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Abstract 
We propose and evaluate computational techniques 
for deciphering unknown scripts. We focus on the 
case in which an unfamiliar script encodes a known 
language. The decipherment of a brief document 
or inscription is driven by data about the spoken 
language. We consider which scripts are easy or hard 
to decipher, how much data is required, and whether 
the techniques are robust against language change 
over time. 

1 Introduction 
With surprising frequency, archaeologists dig up 
documents that  no modern person can read. 
Sometimes the written characters are familiar 
(say, the Phoenician alphabet), but the lan- 
guage is unknown. Other times, it is the reverse: 
the written script is unfamiliar but the language 
is known. Or, both script and language may be 
unknown. 

Cryptanalysts also encounter unreadable doc- 
uments, but they try to read them anyway. 
With patience, insight, and computer power, 
they often succeed. Archaeologists and lin- 
guists known as epigraphers apply analogous 
techniques to ancient documents. Their deci- 
pherment work can have many resources as in- 
put, not all of which will be present in a given 
case: (1) monolingual inscriptions, (2) accom- 
panying pictures or diagrams, (3) bilingual in- 
scriptions, (4) the historical record, (5) physical 
artifacts, (6) bilingual dictionaries, (7) informal 
grammars, etc. 

In this paper, we investigate computational 
approaches to deciphering unknown scripts, and 
report experimental results. We concentrate on 
the following case: 

• unfamiliar script 

• known language 

• minimal input (monolingual inscriptions 
only) 

This situation has arisen in many famous 
cases of decipherment--for example, in the Lin- 
ear B documents from Crete (which turned 
out to be a "non-Greek" script for writing an- 
cient Greek) and in the Mayan documents from 
Mesoamerica. Both of these cases lay unsolved 
until the latter half of the 20th century (Chad- 
wick, 1958; Coe, 1993). 

In computational linguistic terms, this de- 
cipherment task is not really translation, but 
rather text-to-speech conversion. The goal of 
the decipherment is to "make the text speak," 
after which it can be interpreted, translated, 
etc. Of course, even after an ancient docu- 
ment is phonetically rendered, it will still con- 
tain many unknown words and strange con- 
structions. Making the text speak is therefore 
only the beginning of the story, but it is a cru- 
cial step. 

Unfortunately, current text-to-speech sys- 
tems cannot be applied directly, because 
they require up front a clearly specified 
sound/writing connection. For example, a sys- 
tem designer may create a large pronunciation 
dictionary (for English or Chinese) or a set of 
manually constructed character-based pronun- 
ciation rules (for Spanish or Italian). But in 
decipherment, this connection is unknown! It is 
exactly what we must discover through analysis. 
There are no rule books, and literate informants 
are long-since dead. 

2 Writing Systems 
To decipher unknown scripts, is useful to under- 
stand the nature of known scripts, both ancient 
and modern. Scholars often classify scripts into 
three categories: (1) alphabetic, (2) syllabic, 
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Figure 1: The Phaistos Disk (c. 1700BC). The 
disk is six inches wide, double-sided, and is the 
earliest known document printed with a form of 
movable type. 

. ~  and (3) log6graphic (Sampson, 1985). 

Alphabetic systems attempt to repre- 
sent single sounds with single characters, 
though no system is "perfect." For exam- 
ple, Semitic alphabets have no characters 
for vowel sounds. And even highly regular 
writing systems like Spanish have plenty of 
spelling variation, as we shall see later. 

Syllabic systems have characters for entire 
syllables, such as "ba" and "shu." Both 
Linear B and Mayan are primarily syllabic, 
as is Japanese kana. The Phaistos Disk 
from Crete (see Figure 1) is thought to be 
syllabic, because of the number of distinct 
characters present. 

Finally, logographic systems have charac- 
ters for entire words. Chinese is often cited 
as a typical example. 

Unfortunately, actual scripts do not fall 
neatly into one category or another (DeFrancis, 
1989; Sproat, forthcoming). Written Japanese 
will contain syllabic kana, alphabetic roomaji, 
and logographic kanji characters all in the same 
document. Chinese characters actually have a 
phonetic component, and words are often com- 
posed of more than one character. Irregular 
English writing is neither purely alphabetic nor 

purely logographic; it is sometimes called mor- 
phophonemic. Ancient writing is also mixed, 
and archaeologists frequently observe radical 
writing changes in a single language over time. 

3 E x p e r i m e n t a l  F r a m e w o r k  

In this paper, we do not decipher any ancient 
scripts. Rather, we develop algorithms and ap- 
ply them to the "decipherment" of known, mod- 
ern scripts. We pretend to be ignorant of the 
connection between sound and writing. Once 
our algorithms have come up with a proposed 
phonetic decipherment of a given document, we 
route the sound sequence to a speech synthe- 
sizer. If a native speaker can understand the 
speech and make sense of it, then we consider 
the decipherment a success. (Note that  the na- 
tive speaker need not even be literate, theoreti- 
cally). We experiment with modern writing sys- 
tems that span the categories described above. 
We are interested in the following questions: 

• Can automatic techniques decipher an un- 
known script? If so, how accurately? 

• What quantity of written text is needed 
for successful decipherment? (this may be 

• quite limited by circumstances) 

• What  knowledge of the spoken language is 
needed? Can it to be extracted automati- 
cally from available resources? What  quan- 
tity of resources? 

• Are some writing systems easier to decipher 
than others? Are there systematic differ- 
ences among alphabetic, syllabic, and lo- 
gographic systems? 

• Are word separators necessary or helpful? 

• Can automatic techniques be robust 
against language evolution (e.g., modern 
versus ancient forms of a language)? 

• Can automatic techniques identify the lan- 
guage behind a script as a precursor to de- 
ciphering it? 

4 A l p h a b e t i c  W r i t i n g  ( S p a n i s h )  

Five hundred years ago, Spaniards invaded 
Mayan lands, burning documents and effec- 
tively eliminating everyone who could read and 
write. (Modern Spaniards will be quick to point 
out that most of the work along those lines 
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Sounds: 

B, D, G, J (ny as in canyon),  L (y as 
in yarn),  T (th as in thin),  a, b, d, e, 
f, g, i, k, l, m, n, o, p, r, rr (trilled), s, 
t, tS (ch as in chin), u, x (h as in hat) 

Characters:  

fi, £, 6, i, o, u, a, b, c, d, e, f, g, h, i, j, 
k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, 
Z 

Figure 2: Inventories of Spanish sounds (with 
rough English equivalents in parentheses) and 
characters.  

had already been carried out  by the Aztecs). 
Mayan hieroglyphs remained uninterpreted for 
many  centuries.  We imagine tha t  if the Mayans 
have invaded Spain, then 20th century Mayan 
scholars might  be deciphering ancient Spanish 
documents  instead. 

We begin with an analysis of Spanish writing. 
The  task of dec ipherment  will be to re-invent 
these rules and apply them to wri t ten docu- 
ments  in reverse. First ,  is necessary to settle 
on the basic inventory of sounds and characters. 
Characters  are easy; we simply tabula te  the dis- 
t inct  ones observed in text.  For sounds, we need 
something t ha t  will serve as reasonable input  to 
a speech synthesizer. We use a Spanish-relevant 
subset of the  Internat ional  Phonet ic  Alphabet  
(IPA), which seeks to  capture  all sounds in all 
languages. Actually, we use an ASCII version 
of the IPA called SAMPA (Speech Assessment 
Methods  Phonet ic  Alphabet) ,  originally devel- 
oped under  E S P R I T  project  1541. There is also 
a public-domain Castillian speech synthesizer 
(called Mbrola) for the Spanish SAMPA sound 
set. Figure 2 shows the sound and character 
inventories. 

Now to spelling rules. Spanish writing is 
clearly not  a one-for-one proposition: 

• a single sound can produce a single charac- 
ter ( a - +  a) 

* a sound can produce two characters (tS 
ch) 

• two sounds can produce a single character 
(k s ---+ x) 

B - + b o r v  
D ~ d  
G ~ g  
J - -+f i  
L--+ l l o r y  
a .--~ a or £ 
b --.~. b or v 
d - - ~ d  
e ---~ e or 6 
f ~ f  
g a g  
i ~ i o r ~  
l ~ l  
m - + m  
n - - + n  
o - m o o r 6  
p - - ~ p  
r - - J r  
t - - r t  
t S ~ c h  
u--~ u or fi 
x - + j  
nothing --+ h 
T (followed by a, o, or u) ~ z 
T (followed by e or i) --+ c or z 
T (otherwise) ~ c 
k (followed by e or i) ~ q u 
k (followed by s) ---+ x 
k (otherwise) ~ c 
rr (at beginning of word) ~ r 
rr (otherwise) ---,, rr 
s (preceded by k) ~ nothing 
s (otherwise) --+ s 

Figure 3: Spanish sound-to-character  spelling 
rules. The  left-hand side of each rule contains a 
Spanish sound (and possible conditions),  while 
t he r i gh t -hand  side contains zero or more Span- 
ish characters.  

• silence can produce a character  (h) 

Moreover, there are ambiguities. The  sound L 
(English y-sound) may be writ ten as either ll or 
y. The  sound i may also produce the character  
y, so the pronunciat ion of y varies according to 
context .  The  sound rr (trilled r) is wri t ten rr in 
the middle of a word and r at the beginning of 
a word. 

Figure 3 shows a sample set of Spanish 
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spelling rules. We formalized these rules com- 
putat ional ly  in a finite-state t ransducer  (Pereira 
and Riley, 1997). The  t ransducer  is bidirec- 
tional. Given a specific sound sequence, we 
can ext rac t  all possible character  sequences, and 
vice versa. It tu rns  out  tha t  while there are 
many ways to write a given Spanish sound se- 
quence with these rules, it is fairly clear how to 
pronounce a wri t ten sequence• 

In our decipherment  experiment ,  we blithely 
ignore many  of the complications just  described, 
and pre tend t ha t  Spanish writing is, in fact, a 
one-for-one proposit ion.  T h a t  is, to  write down 
a sound sequence, one replaces each sound with 
a single character .  We do allow ambiguity, how- 
ever. A given sound may produce one character  
sometimes,  and another  character  other  times. 

Decipherment  is driven by knowledge about  
the  spoken language. In the case of archeologi- 
cal decipherment ,  this knowledge may include 
vocabulary, g rammar ,  and meaning. We use 
simpler data .  We collect frequencies of sound- 
triples in spoken Spanish. If we know tha t  triple 
"t 1 k" is less frequent than  "a s t," then we 
should ul t imately  prefer a decipherment  tha t  
contains the  lat ter  instead of the former, all 
o ther  things being equal. 

This  leads natural ly i n t o  a statistical ap- 
proach to decipherment .  Our  goal is to settle 
on a sound- to-character  scheme tha t  somehow 
maximizes the  probabili ty of the observed writ- 
ten document .  Like many  linguistic problems, 
this one can be formalized in the noisy-channel 
framework.  Our  sound-tr iple frequencies can 
be turned into condit ional  probabilities such as 
P( t  I a s). We can es t imate  the  probability of 
a sound sequence as the  product  of such local 
probabilities. 

P(s l  . . .  sn) 
P(s3 I Sl s2) • P(s4 I s2 s3) • P(s5 I s3 s4) . . . .  

A specific sound-to-character  scheme can be 
represented as a set of condit ional  probabilities 
such as P(v  I B). Read this as "the probability 
tha t  Spanish sound B is wri t ten with character  
v." We can es t imate  the  conditional probabil- 
ity of entire character  sequence given an entire 
sound sequence as a p roduc t  of such probabili- 
ties. 

P(cl  . . . on  ]Sl . . . s , )  ,.~ 
P(cl  Is1) • P(c2 Is2) • P(c3 I $3) " . . .  

Armed with these basic probabilities, we can 
compute  two things. First ,  the total  probabil- 
ity of observing a particular writ ten sequence of 
characters cl . . .  cn: 

P(Cl . . .Cn) = 
Es , . . . s .  P(sl  . . . s , )  • P(c 1 . . . C n  I Sl . . .Sn)  

And second, we can compute  the most  proba- 
ble phonetic decipherment  sl . . .  s ,  of a particu- 
lar writ ten sequence of characters cl . . .  c , .  This  
will be the one tha t  maximizes P(sl  . . . s~  I cl 
• . .cn) ,  or equivalently, maximizes P(sl  . . . s~)  
• P(cl  . . . c ,  I Sl . . . sn ) .  The  trick is t ha t  the 
P(character  I sound ) probabilities are unknown 
to us. We want  to assign values tha t  maximize 
P(cl  . . . c , ) .  These same values can then be 
used to decipher. 

We adapt  the EM algori thm (Dempster  et 
al., 1977), for decipherment ,  s tar t ing with a 
uniform probability over P(character  [ sound).  
T h a t  is, any sound will produce any character  
with probability 0.0333. The  algori thm succes- 
sively refines these probabilities, guaranteeing 
to increase P(cl  . . .  cn) at  each iteration. EM re- 
quires us to consider an exponential  number  of 
decipherments  at each iteration, but  this can be 
done efficiently with a dynamic-programming  
implementat ion (Baum, 1972). The  training 
scheme is i l lustrated in Figure 4. 

In our experiment ,  we use the first page of 
the novel Don Quixote as our "ancient" Span- 
ish document  cl . . . cn .  To get phonetic  data ,  
we might  tape-record modern  Spanish speak- 
ers and transcribe the recorded speech into the 
IPA alphabet.  Or we might  use document s  
writ ten in an al ternate,  known script, if any 
existed. In this work, we take a short  cut  
by reverse-engineering a set of medical Spanish 
documents ,  using the finite-state t ransducer  de- 
scribed above, to obtain a long phonetic  training 
sequence Sl • • • s,~. 

At each EM iteration, we extract  the most  
probable decipherment  and synthesize it into 
audible form. At i teration 0, with uniform 
probabil!ties, the result is pure babble. At 
iteration 1, Spanish speakers report  t ha t  "it 
sounds like someone speaking Spanish, but  us- 
ing words I don ' t  know." At i teration 15, 
the decipherment  can be readily unders tood.  
(Recordings can be accessed on the  World 
Wide Web at  h t t p  : llwww, i s i .  e d u / n a t u r a l -  
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sound 

i ~  sequenci~ ~ 

i ............................................................................. i 

I trained on i 
observable 

spoken data. L_ 

trained on document written in 
unknown script (only sound-to-character 
parameter values are allowed to change 
during training). 

character 
sequences 

Figure 4: Training scheme for decipherment. 
We first train a phonetic model on phonetic 
data. We then combine the phonetic model with 
a generic (uniform) spelling model to create a 
probabilistic generator of character sequences. 
Given a particular character sequence ("an- 
cient document"), the EM algorithm searches 
for adjustments to the spelling model that will 
increase the probability of that character se- 
quence. 

la .nguago/mt/decipher ,  html). 
If we reverse-engineer Don Quixote, we can 

obtain a gold standard phonetic decipherment. 
Our automatic decipherment correctly identifies 
96% of the sounds. Incorrect or dropped sounds 
are due to our naive one-for-one model, and not 
to weak algorithms or small corpora. For ex- 
ample, "de la Mancha" is deciphered as "d e l 
a m a n T i a" even though the characters ch 
really represent the single sound tS rather than 
the two sounds T i. 

Figure 5 shows how performance changes at 
each EM iteration. It shows three curves. The 
worst-performing curve reflects the accuracy of 
the most-probable decipherment using the for- 
mula above, i.e., the one that maximizes P(sl 
• ..sn) • P(cl . . .ca  ] sl . . .sn).  We find that 
it is better to ignore the P(Sl ...s,~) factor al- 
together, because while the learned sound-to- 

Decipherment 
accuracy 
(% phonemes 
correctly 
pronounced) 

100% -- 

90% -- 

80% -- 

70% -- 

60% -- 

50% --  

< 
< 
< 
< 

maximizing 
P(sl. . .sn) * P(cl . . .cn I sl. . .sn) 3 

~ m a x i m i z i n g  P(c l . . . c .  I s l . . . s . )  

P(sl . . .S.)  * P (c l . . . c .  I s l .  sn) 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I  

EM iterations 

Figure 5: Performance of Spanish decipher- 
ment. As we increase the number of EM it- 
erations, we see an improvement in decipher- 
ment performance (measured in terms of cor- 
rectly generated phonemes). The best result 
is obtained by weighting the learned spelling 
model more highly than the sound model, i.e., 
by choosing a phonetic decoding Sl . . .sn for 
character sequence cl . . .  c~ that maximizes P(sl 
. . . s . )  • P(cl . . . c .  Is1 . . . s . )  

character probabilities are fairly good, they are 
still somewhat unsure, and this leaves room for 
the phonetic model to overrule them incorrectly. 
However, the P(sl . . .sn) model does have use- 
ful things to contribute. Our best performance, 
shown in the highest curve, is obtained by 
weighing the learned sound-to-character prob- 
abilities more highly, i.e., by maximizing P(sl 
• . . S n ) "  P ( C l  . . . c a  I sl . . .sn) 3. 

We performed some alternate experiments• 
Using phoneme pairs instead of triples is 
workable--it results in a drop from 96% ac- 
curacy to 92%. Our main experiment uses 
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word separators; removing these degrades per- 
formance. For example, it becomes more dif- 
ficult to tell whether the r character should be 
trilled or not. In our experiments with Japanese 
and Chinese, described next, we did not use 
word separators, as these languages are usually 
written without them. 

5 S y l l a b i c  w r i t i n g  ( J a p a n e s e  K a n a )  

The phonology of Japanese adheres strongly to 
a consonant-vowel-consonant-vow@l structure, 
which makes it quite amenable to syllabic writ- 
ing. Indeed, the Japanese have devised a kana 
syllabary consisting of about 80 symbols. There 
is a symbol for ka, another for ko, etc. Thus, 
the writing of a sound like K depends on its 
phonetic context. Modern Japanese is not writ- 
ten in pure kana; it employs a mix of alpha- 
betic, syllabic, and logographic writing devices. 
However, we will use pure kana as a stand-in 
for wide range of syllabic writing systems, as 
Japanese data  is readily available. We obtain 
kana text sequences from the Kyoto Treebank, 
and we obtain sound sequences by using the 
finite-state transducer described in (Knight and 
Graehl, 1998). 

As with Spanish, we build a spoken language 
model based on sound-triple frequencies. The 
sound-to-kana model is more complex. We as- 
sume that  each kana token is produced by a 
sequence of one, two, or three sounds. Us- 
ing knowledge of syllabic writing in general--  
plus an analysis of Japanese sound pa t te rns- -  
we restrict those sequences to be (1) consonant- 
vowel, (2) vowel-only, (3) consonant-no-vowel, 
and (4) consonant-semivowel-vowel. For ini- 
tial experiments, we mapped "small kana" onto 
their large versions, even though this leads to 
some incorrect learning targets, such as KIYO 
instead of KYO. We implement the sound- and 
sound-to-kana models in a large finite-state ma- 
chine and use EM to learn individual weights 
such as P(ka-kana [ SHY U). Unlike the Spanish 
case, we entertain phonetic hypotheses of vari- 
ous lengths for any given character sequence. 

Deciphering 200 sentences of kana text yields 
99% phoneme accuracy. We render the sounds 
imperfectly (yet inexpensively) through our 
public-domain Spanish synthesizer. The result 
is comprehensible to a Japanese speaker. 

We also experimented with deciphering 

smaller documents. 100 sentences yields 97.5% 
accuracy; 50 sentences yields 96.2% accuracy; 
20 sentences yields 82.2% accuracy; five sen- 
tences yields 48.5% accuracy. If we were to 
give the sound sequence model some knowledge 
about words or grammar,  the accuracy would 
likely not fall off as quickly. 

6 " L o g o g r a p h i c "  w r i t i n g  ( C h i n e s e )  

As we mentioned in Section 2, Chinese char- 
.... acters .have internal phonetic components,  and 

written Chinese does not really have a differ- 
ent character for every word: so, it is not re- 
ally logographic. However, it is representative 
of writing systems whose distinct characters are 
measured in the thousands, as opposed to 20-50 
for alphabets and 40-90 for syllabaries. This 
creates several difficulties for decipherment: 

• computational complexity--our decipher- 
ment algorithm runs in time roughly cubic 
in the number of known sound triples. 

• very rare characters--if  we only see a char- 
acter once, the context may not be rich 
enough for us to guess its sound. 

• sparse sound-triple da t a - - the  decipher- 
ment of a written text is likely to include 
novel sound triples. 

We created spoken language data  for Chinese 
by automatically (if imperfectly) pronouncing 
Chinese text. We are indebted to Richard 
Sproat for running our documents through the 
text-to-speech system at Bell Labs. We created 
sound-pair frequencies over the resulting set of 
1177 distinct syllables, represented in pinyin 
format, suitable for synthesizing speech. We at- 
tempted to decipher a written document of 1900 
phrases and sentences, containing 2113 distinct 
characters and no word separators. 

Our result was 22% syllable accuracy, after 
20 EM iterations. We may compare this to a 
baseline strategy of guessing the pinyin sound 
de0 (English "of") for every character, which 
yields 3.2% accuracy. This shows a considerable 
improvement, but the speech in not comprehen- 
sible. Due to computational  limits, we had to 
(1) eliminate all pinyin pairs that  occurred less 
than five times, and (2) prevent our decoder 
from proposing any novel pinyin pairs. Because 
our our goal-standard decipherment contained 
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many rare sounds and novel pairs, these com- 
putational limits severely impaired accuracy. 

7 D i s c u s s i o n  

We have presented and tested a computational 
approach to phonetically deciphering written 
scripts. We cast decipherment as a special 
kind of text-to-speech conversion in which we 
have no rules or data that directly connect 
speech sounds with written characters. We set 
up general finite-state transducers for turning 
sounds into writing, and use the EM algorithm 
to estimate their parameters. The whole pro- 
cess is driven by knowledge about the spoken 
language, which may include frequency infor- 
mation about sounds, sound sequences, words, 
grammar, meaning, etc. An interesting result 
is that decipherment is possible using limited 
knowledge of the spoken language, e.g., sound- 
triple frequencies. This is encouraging, because 
it may provide robustness against language evo- 
lution, a fixture of archaeological deciphering. 

However, our experiments have been targeted 
a bit narrowly. We were able to re-use the Span- 
ish decoder on Chinese, but it could not work 
for Japanese kana. Even our Japanese decoder 
would fail on an alternative syllabic script for 
Japanese which employed a single symbol for 
the sound KAO, instead of separate kana sym- 
bols for KA and O. One ambitious line of re- 
search would be to examine writing systems in 
an effort to invent a single, generic "mother of 
all writing systems," whose specializations in- 
clude a large fraction of actual ones. To cover 
Spanish and Japanese, for example, we could set 
up a scheme in which each sound produces zero 
or more characters, where the sound is poten- 
tially influenced by the two sounds immediately 
preceding and following it. This gets tricky: the 
"mother Of all" has to be general, but it also has 
to be narrow enough to support decipherment 
through automatic training. (Sproat, forthcom- 
ing) suggests the class of finite-state transduc- 
ers as one candidate. This narrows things down 
significantly from the class of Turing machines, 
but not far enough for the direct application of 
known training algorithms. 

In the future, we would like to attack an* 
cient scripts. We would start with scripts that 
have already been roughly deciphered by ar- 
chaeologists. Computer decipherments could be 

checked by humans, and published human deci- 
pherments could be checked by computer. We 
would subsequently like to attack ancient scripts 
that yet to be deciphered. High-speed comput- 
ers are not very intelligent, but they display a 
patience that exceeds even the most thorough 
human linguist. 

It will be important to consider text-layout 
questions when dealing with real scripts. For ex- 
ample, Mayan glyphs may run from top to bot- 
tom, right to left, or they may run differently. 
Furthermore, each glyph contain sub-parts rep- 
resenting up to ten sounds, and these may be 
organized in a spiral pattern. 

Another intriguing possibility is to do lan- 
guage identification at the same time as deci- 
pherment. Such identification would need to 
be driven by online sound sets and spoken cor- 
pora that span a very wide range of languages. 
Whether a document represents a given lan- 
guage could then be estimated quantitatively. 
In case language identification fails, we may 
be faced with a completely extinct language. 
Current computational techniques demonstrate 
that it is theoretically possible to figure out 
where nouns, verbs, and adjectives from raw 
text, but actual translation into English is an- 
other matter. Archaeologists have sometimes 
succeeded in such cases by leveraging bilingual 
documents and loan words from related lan- 
guages. Only a truly optimistic cryptanalyst 
would believe that progress could be made even 
without these resources; but see (AI-Onaizan 
and Knight, 1999) for initial results on Arabic- 
English translation using only monolingual re- 
sources. 

Finally, we note that the application of 
source-channel models to the text-to-speech 
problem is promising. This kind of statistical 
modeling is prevalent in speech recognition, but 
ours is one of the few applications in speech syn- 
thesis. It may be possible to use uncorrelated 
streams of speech and text data to learn map- 
pings that go beyond character pronunciation, 
to pitch, duration, stress, and so on. 
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