member of Finno-Ugric family and is a close relative to

Finnish. Estonian morphology is complex - inflected word-forms are built using both

agglutination and stem flexion. Nouns have 14-15 cases. Plural forms often have

parallel forms.

Table 1. Noun paradigm (word “fcasj” (“hand”))-

Case Abbrev- Singular Plural

iation Word-form Meaning Form Meaning

Nominative N kdsi (the) hand kded hands

Genitive G kde of the hand kdte of the hands

http://www.xerox.com/xrce/mltt

230

Partitive P kätt hand (partial object) käsi etc.

Illative 111 käesse into the hand kätesse or käsisse

Inessive In käes in the hand kätes or käsis

Elative El käest out of the hand kätest or käsist

Allative All käele (on)to the hand kätele or käsile

Adessive Ad käel (up)on, at the hand kätel or käsil

Ablative Abl käelt from the hand kätelt or käsilt

Translative Trl käeks for, as the hand käteks or käsiks

Terminative Ter käeni up to, until the hand käteni

Essive Es käena as the hand kätena

Abessive Ab käeta without the hand käteta

Comitative Kom käega with the hand kätega

Additive Adt kätte (in)to the hand -

Verbs have the following categories in Estonian; person (singular 1st to plural 3rd),

voice (personal, impersonal), tense (present, imperfect, perfect, past perfect), mood

(indicative, conditional, imperative, quotative).

Table 2. Part of the verb paradigm - infinite verb forms and indicative mood of

the finite verb forms (word “muutma" (“to change”)).

1. Infinite (declined) forms

Morphological meaning Abbreviation Example

Supine (illative) Sup muutma

Supine inessive Sup In muutmas

Supine elative Sup El muutmast

Supine translative Sup Tr muutmaks

Supine abessive Sup Ab muutmata

Supine impersonal Sup Ips muudetama

Infinitive Inf muuta

Gerund Ger muutes

231

Participles (Pts):

Present (Pr)

participle

Personal (Ps) Pts Pr Ps muutev

Impersonal (Ips) Pts Pr Ips muudetav

Past (Pt)

participle

Personal Pts Pt Ps muutnud

Impersonal Pts Pt Ips muudetud

2. Finite (conjugated) forms

2.1. Indicative mood (Ind)

Personal voice (Ps)

Tense Number Person

Present Affirm- Sg 1 . Ind Pr Ps Sgl muudan

ation 2 . Ind Pr Ps Sg2 muudad

3. Ind Pr Ps Sg3 muudab

PI 1 . IndPrPsPll muudame

2 . Ind Pr Ps P12 muudate

3. Ind Pr Ps P13 muudavad

Negation (Neg) Ind Pr Ps Neg ei muuda

Imperfect Affirm- Sg 1 . Ind Ipt Ps Sgl muutsin

ation 2 . Ind Ipt Ps Sg2 muutsid

3. Ind Ipt Ps Sg3 muutis

PI 1 . Ind Ipt Ps Pll muutsime

2 . Ind Ipt Ps P12 muutsite

3. Ind Ipt Ps P13 muutsid

Negation Ind Ipt Ps Neg ei muutnud

Present Affirmation IndPfPs on muutnud

perfect Negation Ind Pf Ps Neg ei ole muutnud

Past Affirmation Ind PpfPs oli muutnud

perfect Negation Ind Ppf Ps Neg ei olnud muutnud

Impersonal voice (Ips)

Present Affirmation Ind PrIps muudetakse

232

Negation Ind Pr Ips Neg ei muudeta

Imperfect Affirmation Ind Ipt Ips muudeti

Negation Ind Ipt Ips Neg ei muudetud

Present

perfect

Affirmation Ind PfIps on muudetud

Negation Ind Pf Ips Neg ei ole muudetud

Past

perfect

Affirmation Ind PpfIps oli muudetud

Negation Ind Ppf Ips Neg ei olnud muudetud

3. The Outlines of the Two-level Model, Dlustrated with Examples in

Estonian

The two-level morphology model was proposed by Kimmo Koskenniemi in his

dissertation (1983). By now, the model has been used for morphological parsing of

English, German, Swedish, Norwegian, Danish, Finnish, French, Turkish, Swahili etc.

The main features of the two-level model are the following:

• The language description, consisting of rules and lexicons, is separated from the

application programs.

• The model is bidirectional - it is oriented to morphological analysis as well as to

morphological synthesis.

• The two-levelness of the model means that the deep representations of morphemes

rather than morphemes themselves are maintained in lexicons. From those all the

real word-forms can be produced with the help of two-level rules and links between

lexicons.

Example 2. The lexical and surface representation of the word-form "kaob"

(“disappears ”).

Lexical representation: k a D u $ -i- b

Surface representation: k a 0 o 0 0 b

The surface representation of a word-form is theoretically a sequence of phonemes.

Practically, it tends to be the written form because of the better availability of

written texts, as mentioned by Koskenniemi (1997:101).

233

The lexical representation can contain

a) surface phonemes (“k”, “a”, “u”, “d”, “b”);

b) lexical phonemes (“D” corresponds to d in the strong grade and either

disappears or assimilates in the weak grade);

c) special symbols for morpheme boundaries and morphophonological features

(“+” indicates the boundary between stem and inflectional ending, “$” is the

weak grade marker).

The representations are aligned with zero-characters.

• Rules and lexicons are two major parts of the model.

• The set of rules is like a filter, through which the lexical representation can be seen

as surface representation and vice versa.

• The rules are not ordered and all of them have to be satisfied at the same time.

• Rules are implemented as finite-state automata.

• A finite-state automaton can be represented as a regular expression, thus the rules

are coded as regular expressions.

Example 3. Example of a rule: "The disappearance of D in the weak grade"

Maud-laua

\siirdama-siirata

Ivedama-vean, rida-rea

\ode-oe, podeda-poen

\kaduda-kaon

D:0 <=> SylBg Vow Vow: _ (StemFinVow:) %$:;

Vow Vow Liq _ StemFinVow %$:;

[e I i: I u: I ii:] _ StemFinVow: %$: ;

6 _ e %$: ;

[Cons - [ris]] a _ u: %$: ;

The rule should be read as “The lexical symbol D corresponds to zero-character (i.e.

disappears on the surface) in one of the following contexts and only there.” In a context

description the underline character denotes the place of the pair D:0 between the

left and right contexts.

There is a possibility to define sets of characters to make the rules shorter and more

readable, e.g. Vow stands for vowels, StemFinVow for possible stem final vowels.

Cons for consonants. Sometimes it is also convenient to give names to frequent word

segments, e.g. SylBg means the beginning of a syllable. Note that there is “$” (the weak

grade marker) at the end of each right context, thus the disappearance takes place only

in the weak grade.

234

The exclamation mark indicates the beginning of comments - we have provided every

context with 1 - 2 example-words that help to understand the context.

• The network of lexicons consists of a stem lexicon and a number of small lexicons

describing stem end alternations, inflectional and derivational processes.

• The network of lexicons is implemented as a finite-state transducer.

• A lexical entry includes morphological information, lexical representation and

the name of the next lexicon.

Exampie 4. The structure and co-operation of lexicons.

LEXICON V I1 IConjugation class 1, endings which can be added to infinitive stem

H-Inf:+da #;

+Ger:-i-des #;

+Kvt+Pr:+vat #;

+Ind+Pf:-i-nud #;

-t-Ind+Ipt: Ipt2;

H-Ind-i-Imp+Pr: Imp;

LEXICON Ipt2 !The imperfect tense endings for the word types “elama” and "oppima”

H-Sgl :-i-sin #;

+Sg2:-i-sid #;

+Sg3:-i-s #;

+Pll:-i-sime#;

+P12:+site #;

+P13;-i-sid #;

LEXICON Imp !The endings for imperative mood, except Sg2.

+Sgl:-i-gu#;

+Sg3:+gu#;

+Pll:-t-gem #;

+P12:+ge #;

+P13:+gu #;

Let us illustrate the details of information represented in the lexicons with two records:

235

+Inf
+Ind+Imp+Pr

morphological

information

separator

+ d i
V

lexical

representation

#

Imp

link to the next lexicon

(“#’ - the end of word-form)

If we take the word “dppima" (“to learn”), the LEXICON VII builds the following

forms:

da-infinitive - dppida

gerund - oppides

quotative mood, present tense - oppivat

indicative mood, present and past perfect tense - oppinud

Further word-forms can be built going along the links to the lexicons Ipt2 and Imp;

indicative mood, imperfect tense - oppisin, dppisid, oppis, oppisime,

dppisite

imperative mood, present tense - oppigu, oppigem, oppige

As have been said previously, the model can be the basis for morphological analysis

as well as for synthesis. Both analysis and synthesis mean the sequential application of

the rule automata and the lexical transducer, but in different order, as seen on figure 1 .

Figure 1. Morphological analysis and synthesis in the two-level model.

2o
?
3C
Or
O
o
n
>r
>
2 :
>r
C/3

SURFACE REPRESENTATION
A

RL^ES

V
LEXICAL REPRESENTATION

A

LEXrcONS
A

MORPHOLOGICAL INFORMATION

COW
XH
Z
>-CO

<
y
ooj
0
X
01
O
S

236

4. A Detailed Example of Morphological Synthesis

Example 5. The synthesis of the word-form "kaob" (verb "kaduma", indicative mood,

present tense, singular, 3'̂ '’ person).

Input: "kaduma+V+Ind+Pr+Sg3"

First, we have to find the word “kaduma”

in the root lexicon of verbs. Output: “kaDu”
LEXICON Verb

kaduma+V-.kaDu Nj

LEXICON Pr
+Sgl:-i-n #;
-i-Sg2:-i-d #;
+Sg3:-i-b #;
-i-Pll:+me#;
-i-P12:+te #;
-i-P13:+vad #;

Output: “-Hb”

Thus, moving along the links between lexicons the lexical representation "kaDu$+b"

has been composed.

Next, the rules will be applied. The rule “Disappearance of D” is satisfied with the pair

D:0 in the context k a _ u: $: (see the last context). Thus we get “kaOu$+b”.

Rule "Disappearance of D"
D:0 <=̂ SylBg Vow Vow: _ (StemFinVow;) %$:;

Vow Vow Liq _ StemFinVow %$:;
[e I i: I u: I ii:] _ StemFinVow: %$: ;

6 _ e %$:
ICons- [ris]] a _ u: %$: ; !kaduda-kaob

237

Rule "Lowering of Vowels"
HighVow:LowVow <=> SylBg _DCons; [aleli:lu:](l) %

SylBg Vow DCons: _ %$:;
where HighVow in (u ii i)

LowVow in (o 6 e)
matched;

The second rule accepts the pair u:o in

the context k a D: _ . The result is “kaOo$+b”.

After applying the whole rule set the default pairs “$:0” and “+:0” have their turn. The

result is “kaOoOOb”. After the deletion of zero-characters the surface representation

"kaob" is ready.

5. The Implementation of the Two-level Model Using the XRCE

Software

The rules and lexicons were developed and tested using the XEROX finite-state

tools lexc (finite-state lexicon compiler developed by L. Karttunen (1993)) and twolc

(two-level rule compiler developed by L. Karttunen & K. Beesley (1992)).

The process of testing the correctness and consistency of the lexicons and rules

usually proceeds as follows:

• The rule and lexicon files have to be composed in a word processor in the described

formats.

• Rules coded as regular expressions are compiled to automata with the two-level rule

compiler "twolc". Lexicons are compiled into a lexical transducer with the lexicon

compiler "lexc".

• Next, the rules and lexicons can be composed with the help of the program "lexc".

• There are some possibilities to test the correctness of the language description in the

program “lexc". One can analyse single word-forms using the directive "lookup

<word-form>" and produce word-forms using the directive "lookdown <primary

form-Hmorphological information>"). We can use the directive "random-surf' for

generating word-forms randomly using the existing lexicons and rules.

238

Example 6 . Test of morphological analysis and synthesis using the program lexc.

lex o lookup pead

pea+S+Sg+P (“head”, substantive, singular partitive)

pea+S+Pl+N (“head”, substantive, plural nominative)

pidama+V+Ind+Pr+Sg2 (“must”, verb, indicative mood, present tense, singular, 2'"̂

person)

As we can see, words can be morphologically ambiguous in Estonian. By the way, in

Estonian texts about 50 % of the word-forms are morphologically ambiguous.

lex o lookup ajalehepoisina

aeg-nleht+poiss+S+Sg+Ess

In Estonian compound words the first components usually remain unchanged, while the

last component is subject to inflection. At the same time, pre-components can be either

in the nominative or in the genitive case. There is no general rule for choosing the right

case for the pre-components.

le x o lookdown kallis-i-A+Spr+Pl+El

kalleimaist

kalleimatest

The example demonstrates the existence of parallel forms, i.e. word-forms having the

same grammatical meaning but different forms.

Example 7. Random surface string generation, using the program lexc.

lex o random-surf

Use (s)ource or (r)esult? [r]:

NOTE: Using RESULT.

kaed

pessa

oeldavaid

kohaehe

vanalt

+

+

+
?

+

“hands”

“into the nest”

“said by somebody” (Adj), plural partitive

“the decoration of a place” - strange compound

“from the old” (Adj)

239

pimeduse +

ulejatnuiks ?

eemaltoppijad ?

nahtuta +

laksin +

“of the darkness”

strange compound, hard to translate

“ones who learn from a distance” - slightly strange compound

“without the seen thing”

(I) “went”

To the output of the program approximate English translation as well as signs “+” or “?”

are added. Every normal word-form is followed by If the word-form is not used, it

is marked by The mistakes are caused by the overgeneration of compounds and

derivatives.

6. Results

The experimental two-level morphology for Estonian (EETwoLM) has been composed:

• There are 45 two-level rules in the rule set that deal with stem flexion, phonotactics,

orthography and morphophonological distribution.

• The net of lexicons consists of root lexicons for all word classes containing a total of

=350 different word roots and of over 200 small lexicons describing the stem end

alternations, conjugation of verbs and declination of nouns.

• The lexicons and rules express most of the phenomena occurring in Estonian

morphology.

• The system is consistent in its present stage: we can get correct results to both

morphological analysis and synthesis in the range of word stems occurring in the

root lexicons.

7. Future Perspectives

The coverage of stem lexicons can be enlarged semi-automatically, using the

electronic version of Viks (1992) and the type-detection module developed in the

Institute of Estonian Language (see the webpage www.eki.ee/tarlcvara). To adapt

EETwoLM exactly to the morphological classification after Viks (1994), some changes

have to be introduced into the network of lexicons.

http://www.eki.ee/tarlcvara

240

A consistent and lexically satisfactory description of Estonian morphology in the

two-level formalism can be the basis of automatic morphological analysis and synthesis.

Simultaneously, two-level-morphology-based language engineering software in XRCE

(spelling checker, information retriever a. o) would be applicable to Estonian language.

8. The Estimation of the Suitability of the Two-level Morphology

Model to Estonian Language

During the composition of EETwoLM some features of the two-level model proved

very useful. We have given the overview of them in Uibo (1999:55):

1. Using the lexical representation is an advantage because the lexical entries can

include other information additionally to the pure sequence of letters:

• There is a possibility to use special denotations for phonemes having more than

one surface variant. This is a great advantage, as the type of stem flexion

generally does not depend on the phonemic shape of the stem in the present-day

Estonian - some kinds of stem flexion are not productive any more.

• The lexical information can contain morphophonological features and

morpheme boundaries, which are often used by rules.

2. The rule set is not ordered. The compilation of an ordered rule set would be

complicated because it is difficult to count the influence of all the previous rules in

the sequence to the left and right context.

3. A rule can point to the arbitrarily far context. E.g. there can be a rule which should

check the stem final character, without checking the number of syllables.

4. If a pair occurs in several contexts having nothing common neither in content nor in

form the corresponding contexts can be listed on the right side of one and the same

rule. It prevents from introducing new and meaningless lexical characters. E.g. the

pair "S:0" is possible both in the weak grade of the words with s:0-altemation within

the stem and at the end of a class of words ending with "s". In the first case the

lexical phoneme "S" is situated in between vowels, in the second case it is found at

the end of the stem.

5. The net of lexicons is convenient to handle

• non-phonologically caused stem end alternations (org. "ne/se", "0 /me");

• rules of morphotactics;

• productive derivation and compounding (partly).

However, we have also pointed to some difficulties in Uibo (1999:56) that have

occurred in the course of the description of Estonian morphology in the two-level

formalism:

1. The word class is subject to change during the derivation processes, but the

morphological information is composed moving along the pointers between lexicons

in one direction. Return to the previous steps, thus the deletion and replacement of

the word class is not possible. Now the problem has been solved artificially: the

verb derivatives are in a separate lexicon and for the productively derivable

adjectives the determination of word class has been deferred.

2. It is inconvenient to introduce word lists into the lexicon system that do not coincide

with the inflection types. The lists are needed e.g. for words with exceptional forms,

for words having additive case and short plural, and especially for compound word

production.

The hypothetical solution of the listed problems could be the combination of the two-

level model with another model that would help to overcome the above-listed

limitations.

9. Conclusion

The experiments on EETwoLM have shown that the two-level model is quite usable

for Estonian simple word recognition and production. However, the net of lexicons is

not very well suitable for modelling the derivation and compounding processes. The

efficiency of the implementation of the rules and lexicons as finite-state transducers is

definitely an advantage. Unfortunately, the objective evaluation of EETwoLM is not

possible yet, as the coverage of the lexicons is insufficient for real text processing.

241

References

242

Kaalep, H.-J. 1996. ESTMORF, a Morphological Analyser for Estonian. Estonian in the

Changing World / edited by H. Oim, 43-97. Tartu: University of Tartu, Dept of General

Linguistics.

Karttunen, L. & Beesley, K. R. 1992. Two-level Rule Compiler. Technical Report.

ISTL-92-2. October 1992. Palo Alto, California: Xerox Palo Alto Research Centre.

Karttunen, L. 1993. Finite-State Lexicon Compiler. Technical Report. ISTL-NLTT-

1993-04-02. April 1993. Palo Alto, California: Xerox Palo Alto Research Centre.

Koskenniemi, K. 1983. Two-level Morphology: A General Computational Model for

Word-Form Recognition and Production. Helsinki: University of Helsinki, Dept of

General Linguistics. Publications No. 11.

Koskenniemi, K. 1997. Representations and Finite-State Components in Natural

Language. Finite-state Language Processing / edited by E. Roche and Y. Schabes, 99-

116. Language, Speech, and Communication Series. Cambridge, Massachusetts,

London, England: The MIT Press.

Kuusik, E. & Viks, U. 1998. The Rule-based Morphological Synthesis. Arvutimaailm

(The World of Computers) 1/1998,43-45,63,2/1998, 19-21 (in Estonian).

Uibo, H. 1999. The Estonian Word-Form Analysis and Generation, Using Two-Level

Morphology Model. M.Sc. thesis. Tartu: University of Tartu, Institute of Computer

Science (in Estonian).

Viks, U. 1992. A Concise Morphological Dictionary of Estonian. Tallinn: Institute of

Estonian Language and Literature.

Viks, U. 1994. Classificatory Morphology. Ph.D. thesis. Tartu: University of Tartu, (in

Estonian).

LFG-DOT: Combining Constraint-Based and Empirical
Methodologies for Robust MT

Andy Way,
School of Computer Applications,

Dublin City University.

Email: awayScompapp. dcu. ie

Abstract

The Data-Oriented Parsing Model (DOP, [1]; [2]) has been presented as a promising
paradigm for NLP. It has also been used as a basis for Machine Translation (MT) —
Data-Oriented TVanslation (DOT, [9]). Lexical Functional Grammar (LFG, [5]) has
also been used for MT ([6]). LFG has recently been allied to DOP to produce a
new LFG-DOP model ([3]) which improves the robustness of LFG. We summarize
the DOT model of translation as well as the DOP model on which it is based. We
demonstrate that DOT is not guaranteed to produce the correct translation, despite
provably deriving the most probable translation. Finally, we propose a novel hybrid
model for MT based on LFG-DOP which promises to improve upon DOT, as well as
the pure LFG-based translation model.

1 In trod u ction

Neither of the main paradigmatic approaches to MT, namely rule-based and statistical,
currently suffice to the standard required. Nevertheless, each contains elements which if
properly harnessed should lead to an overall improvement in translation performance. It is
in this new hybrid spirit that our search for a better solution to the problems of MT can be

244

seen. We propose that combining DOP ([1];[2]) with the conventional transfer rules of LFG
([6]) may derive a new model for MT, LFG-DOT, which promises to improve upon DOT, as
well as the pure LFG-based translation model.

2 T h e D O P A rch itec tu re for N L P

DOP language models ([1];[2]) assume that past experiences of language are significant in
both perception and production. DOP prefers performance models over competence gram­
mars, in that abstract grammar rules are eschewed in favour of models based on large
collections of previously occurring fragments of language. New language fragments are pro­
cessed with reference to already existing fragments from the corpus, which are combined
using probabilistic techniques to determine the most likely analysis for the new fragment.

DOP models typically use surface PS-trees as the chosen representation for strings (hence
“Tree-DOP”), but nothing hangs on this choice. However, given that LFG c-structures are
little more than annotated PS-trees allows us to proceed very much on the same lines as
in Tree-DOP, which has two decomposition operations to produce subtrees from sentence
representations: (i) the Root operation, which takes any node in a tree as the root of a new
subtree, deleting all other nodes except this new root and all nodes dominated by it; and (ii)
the Frontier operation, which selects a (possibly empty) set of nodes in the newly created
subtree, excluding the root, and deletes all subtrees dominated by these selected nodes.

(1)
NP VP

NP
John V 1

swims
John

NP
VP

VP V

John
V

V swims
swims

NP VP

V

The full set of DOP trees derived from the sentence John swims are those in (1).

245

Tree-DOP recombines fragments starting from the leftmost non-terminal frontier node,
and replaces this with a fragment having the same root symbol. For instance, assuming the
treebank in (1), John swims has (2) as a possible derivation (among many others);

VP
0

NP
_

NP VP

V John John V

swims swims

(2)

Finally, the chosen probability model for Tree-DOP is based quite simply on the relative
frequencies of fragments in the corpus.

These elements enable representations of new strings to be constructed from previously
occurring fragments in a number of ways. If each derivation t has a probability P(t) (i.e. its
relative frequency), then the probability of deriving a Tree-DOP representation is the sum
of the probabilities of the individual derivations, as in (3):

(3)

#{t I root(t) = root[tij))

The probability of each individual derivation t is calculated as the product of the probabilities
of all the constituent elements (ti, t2 ---tn) involved in choosing tree t from the corpus, as in
(4);

(4)

P{{h,t2...tn)) — n
P(t)

>=1 '/^corpus Pit')

Given these formulae, the probability of the derivation for John swims in (2) is This is
calculated by multiplying together the probability of each of the two tree fragments involved
in the derivation, namely those in (5):

(5) P(t = [NP vp[v[swims]]] | root(t) = S).P(t = [np[John]]| root(t) = NP) =
11 — 1
6"1 6

The probability of the parse of John swims, however, is calculated by summing all derivations
resulting in the parse-tree for the sentence (as (3) shows), which, given the trivial corpus in

246

(1), is 1. However, adding the fragments from a new sentence Peter laughs to the treebank
in (1) allows us now to derive the probability of two new strings - Peter swims and John
laughs - with respect to this small corpus of tree fragments. In this way, it can be seen that
DOP handles unseen data on the basis of previous experience - despite the fact that we have
never seen either new sentence before, we are able to process them compositionally, on the
basis of previously occurring fragments of each in our corpus. Each tree which can play a
part in combining together with other trees to form a representation for a sentence is used
to contribute to the overall probability of that representation given the corpus.

2.1 Opportunities for Hybridity—LFG DOP

DOP-based approaches are necessarily limited to those contextual dependencies actually
occurring in the corpus, which is a reflection of surface phenomena only. Given its facility
to capture and provide representations of linguistic phenomena other than those occurring
at surface structure, the functional structures of LFG have been allied to the techniques
of DOP to create a new model, LFG-DOP ([3]), which adds a measure of robustness not
available to models based solely on LFG. We suggest that this framework has the potential
to be utilised for MT.

As with DOP, LFG-DOP needs to be defined using four parameters. Its representations
are simply lifted en bloc from LFG theory, so that each string is annotated with a c-structure,
an f-structure, and a mapping <j> between them, with well-formedness conditions operating
solely on f-structure, as usual.

Since we are now deeding with (c,f) pairs of structure, the Root and Frontier decomposition
operations of DOP need to be adapted to stipulate exactly which c-structure nodes are linked
to which f-structure components, thereby maintaining the fundamentals of c- and f-structure
correspondence. As in DOP, Root erases all nodes outside of the selected node, except this
new root and all nodes dominated by it, and in addition deletes all 0 -links leaving the
erased nodes, as well as all f-structure units that are not 0 -accessible from the remaining
nodes, reflecting the intuitive notion that nodes in a tree carry information only about the
f-structure elements to which the root node of the tree permits access.

Frontier operates as in DOP, selecting a set of nodes in the newly created subtree, excluding
the root, and deleting all subtrees dominated by these selected nodes. Furthermore, it deletes
all 0 -links of these erased nodes together with any semantic form corresponding to the same

247

SUBJ

TENSE PRES

PRED ‘John’
NUM SG

which illustrates the ability of Root nodes to access certain features (TENSE, here) even after
subnodes have been deleted. (6) can be pruned still further by applying a third, and new
operation. Discard, to the TENSE feature. Discard adds considerably to LFG’s robustness
by providing generalised fragments from those derived via Root and Frontier.

Composition is also a two-step operation. C-structures are combined by left-most substi­
tution, as in DOP, subject to the matching of their nodes. F-structures corresponding to
these nodes are then recursively unified, and the resulting f-structures are subjected to the
grammaticality checks of LFG.

Finally, P {f \ CS) denotes the probability of choosing a fragment /from a competition set CS
of competing fragments. [3] describe four possible competition sets linked to the probability
models for LFG-DOP: (i) a straightforward extension of the DOP probability model where
the choice of a fragment depends only on its Root node and not on the Grammaticality
conditions of LFG; (ii) c-structure nodes must match, and f-structures must be unifiable
if two LFG fragments are to be combined, i.e. taking into account the LFG Uniqueness
condition as well as the Root category; (iii) furthermore, the LFG Coherence check is enforced
at each step; and (iv) finally, all LFG grammaticality checks, as well as the DOP category­
matching stipulation, are left to the end. Note that in models (i)-(iii) the category matching
condition is enforced on-line whilst all LFG checks are either performed on-line or post hoc,
whereas given the non-monotonic nature of the Completeness check, this can only ever be
enforced post hoc.

3 D ata -O rien ted T ranslation (D O T)

[9] has developed a DOP-based model of translation — Data-Oriented Translation — which
relates POS-fragments between two languages (English and Dutch), with an accompanying
probability. Once a derivation for the source language sentence has been arrived at, the
target structure is cissembled, and a string produced. Since there are typically many different

24 8

derivations for the source sentence, there may be as many different translations available. As
is the case when DOP is used monolingually, the probability of a translation is calculated by
summing the probabilities of all possible derivations forming the translation. Poutsma shows
that the most probable translation can be computed using Monte-Carlo disambiguation, and
exemplifies this using sentence idioms, where corresponding source-target translations are
linked at all possible nodes.

3.1 Some Limitations of DOT

DOT is an interesting model, yet it fails to capture the correct translation when this is
non-compositional and considerably less probable than the default, compositional alterna­
tive. When LFG-DOP MT (LFG-DOT) is used instead this problem may be overcome.
Furthermore, OOP’s statistical model also gives a “level of correctness” figure to alternative
translations. This is useful in cases where the default translation in LFG-MT (and in many
other systems) cannot be suppressed when the specific translation is required. For example,
assuming the basic default rules in (7):

(7) a. commettre O commit

b. suicide <=> suicide

in order to deal with the sentences in (8):

(8) a. Jean commet un crime ■<=>• Jean commits a crime

b. Le suicide est tragique Suicide is tragic

we would get the wrong translation where John commits suicide ^ *John commet le suicide
(cf. John se suicide). We would like specific rules to override the default translation where
applicable, but this is not possible in LFG-MT, so we would get both translations here,
i.e. a correct one (via the specific r-equations in (1 0)) and a wrong one (via the default
T-equations, required to translate commettre as commit in other circumstances). Assuming
a DOP treebank built from the French sentences in (8) as well as Marie se suicide, the
ill-formed string Jean commet le suicide is preferred (in the French language model) about
half as much again as the correct alternative Jean se suicide. There are several reasons for
this; the preference for Jean as subject of commettre, the co-occurrence of le and suicide,
plus the fact that commettre is followed by an NP consisting of a Det -t- N sequence. Note

249

also that these results are obtained with the same number of instances of each verb — in a
larger corpus commettre would surely greatly outnumber instances of se suicider.

This is by no means an unexpected result. As an example, in the LOB Corpus, there are
6 6 instances of commit as a verb (including its morphological variants), only 4 of which
have suicide as its object, out of the 15 occurrences of suicide as an NP. Consequently,
even for this small sample, we can see that 94% of these examples need to be translated
compositionally (by commettre + NP), while only the commit suicide examples require a
specific rule to apply (i.e. se suicider). In the on-line Canadian Hansards covering 1986-
1993, there are just 106 instances of se suicider (including its morphological variants). There
will, of course, be many thousands of instances of commettre. Given occurrences of suicide
as an NP in French corpora, it is not an unreasonable hypothesis to expect that the wrong,
compositional translations will be much more probable than those derived via the specific
rule.

Given Poutsma’s model, it would appear that the adherence to left-most substitution in the
target given a priori left-most substitution in the source is too strictly linked to linear order
of words, so that, as soon as this deviates to any significant extent even between similar
languages, DOT has a huge bias in favour of the incorrect translation. Even if the correct,
non-compositional translation is achievable in such circumstances via DOT, it is likely to
be so outranked by other wrong alternatives that it will be dismissed, unless all possible
translations are maintained for later scrutiny by the user.

4 LFG -D O T : A N ew T h eory o f T ranslation

The DOT model cannot explicitly relate parts of the source language structure to the cor­
responding, correct parts in the target structure. One line of investigation which we now
develop that can overcome this linear restriction is to use LFG-DOP ([3]) as the basis for
an innovative MT system, using LFG’s r-equations to relate translation fragments between
languages.

250

4.1 M odel 1: {c,<p, f , r , f')

Using separate language corpora, this simple, linear model builds a target f-structure / '
from a source c-structure c and f-structure /, the mapping between them 4>, and the tau-
equations r. Prom this target f-structure / ', a target string is generated via the standard
LFG generation algorithms ([7]; [11]). The probability of the target f-structure Rt being the
translation of the source string W, is:

(9)
I W,) = E P[Rs I W,).P{R^ I R„ W.)

‘ ‘ Rt..

= Z p (R , \ w ,).p {r , \ r ,)
Rt,.

incorporating a Markov assumption that the target f-structure’s derivation from a source
string (via 4> and r) is independent of the original words involved: it is dependent solely on
the monolingual LFG-DOP representation assigned. This is an attempt to avoid as much
as possible the sparse data problem, given that in all probability we will never have enough
LFG-DOP fragments to model these numbers with any reasonable accuracy. The components
needed given (9), therefore, are (i) a source language LFG-DOP model, P(R, \ VFj); (ii) the
T mapping (the translation model) plus the associated probabilities that a source f-structure
produces a target equivalent, P{Rt \ R,).

The advantage of this model over DOT is the availability of the explicit r-equations to link
source-target correspondences, as in (1 0):

(10) commit: (rf PRED) = se suicider, r (t SUBJ) = (rf SUBJ), (f OBJ PRED) =c suicide

Using LFG r-equations ensures the derivation of the correct target f-structure, along with
some wrong alternatives (here) via the default rules. We cannot be sure that the generation
of a target string via the correct target f-structure will be a more probable translation than
any wrong alternative, but it will exist as one of a small number of high-ranking candidate
solutions from which the final translation can be selected. Of course, we may instead choose
to derive the target string using a target language LFG-DOP model (via 4>') rather than
the standard LFG generation algorithms, in which case the probability model in (9) needs
to be adapted to incorporate P{Wt \ Rt), where again we presume that the target string
generation is independent of all source language representations: it is dependent solely on
the r-equations derived from the source f-structure.

251

4.2 Model 2: (c, / , 4>) — vy, r —̂ {d, f , 4>')

Here we have integrated language corpora, where for each node in a tree c, we relate it both
to its corresponding f-structure fragment / and its corresponding target c-structure node d ,
and for each source f-structure fragment, we relate that to its target language fragment in
f-structure / ', via r. The probability model used this time is:

(11) ^P{t I s) = Max
t D P{t, I s) =

Rt.,
Max

t E P{Ri I s)
Rt.>

where now are the full (c, /) representation pairings for the target and source strings,
respectively. Our basic units are pairs of linked LFG-DOP fragments (cf. the linked DOP
fragments in DOT, [9]), and the basic stochastic event is the combination of two linked
LFG-DOP fragment pairs. Thus, we compute the probability of P{t \ s) by the sum of the
probabilities of all Rt, R, pairs that generate t and s (and, ultimately, of course, choosing
that t for which this probability sum is maximal), where the probability of an Rt, Rs pair is
computed as the sum of the probabilities of its derivation-pairs; each derivation-pair is the
product of its linked fragment-pairs; and each linked fragment-pair has a probability equal
to its normalized relative frequency. Bod & Kaplan discuss four different ways of calculating
the probability of an (unlinked) fragment, depending on which LFG grammaticality checks
(if any) are integrated into the competition sets assumed (cf. section 2 .1).

The principal reason for hypothesising the 7 function in this model is that it is reasonable
to assume, as [9] has shown, that valuable information concerning the final formulation of
the target string can be influenced by the source c-structure. In this way we have two pieces
of information at hand with which to build the target string—the 7 and <p' functions, which
if they can be properly harnessed, should bring about a better translation, given the extra
evidence that is being brought to bear in its generation.

4.3 Semi-Automatic Creation of LFG & LFG-DOP Corpora

A major problem for researchers interested in LFG and LFG-DOP is the absence of suitable,
extensive corpora. Given this, in order to demonstrate practically the feasibility of LFG-
DOT, we have begun to develop our own LFG and LFG-DOP corpora ([10]).

Initially we took the publicly available set of 100 sentences of the AP Treebank ([8]). Despite
its small size, this was sufficiently lajge to demonstrate the plausibility of our approach. One

252

particular entry is:

(12) AOOl 39 V

[N The_AT march.NNl N][V was.VBDZ [J peaceful.JJ J]V] ...

We then automatically extract the rules from this corpus (following the method of [4]), and
create automatically LFG-macros for each lexical category:

(13) macro(at(Word),FStr) : -
FStrispec === Word.

macro(jj(Word),FStr)
FStr:pred === Word.

macro(nnl(Word),FStr) :-
FStripred === Word,
FStr:num === eg.

macro(vbdz(.Word),FStr)
FStr:tense === past,
FStr:pred *** be.

We then annotate the extracted rules with LFG functional schemata by hand:

(14) rule(n(A), [at (B) ,iml (C)l)
A ----B,
A === C.

rule(v(A), [vbdz(B),j(C)])
A === B,
B:subj === C:subj,
A;xcomp === C.

rule (j (A), [jj(B)D
A === B.

rule(sent(A), [n(B),v(C)l)
A:subj === B,
A === C.

and ‘reparse’ the original treebank entries, not the strings, simply by recursively following
the tree annotations provided by the original annotators. In so doing the interpreter solves
the constraint equations associated with the grammar rules and lexical macros involved in
the parse, returning single f-structures, as in:

(15) subj : spec : the
pred : march
num : sg

xcomp : pred : peaceful
subj : spec : the

pred : march
num : sg

tense : past
pred : be

In order to produce target f-structures, all that is necessary is to add r-equations to the

253

lexical and structural rules, and reparse the treebank entries. Once these target f-structures
exist, we can test out the translation models and report results.

5 C onclusions

The DOT translation system, despite provably deriving the most probable translation, is not
guaranteed to produce the best, or even a correct translation, since it is unable to explicitly
link exactly those fragments which are playing the decisive role in translation.

[3] have shown how DOP and LFG can be integrated to provide a powerful mechanism for the
treatment of parsing. We described how such a model may be extended to provide a robust
solution for the problems of MT in the spirit of the current trend for hybrid approaches. LFG-
DOT promises to improve on previous attempts at LFG-MT, particular where robustness
is concerned, being able to handle both unseen and ill-formed input with relative ease. It
also ensures that the correct target f-structure is input into the generation process. It is
reasonable to expect LFG-DOT to outperform pure statistics-based systems, in having the
additional facility of grammatical information at hand to use where necessary.

Much of this work is ongoing, and a number of issues remain for the future, especially the
automatic creation of large LFG-DOP corpora necessary as training and test data for the
translation models. This will complete the development of the systems described, leading to
greater experimentation on a larger scale.

R eferences

[1] Bod, R. (1995): Enriching Linguistics with Statistics: Performance Models of Natural
Language, ILLC Dissertation Series 1995-14, University of Amsterdam, The Netherlands.

[2] Bod, R. (1998): Beyond Grammar: An Experience-Based Theory of Language, CSLI
Publications, Stanford, California.

[3] Bod, R. & R. Kaplan (1998): “A Probabilistic Corpus-Driven Model for Lexical-
Functional Analysis”, in COLING: Proceedings of the 17th International Conference on
Computational Linguistics & 36th Conference of the Association for Computational Lin­
guistics, Montreal, Canada, 1:145-151.

254

[4] Charniak, E. (1996); “Tree-bank grammars”, in AAAI-96, Proceedings of the Thirteenth
National Conference on Artificial Intelligence, MIT Press, pp.1031-1036.

[5] Kaplan, R. Sc J. Bresnan, (1982): “Lexical Functional Grammar: A Formal System for
Grammatical for Grammatical Representation”, in J. Bresnan (ed.) The Mental Repre­
sentation of Grammatical Relations, MIT Press, Cambridge, Mass., pp.173-281.

[6] Kaplan, R., K. Netter, J. Wedekind & A. Zaenen (1989): “Translation by Structural
Correspondences”, in Fourth Conference of the European Chapter of the Association for
Computational Linguistics, Manchester, pp.272-281.

[7] Kohl, D. (1992); “Generation from Under- rmd Overspecified Structures”, in COLING:
1 4 th International Conference on Computational Linguistics, Nantes, France, pp.686-692.

[8] Leech, G. and R. Garside (1991); “Running a Grammar Factory: on the Compilation of
Parsed Corpora, or ‘Treebanks’ ”, in: S. Johansson and A.-B. Stenström (eds), English
Computer Corpora: Selected Papers and Research Guide, Mouton de Gruyter, Berlin,
pp.15-32.

[9] Poutsma, A. (1998); “Data-Oriented Translation”, in Ninth Conference of Computational
Linguistics In the Netherlands, Leuven, Belgium.

[10] Van Genabith, J., A. Way and L. Sadler (1999): “Semi-Automatic Generation of F-
Structures from Treebanks”, in Proceedings of LFG-99, Manchester, UK.

[11] Wedekind, J. (1988): “Generation as Structure Driven Derivation”, in COLING: 12th
International Conference on Computational Linguistics , Budapest, Hungary, pp.732-737.

