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Abstract 
In this paper,  we adapt  the TF-IDF model to the 
Japanese grapheme-phoneme alignment task, by 
way of a simple statistical model and an incremen- 
tal learning method. In the incremental learning 
method, grapheme-phoneme alignment paradigms 
are disambiguated one at a t ime according to the 
relative plausibility of the highest scoring align- 
ment schema, and the statistical model is re-trained 
accordingly. On limited evaluation, the learning 
method achieved an accuracy of 93.28%, represent- 
ing a slight improvement over a baseline rule-based 
method. 

1 Introduction 
The objective of this paper  is to analyse the appli- 
cability of statistical and learning methods to au- 
tomated grapheme-phoneme alignment in Japanese, 
without reliance on pre-annotated training da ta  or 
any form of supervision. The two principal models 
proposed herein are a simple statistical model non- 
reliant on learning techniques, and an incremental 
learning method deriving therefrom, incorporating 
automated  "pseudo-supervision" drawing on prior 
alignments. The incremental learning method se- 
lects a single alignment candidate to accept at each 
iteration, and adjusts the statistical model accord- 
ingly to aid in the subsequent disambiguation of 
residue G-P tuples. 

Grapheme-phoneme ("G-B") alignment is defined 
as the task of maximally segmenting a grapheme 
compound into morpho-phonic units, and aligning 
each unit to the corresponding substring in the 
phoneme compound (Bilac et al., 1999). Its main 
use is in port rayal  of the phonological interaction 
between adjoining grapheme segments, and also 
implicit description of the range of readings each 
grapheme segment can take. We further suggest that  
a large-scale database of maximally aligned G-P tu- 
ples has applications within the more conventional 
task of G-P translation (Klatt,  1987; Huang et al., 
1994; Divay and Vitale, 1997). 

Our particular interest in developing a database 
of G-P tuples is to apply it in the development of 
a kanji tester  which can dynamically predict plausi- 
bly incorrect readings for a given grapheme string. 
For this purpose, we require as great a coverage of 
grapheme strings as possible, and the proposed sys- 
tem has thus been designed to exhaustively align the 

input set of G-P tuples, sacrificing precision for 100% 
recall. 

'Grapheme string' in this research refers to the 
maximal kanji representation of a given word or 
compound, and 'phoneme string' refers to the kana 
(hiragana and /or  katakana) mora  correlate. 1 By 
'maximal '  segmentation is meant  that  the grapheme 
string must be segmented to the degree that  each 
segment corresponds to a self-contained component 
of the phonemic description of that  compound, and 
that  no segment can be further segmented into align- 
ing sub-segments. The s ta tement  of 'maximali ty '  of 
segmentation is qualified by the condition that  each 
segment must  constitute a morpho-phonic unit, in 
that  for conjugating parts-of-speech, namely verbs 
and adjectives, the conjugating suffix must be con- 
tained in the same segment as the stem. 

By way of illustration of the alignment process, 
let us consider the example of the verb ka-n-sya- 
su-ru i~--~-su-ru] "to t hank /be  thankful",2 a por- 
tion ot  the 35 member  alignment paradigm for which 
is given in Fig. 1. The importance of maximali ty 
of alignment is observable by way of align35, which 
constitutes a legal (under-)alignment of the correct 
solution in align1. Here, there is scope for further 
segmentation, as evidenced by the replaceability of 

by its phoneme content of ka-n in isolation of 
(producing the string ka-n-=~-su-ru). Thus, we are 
able to discount align35 on the grounds of it being 
non-maximal.  Tha t  a segment exists between sya 
and su-ru, on the other hand, is a result of su-ru 
being a light verb and hence an independent mor- 
pheme. 

The overall alignment procedure is depicted in 

1Our description of kana as phoneme units represents a 
slight abuse of terminology, in that individual kana characters 
are uniquely associated with a broad phonetic transcription 
potentially extending over multiple phones. Note, however, 
that in abstracting away to this meta-phonemic representa- 
tion, we are freed from consideration of low-level phonological 
concerns such as phoneme connection constraints. 

2So as to make this paper as accessible as possible to read- 
ers not familiar with Japanese, hiragana and katakana char- 
acters have been transliterated into Latin script throughout 
this paper and are essentially treated as being identical. The 
graphemic kanji character set, on the other, has been provided 
in its original form to give the reader a feel for the significance 
of the kana-kanji dichotomy. For both the grapheme and 
phoneme strings, character boundaries are indicated by "-" 
and segment boundaries (which double as character bound- 
aries) indicated by "®". 



~ (~-~  (~su-ru 

ka-n (~) sya (~) su-ru 

(~ -~ -su-ru 

~ o ° o  ~ 

ka (~) n-sya-su-ru 
: 

~--~ ~.~ su-ru ] 

i \ 
/ 

ka-n (~) sya-su-ru 

. o o  

~--~-su-ru 

ka-n-sya-su-ru 

al ign  I a l ign i a l ignj  align35 

Figure 1: Candidate alignments for ~-~-su-ru  [ka-n-sya-su-ru] "to thank/be  thankful" 

Fig. 2. Within input set ¢, the system proceeds 
by first generating an exhaustive listing of all align- 
ment candidates (PSseg)-{GSseg) for each G-P tuple 
i. This alignment paradigm is pruned through ap- 
plication of a series of constraints, and either of the 
two proposed alignment selection methods is then 
applied to identify a single most plausible alignment 
from each alignment paradigm. Both the simple sta- 
tistical model ("method- l ' )  and incremental learn- 
ing method ("method-2") rely on a slightly mod- 
ified form of the TF-IDF model. In the case of 
method-l, statistical analysis is applied to the full 
range of alignment paradigms in ¢ and all align- 
ment paradigms are disambiguated in parallel. For 
method-2, we commence identically to method-l, but 
single out an alignment paradigm to disambiguate at 
each iteration, and incrementally adjust the statisti- 
cal model based on both the reduced ¢ and the ex- 
panded w. As such, the principal difference between 
the two methods can be stated as statistical feedback 
from w to ~, in method-2, but not in method-1. 

Disambiguated tuple 

[(G~eg ~ ~PSseg ) ~ 

Statistical 
Input set/ feedback Solution 
residue set 

(method-2) 

Figure 2: An outline of the system 

In the remainder of this paper, we first present the 
methodology used to derive all legal alignments for 
a given G-P tuple (Section 2), then give full details 
of both the simple statistical method and incremen- 
tal learning method (Section 3), before evaluating 
the various methods against a baseline rule-based 
method (Section 4). Finally, in Section 5, we con- 
sider additional applications of the basic methodol- 
ogy proposed here. 

2 The grapheme-phoneme 
alignment process 

Grapheme-phoneme alignment is performed as a 
four-stage process: (a) detection of lexical alterna- 
tions and removal of lexical alternates from the in- 
put, (b) determination of all possible G-P alignment 
schemas, (c) pruning of alignments through phono- 
logical constraints, and (d) scoring of all final candi- 
date alignments, and determination of the final so- 
lution accordingly. 

2 . 1  L e x i c a l  a l t e r n a t i o n  
Lexical alternation is defined as the condition of 
there being multiple lexical spell-outs for a given 
phonetic content, M1 sharing the same basic seman- 
tics and kanji component. For Japanese, this can 
arise as a result of the replaceability of kanji and 
their corresponding kana (i.e. maze-gaki, as seen 
above for ka-n-sya-su-ru), or alternatively for okuri- 
gana. Okurigana comprise a (generally) inflecting 
kana suffix to a kanji stem, where the combination of 
the kanji stem and okurigana form a single morpho- 
phonic segment; an example of okurigana is seen for 
the ru of ~-ru  [o-ku-ru] "to send", with inflects to 
re in the imperative, for example. Okurigana-based 
lexical alternation occurs when phonetic content is 
conflated with or prised apart from the stem kanji, 
by way of okurigana optionality. An example of this 
occurs for the verb ka-wa-ru "to change", lexicalis- 
able either as ~2-ru or ~.-wa-ru, with the underlined 
wa conflating with the kanji stem of ~. in the for- 
mer (basic) case for the same phonetic content. Note 
that  okurigana never occur as alternating prefixes to 
kanji. 

Detection of okurigana alternates is achieved by 
way of analysing the graphemic form of G-P tu- 
ples sharing the same phonetic content, and align- 
ing the graphemic component of each such corre- 
sponding tuple to determine kanji correspondence. 
All instances of okurigana-based lexical alternation 
are clustered together, and alternates of the 'basic' 
form removed from input. The basic form is defined 
as that  with maximal phonemic conflation, that  is 
minimal kana content in the grapheme string. In this 
way, we can: (a) enforce consistency of analysis for 
all okurigana alternates, (b) apply alignment con- 
straints across the full set of lexical alternates, and 
(c) avoid having multiple realisations of the same 



basic item in our system data. See (Baldwin and 
Tanaka, 1999) for further details. 

2 .2  G r a p h e m e - p h o n e m e  a l t e r n a t i o n  
G-P alignment can be subdivided into the three sub- 
tasks of (i) segmenting the grapheme string into 
morpho-phonic units, (ii) aligning each grapheme 
segmentation to compatible segmentation(s) of the 
phoneme string, and (iii) pruning off illegal align- 
ments through the application of a series of phono- 
logical constraints. 

The first stage of the alignment process is to 
generate all possible segmentations GSse~ for the 
grapheme string GS, by optionally placing a de- 
limiter between adjacent characters (and implicitly 
placing delimiters at the beginning and end of both 
the grapheme and phoneme strings for all segmen- 
tation candidates). Note that individual kana and 
kanji characters are atomic, according to lexical con- 
straint h 

<l) Segment boundaries can only exist at character 
boundaries. (characters are indivisible) 

Next, the following axioms of alignment are ap- 
plied in determining possible alignments (GSseg)- 
(PSseg) for each grapheme segmentation candidate 
GSseg. 
(al) The alignment must comprise an isomorphism. 

(full G-Pcoverage, no overlap in alignment) 
(a2) No crossing over of alignment is permitted. 

(strict linearity of alignment) 
Constraint al gives rise to the property that de- 
limiters in the phonemic string must constitute 
phoneme segment boundaries, that is lead from one 
phoneme segment directly into the next, as segments 
must be strictly adjacent (there can be no unaligned 
substrings of the grapheme or phoneme string and 
no overlap of segmentation). Constraint a2 further 
gives us the property that segments must be ordered 
identically in the grapheme and phoneme strings. 

We are now at the stage of having exhaustively 
g.enerated all lexicaily plausible alignments for a 
g*ven G-P tuple, such as given in Fig. 1 for ka-n- 
sya-su-ru. 

2.3  C o n s t r a i n t - b a s e d  a l i g n m e n t  
p r u n i n g  

The final step in alignment is to disallow all align- 
ments (PSseg)-(GSseg) which contravene any of 
the following phonological constraints, applicable 
to grapheme segmentation ("G"), phoneme segmen- 
tation ("e"), and/or grapheme-phoneme alignment 
("G-P"), respectively: 

(Pl) A demarkation in script form indicates a seg- 
ment boundary, except for the case of kanji- 
hiragana boundaries. [G] 

(P2) Graphemic kana must align with a direct kana 
equivalent in the phoneme string. [G-P] 

(P3) Intra-syllabic segments cannot exist for kana 
strings [G,P] 

(P4) The length of a kanji substring must be equal 
to or less than the syllable length of the corre- 
sponding phoneme substring. [G-P] 

Constraint Pl produces the result that a segment 
boundary must exist at every changeover between 
hiragana and katakana, or kanji and katakana, and 
from hiragana to kanji. The exceptional treatment of 
kanji-hiragana changeovers is designed to facilitate 
the recognition of full verb and adjective morpho- 
phonic units, as these two parts-of-speech involve 
conjugating kana suffices and also the potential for 
furigana-based lexical alternation. Note that for 
align1 in Fig. 1, we do in fact have a segment bound- 
ary at the kanji-hiragana changeover -~®su. 

Constraint P2 polices the essentially phonemic na- 
ture of kana, in disallowing alignment of kana seg- 
ments of non-corresponding phonetic content. In the 
case of Fig. 1, P2 would lead to the disallowance of 
alignj due to the alignment of (...®su-ru)-(...®sya- 
su-r?~). 

Constraint P3, applicable to both grapheme and 
phoneme segmentation, introduces the notion that 
alignment operates on the syllable- rather than 
character-level. While single kan~ characters gen- 
erally function as individual syllables, stand-alone 
vowel and consonant kana can form syllable clusters 
with immediately preceding kana, as occurs for ka-n 
in ka-n-sya-su-ru. Here, we would disallow a seg- 
ment boundary to exist between ka and n, and as 
such prune off aligni in Fig. 1. 

Finally, P4 requires that each kanji character leads 
to a phoneme substring at least one syllable in 
length, irrespective of whether that single kanji com- 
prises the head of a morpho-phonic unit or combines 
with adjoining kanji to form a multiple-grapheme 
segment. A two kanji segment is required, therefore, 
to align with a phoneme substring at least two syl- 
lables in length. ~-=~ could thus not align with the 
mono-syllabic ka-n, leading once again to the prun- 
ing of alignj. 

Note, there also exists scope to apply intra- 
segmental phonological constraints such as Lyman's 
Law (It6 and Mester, 1995, p. 819), which is left as 
an item for future research. 

3 Scoring m e t h o d  
The scoring method utilised in this research for both 
method-1 and method-2 is an adaptation of the TF- 
IDF model (Salton and Buckley, 1990), best known 
in the context of term weighting for information re- 
trieval ("IR") tasks. The main differences between 
our usage of the TF-IDF model and standard usage 
within IR circles, come in the counting of frequen- 
cies (method-1 and method-2) and the incremental 
updating of the statistical model/weighting of terms 
according to system "conviction" (method-2). 

That we should require a special means of count- 
ing frequencies is a direct consequence of the two 
proposed methods dynamically determining segmen- 
tation schemas as a component of the alignment pro- 
cess. We integrate the segmentation and alignment 
processes by taking the frequency of occurrence of a 
given segment as the number of G-P tuples for which 
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freq((g,p)) = 

[{(GS, PS) : 3pvar E phon_var(p) ~ ( . . . QgQ . . . )-( . . .QpvarQ . . .)E { (GSs~g)-(PSseg) } }}1 
" i i + l  i i + l  

t f-id]((g,p, ctxt)) = freq((g,p)) - 1 + a log ( ~eq((g,p)) ) 
freq( (g) ) kfreq( (g,p, ctxt) - 1 + a 

O¢( ( ; ,p)  ) idff ( (g , ; , c tx t )  ) 

(1) 

(2) 

that segment is contained in the alignment paradigm 
in an identical lexical context. 

By adopting this approach of alignment potential- 
based frequency, we do not discount the possibility 
of any alignment licenced by the constraints given 
above, but at the same time are unable to com- 
mit ourselves to any alignment schema we believe 
is correct. In method-2, therefore, we combine the 
existential-based statistical modelling of method-1 
for non-disambiguated alignment paradigms (¢ in 
Fig. 2), with a means of dynamically updating the 
statistical model based on selectively disambiguated 
alignment paradigms (w in Fig. 2). 

Alignment paradigms are selected for disambigua- 
tion based on the degree of discrimination between 
the top- and second-ranking alignment schemas, 
and term frequencies found in solution alignments 
in w weighted above those found in the alignment 
paradigms of ¢. Note that by disambiguating a 
particular alignment paradigm, we are both iden- 
tifying that alignment schema we believe to be cor- 
rect, and disallowing all alternate alignments. As 
such, updating of the statistical model reflects on all 
terms contained in the original alignment paradigm, 
both through the weighting up of terms contained 
in the accepted alignment schema, and the removal 
of terms contained in rejected alignment schemas. 
This results in a rescoring of all alignments contain- 
ing affected terms. 

3.1 W h y  t f - i d f ?  
The applicability of the TF-IDF model to G-P align- 
ment can be understood intuitively by considering 
each grapheme segment type as a document, the as- 
sociated phonemic segments across all G-P tuples as 
terms, and the left and right graphemic/phonemic 
contexts of the current grapheme/phoneme strings, 
as the document context. 

The TF-IDF model maximallyweights terms which 
occur frequently within a given document (TF) 
but relatively infrequently within other documents 
(IDF). For G-P alignment, we maximally weight 
readings (aligned phoneme strings) which co-occur 
frequently with a given grapheme string, but are 
observed infrequently in the given lexical context. 
That is, we score up terms which occur with high 
relative frequency and maximum diversity of lexical 
context, and score down terms which either occur 
infrequently or occur only in restricted lexical con- 
texts. In this way, we are able to penalise under- 
alignment by way of a diminished IDF score (as the 
same under-alignment candidate will generally exist 
for most other instances of that same basic G-P tu- 

ple), and at the same time penalise over-alignment 
by way of a diminished TF score (as the given over- 
alignment will be reproducible for only a small com- 
ponent of instances of either the same grapheme or 
phoneme string). By calculating individual TF-IDF 
scores for each each aligned segment and combin- 
ing them to produce a single overall score for the 
alignment, we are able to balance up selection of the 
optimal overall alignment for the tuple. 

A subtle advantage in using the TF-IDF model in 
the manner proposed here is that it has no sense of 
"appropriate" segment size. While single characters 
provide a lower bound on segment size and the full 
string in question provides a dynamic upper bound, 
our only constraint within these bounds is that seg- 
ment size must follow character boundaries. In the 
given context of Japanese G-P alignment, it com- 
monly occurs that both phoneme and grapheme seg- 
ments extend over multiple characters (for the 5000 
member test data used for evaluation purposes, the 
average phoneme and grapheme segment sizes were 
1.93 and 1.20 characters, respectively). Indeed, de- 
spite the general perception of grapheme segments as 
containing a single kanji, multiple kanji were found 
in grapheme segments for 0.9% of G-P tuples in the 
test data (see below), including instances of the type 
fFg-[] [ki-nS] "yesterday" and ~-:;" [na-su] "egg- 
plant". The TF-IDF model can handle such examples 
because of the scarcity of alignment candidates shar- 
ing any of the unit-kanji readings produced through 
segmentation of such grapheme strings. That is, we 
would not expect to locate the partial alignment 
(...®-T'®...)-(...®su®...), for example, with signif- 
icant frequency in the remainder of the alignment 
data, whereas we may find the partial alignment 
(...®~-:~®...)-(...®na-su®...) elsewhere. Even if 
there were only one instance of this alignment type 
in the system data, the combination of the dimin- 
ished scores for (...®~®...)-(...®na®...) and (...® 
-Y=®...)-(...®su®...) would lead to an overall TF-IDF 
score for the associated segmentation well below the 
TF-based score for the full string-based alignment 
(see below). 

3 .2  C o u n t i n g  f r e q u e n c i e s  
To be able to apply the basis of the TF-IDF model, 
we first need to have some means of calculating term 
frequencies. Given that both methods are designed 
to operate independently of annotated training data, 
we have no means of bootstrapping the system. 3 

3Not strictly true, as there are a significant number  of 
G-P tuples where the alignment constraints produce full dis- 
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Term frequencies are thus defined to be an indication 
of the number of G-P tuples for which the full align- 
ment paradigm contains the given term, without 
consideration of whether that  instance occurs within 
a correct alignment or not. This can be represented 
as in equation (1), in the case offreq((g,p)), where p 
is the phoneme string aligning with grapheme string 
9 and phon_var(p) describes the set of phonological 
alternates of p. 

Phonological alternates are predictable instances 
of phonological alternation from a base form p, with 
the most widespread types of phonological alterna- 
tion being "sequential voicing" (Tsujimura, 1996, 
54-63) and gemination; if no method were provided 
to cluster frequencies for phonological alternates to- 
gether, data  sparseness and skewing of the statistical 
model would inevitably result. The current system 
has no way of predicting exactly what form of phono- 
logical alternation is likely to occur in what lexical 
context. One observation which can be made, how- 
ever, is that  phonological alternation affects only the 
phoneme string, and occurs only at the interface be- 
tween adjacent phoneme segments on a single sylla- 
ble level. It is thus possible to establish phonological 
equivalence classes at the unit syllable level, and use 
these to determine the maximum scope of phonolog- 
ical alternation which could realistically be expected 
of a given phoneme string. 

Formally, for a given phoneme string p = sl s2...Sn 
aligning with grapheme string g, where each si 
is a syllable unit, we thus generate a regular 
expression of all plausible phonological alterna- 
tions {8a18b]...}S2...{8ot18j31...}, where (SalSbI...} and 

Sa ]s~]...} are the phonological equivalence classes 
r Sl and sn respectively. For example, given the 

phoneme string ka-ku, we would generate the string- 
level equivalence class {ka[ga}{ku[gu]¢}, 4 where the 
ka/ga and ku/gu unit grapheme alternations are at- 
tributable to sequential voicing, and the ku/¢ alter- 
nation to gemination. 

The frequencies of all phonological alternations 
subsumed by the string-level equivalence class are 
then combined within freq((g,p)). We are able to 
handle phonological alternation within the bounds of 
the original statistical formulation by virtue of the 
fact that  the grapheme string is unchanged under 
phonological alternation, and as such the combined 
frequencies of alternates can never exceed the fre- 
quency of the associated grapheme string segment. 
This guarantees a tf value in the range [0, 1]. 

3 . 3  T h e  m o d i f i e d  t f - i d f  m o d e l  
Our interpretation of the TF-IDF model is given 
in equation (2), where g is a grapheme unit, p a 
phoneme unit and ctxt some lexical context for (g, p) 
within the current alignment; [req((g}), freq((g,p}) 
and freq((g,p, ctxt)) are the frequencies of occur- 
rence of g, the tuple (g,p), and the tuple (g,p) in lex- 
ical context ctxt, respectively. The subtractions by a 
factor of one are designed to remove from calculation 
the single occurrences of (g, p) and (g, p, ctxt) in the 

ambiguation - see Section 4. 
4Here, ¢ designates the head of a long consonant, also 

indicated by /Q / in  phonological theory. 

current alignment, and c~ is an additive smoothing 
constant, where 0 < c~ < 1. 

Consideration of lexical context for a given tuple 
(g,Pl is four-fold, made up of the single character 
immediately adjacent to g in the g r a p h e ~ -  s t ~  
and single syllable immediately adjacent to p in the 
phoneme string, for both the left and right direc- 
tions. In the case that  (g,Pl is a prefix of the overall 
G-P string pair, we disregard left lexical context and 
simply score according to t], that  is the ratio of oc- 
currence of g with reading p, for the two left context 
scores. Correspondingly in the case of (g,p) being 
a suffix, we disregard right context. The four resul- 
tant scores are then combined by taking the arith- 
metic mean. In the case of full-string unit alignment, 
therefore, the overall score becomes tf((g,p)). 

The overall score for the current alignment 
("align_score") is determined by way of the arith- 
metic mean of the averaged scores for each seg- 
ment pairing, with the exception of full kana-based 
grapheme segments which are removed from compu- 
tation altogether. 

3 . 4  V e r b / a d j e c t i v e  c o n j u g a t i o n  

There is one remaining form of commonly-occurring 
alternation which cannot be resolved easily within 
the confines of the T F - I D F  model. This is ver- 
bal/adjectival conjugation, and is difficult to cope 
with given the existing statistical formulation be- 
cause it occurs concurrently at both the grapheme 
and phoneme levels (i.e. we have no immediate ceil- 
ing on combined frequencies as was the case for 
phonological alternation). We model conjugation- 
based alternation by postulating verb paradigms 
based on conjugational analysis of the kana suffix 
to a given stem (Baldwin, 1998). This postula- 
tion of verb paradigms is performed independent 
of any static verb dictionary, and is achieved sim- 
ply by clustering legal verb stem-inflectional suffix 
segments according to verb stem and conjugational 
class. For example, for the aligned segment ( ~ -  
< )-(to-ku I (which constitutes the non-past form of 
the verb tok(-u) "to undo"),  conjugational analy- 
sis would reveal the possibility, of the segment being 
comprised of the verb stem of ~ and inflectional suf- 
fix of kw. Subsequent analysis of the corpus may well 
unearth what constitute conjugates of the same verb 
postulate, in to-ki, for example. This could then be 
complemented by consideration of phonological al- 
ternation as above, to produce the verb paradigm 
( toku, doku, toki, dokz). 

To be able to combine scoring of verb conjugates 
of the same verb paradigm within the original for- 
mulation (i.e. TF), we now require some base form of 
the verb which is guaranteed to occur with at least 
the same frequency as all its alternates, and hence 
constrain the value of TF to the range [0, 1]. 

For method-l, it is possible to consider the 
(invariant) verb stem as the base form of the 
verb. 5 In equation (2), we thus replace freq((g)) by 
freqy_ 1 ((g)), that  is the frequency of the graphemic 
component of verb stem g (irrespective of whether 

5Although discussion here refers exclusively to verbs, (con- 
jugating) adjectives are handled in exactly the same manner. 
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or not it is contained within a recognised conju- 
gation of the verb, and also irrespective of what 
phoneme segment it aligns with), and in equation 
(1), phon_var(p) becomes the augmented set of all 
phonological alternates of all conjugations of the 
verb p. Scoring is now carried out by way of the sim- 
ple TF model, without recourse to IDF. This design 
decision was made based on the observation that  in- 
herent delimitation of verb conjugates is provided 
through inflection-based analysis, such that  there is 
little danger of under- or over-aligning the segment 
in question. 

This leaves us in the position of having two sepa- 
rate means of scoring verb conjugate postulates, one 
via the basic TF-IDF formulation described in Sec- 
tion 3.3, and one through the TF-based conjugation 
model described in the above paragraph. In cases of 
such analytical ambiguity, there is potential for the 
verb conjugate-based analysis to be either wrong or 
under-scored due to data  sparseness. Rather than 
establishing a fixed precedence between the two re- 
sulting scores, therefore, we take the maximum of 
them as the overall score for the segment in ques- 
tion, and do not commit ourselves a priori to either 
analysis. 

This completes the formulation of method-1. 6 
In method-2, on the other hand, we are unable to 

found our frequency count on the base form of the 
verb, as the whole verb conjugate constitutes a sin- 
gle morpho-phonic segment for disambiguated align- 
ments. As such, no instance of the verb stem can be 
found as an individual segment. We thus modify 
our definition of freq((g)) somewhat to freqy_2((g)): 
the frequency of all G-P tuples for which there is an 
alignment candidate containing a conjugate existing 
in the same inflection paradigm as g. While this 
provides us with a ceiling for the raw frequencies 
of verbs and adjectives, weighting up of verb conju- 
gates found in solution set w (see below) allows for 
the possibility of a TF score greater than 1. To avoid 
this situation, we multiply the maximum conjugate 
frequency by the solution weighting factor sw] (see 
below), guaranteeing that  the TF value for conjugat- 
ing segments is always in the range [0, 1]. In practice, 
this means that  the score for a given verb inflection 
is initialised to c ~  and tends to converge to either 

swf ' 
0 (in the case of the postulated verb paradigm being 
rejected for each conjugate instance), or 1 (in the 
case of it being accepted). 

3 . 5  I n c r e m e n t a l l y  l e a r n i n g  w i t h  
m e t h o d - 2  

We are now in the position of being able to set 
method-2 running, and the only remaining consid- 
eration is exactly how we should select which align- 
ment paradigm to disambiguate at each iteration, 
and how to implement the incrementality of the 
learning method. 

Selection of the alignment paradigm for disam- 
biguation is achieved through the application of a 
discriminative metric. Two metrics were tentatively 

6For discussion of further variations on raethod-1, see 
(Baldwin and Tanaka, 1999). 

trialled for this purpose. The first consists of the 
simple ratio dml -- ~ between the highest and sec- 
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ond highest ranking scores sl and s2 ("the odds ra- 
tio"), in the manner of (Dagan and Ital, 1994). The 
second discriminative metric (dm2) is a slight vari- 
ation on this whereby we take the log of the ratio 
of the highest ranking score to the second ranking 
score ("the log odds ratio"), and multiply it by the 
highest ranking score, i.e. sl log ~ .  The G-P tuples 
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contained in ¢ are ranked in descending order ac- 
cording to the particular discriminative metric of 
use, and the G-P tuple with the highest rank (i.e. 
with greatest system "conviction" in the top-ranking 
alignment candidate) is disambiguated based on the 
top-scoring alignment candidate. 

The first discriminative metric is heuristic, and 
based on the intuition that  we are after maxi- 
mum disparity in score between the first and sec- 
ond ranked candidates. The second discriminative 
metric, on the other hand, is designed to balance up 
maximisation of both sl and the relative disparity 
between sl and s2. Note that,  unlike Dagan and Itai 
(1994), we give no consideration to statistical confi- 
dence as we are after 100% recall, whatever the cost 
to precision. 

To this point, the only difference over method-1 is 
the sequence in which solutions are output.  How- 
ever, by singling out a G-P alignment candidate of 
maximum discrimination on each iteration, it now 
becomes possible to refine the statistical model by 
training it on aligned output  (i.e. G-P tuples stored 
in w in Fig. 2), hence: (a) alleviating statistics deriv- 
ing from less-plausible alignments, and (b) weight- 
ing up term frequencies found in final disambiguated 
alignments. Neither of these processes are possible 
under the simple statistical model as all alignments 
are processed in parallel, and the system is unable to 
commit itself to the plausibility of any given align- 
ment in scoring others. 

The weighting up of terms found in solution align- 
ments is achieved through the use of two weighting 
factors on term frequencies, one for terms found in 
candidate alignments (¢) and one for terms found 
in solution alignments (w), namely the candidate 
weighting ]actor ( cw]) and solution weighting ]actor 
(sw]), respectively; naturally, 0 < a < cwf < sw]. 

4 E v a l u a t i o n  
As a test set, a set of 5000 G-P tuples was randomly 
extracted from the EDICT English-Japanese dictio- 
nary 7 and Shinmeikal Japanese dictionary (Naga- 
sawa, 1981) and each tuple annotated with its align- 
ment for evaluation purposes. So as to be able 
to properly evaluate the success of application of 
the alignment constraints, we further augmented the 
original 5000 G-P tuples with 1403 lexical alternates 
thereof (so as to provide full scope for constraint- 
based pruning). Our motivation in using this limited 
data  set was to be able to run method-2 to comple- 
tion and attain empirically comparable results for 
the two proposed methods. 

7 ftp ://ftp. cc.monash, edu. au/pub/nihongo 
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In evaluation, method-1 was used with 
the c~ smoothing constant set variously to 
{0.25,0.05,0.001,0.0001}. For method-2, cwf 
and swf were fixed at 0.5 and 1.0 respectively, and 
c~ set variously to {0.05, 0.0001} for discriminative 
metric dml, and {0.25, 0.05, 0.001} for dm2. 

By way of a baseline for evaluation, we used the 
rule-based method proposed by Bilac et al. (1999), 
which achieved an alignment accuracy of 92.90% 
when run over the full dictionary file of 59744 entries 
and empirically evaluated on the same 5000-tuple 
data  set as was used for method-1 and method-2. 
Note that  the Bilac system requires a training set of 
standard readings for each unit kanji and also a verb 
conjugational dictionary, whereas both our proposed 
methods have no reliance on external evidence. It is 
also worth emphasising that  our methods were heav- 
ily handicapped over the rule-based method, in that 
they were not able to apply statistics derived from 
the remaining 52744 entries in refining their respec- 
tive statistical models. However, in terms of empir- 
ical evaluation of the three methods, the respective 
system accuracies are directly comparable. 

Baseline - -  
Method. 1 "X* 

Method-2 (drn ~, cwf=0.5, swf= 1) "'~-" 
Method.2 (din2, cwf=0.5, swf=l ) 

• . - .  - ×  . . . . . . . . .  . ×  

~90 
o~ 

8 

75 , * t 
0.06 0001 0.0001 

O~ 

X" 

0.25 

Figure 3: Accuracies of the different methods 

As evidenced in Fig. 3, method-1 achieved a max- 
imum accuracy of 86.74% (with a = 0.0001), signif- 
icantly below that  of the baseline method. Based 
on the curve for method-l, it would appear that  the 
method performs best with infinitesimally small a 
values. This perhaps points to limitations in our 
"plus constant a"  smoothing methodology. In stark 
contrast, method-2, achieved a maximum accuracy 
of 93.28% (using dm2, with a = 0.05), just out- 
stripping the baseline method despite its handicap 
in terms of diversity of input data. Little differ- 
ence was seen between accuracies for discriminative 
metrics din1 and din2, although din2 generally per- 
formed marginally better. For the given cwf and 
twf values, it would appear that  an a value around 
0.05 is optimal, providing an interesting comparison 
with the seemingly asymptotic nature of the method- 
1 curve. While we are unable to present the results 
here, varying the relative values of cwf and twf pro- 
duced little difference over the accuracies in Fig. 3, 
for comparative a values. 

The most common type of system error for 
method-1 was under-alignment (where the correct 

alignment is properly subsumed by the system align- 
ment). Tha t  the system accuracy increases with di- 
minishing a value is a result of decreases in under- 
alignment outweighing increases in over-alignment 
and over-segmentation on conjugating morphemes. 
For method-2, the greatest single error type is over- 
segmentation of conjugating morphemes (principally 
verbs), accounting for 58.95% of all errors for dm2 
with a set to 0.001. It would appear that  for 
relatively larger values of a,  instances of under- 
alignment increase, and for relatively smaller val- 
ues of a,  instances of over-alignment and over- 
segmentation increase. 

So as to get an insight into its true potential, we 
redid evaluation of method-l, over the full dictionary 
set this time with a set to 0.05 (using the same 5000 
tuples for evaluation as before). This produced an 
accuracy of 93.96%, pointing to the potential for a 
even higher accuracy for method-2 over the full dic- 
tionary set. 

Analysis of the effectiveness of the lexical a n d  
phonological constraints indicated that  we are able 
to reduce the cardinality of alignment by almost 
75%, from 13.80 to 4.10, on average. Indeed, full 
disambiguation was possible for 603 of the 5000 en- 
tries (including 480 singleton entries). Importantly, 
there were no instances of the correct alignment be- 
ing pruned due to over-constraint. The individual 
constraints were activated with the frequencies in- 
dicated below, with constraints higher in the table 
taking precedence over those lower in the table in 
the case of a given alignment violating more than 
one constraint. 

(1) 
(pl) 

(p2) 

Times activated Relative freq. 
of application 

18481 34.41% 
9076 16.90% 

11383 21.19% 
9292 17.30% 

14297 26.62% 

7 ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Discrirninative__1100 

I \  ..... I 

, "', 94 

O ~  ~ 
603  1483  2 3 6 2  O u t p u t  n o .  3242 4121 

Figure 4: The relation between mean accuracy and 
discriminative value for method-2 

To further examine the correspondence between 
the size of the discriminative ratio and system accu- 
racy for method-2, we plotted both the system accu- 
racy and discriminative value against the rank of sys- 
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tem output  (Fig. 4 - based on dm2 with a = 0.05). 
Here, we disregard all alignments where constraints 
produced full disambiguation (603 instances), such 
that  the rank of the first statistically disambiguated 
input is 604. The indicated accuracies and discrimi- 
native values are averaged over discrete corridors of 

220 entries centering on the given output  ranks. 
Looking to the results, it is important  firstly to no- 
tice that  we realise an accuracy of 100% in the initial 
stages of output  (up to rank 1703), which progres- 
sively degrades down to 92.38% over the final corri- 
dor with zero discriminative. Note also tha t  whereas 
the discriminative curve is monotonically decreasing 
when averaged over the given corridor, in practice lo- 
cal maximums do exist, a t t r ibutable  to the situation 
where re-training of the statistical model produces 
inflation of the maximum discriminative value. 

5 Other  appl icat ions  of  this  
research 

Other than the constraints described in Section 2 
and frequency determination techniques, the pro- 
posed methodology is theoretically scalable to any 
domain where two streams of chunked information 
require alignment. This suggests applications to the 
extraction of translation pairs from aligned bilin- 
gual corpora (Gale and Church, 1991; Kupiec, 1993; 
Smadja et al., 1996), where the system input would 
be made up of aligned strings (generally sentences) 
in the two languages. Given tha t  we can devise some 
way of creating an alignment paradigm between the 
two input segments, it is possible to apply the scor- 
ing and learning methods proposed herein in their 
existing forms. Note, however, that  in the case of 
translation pair extraction, there is a real possibil- 
ity of the alignment mapping being many-to-many,  
and crossing over of alignment is expected to occur 
readily. In fact, it may occur tha t  there is a residue 
of unaligned segments in either or both  languages, 
as could easily occur if one language included zero 
anaphora.  It  may, therefore, be desirable to apply 
a dynamic threshold on the discriminative ratio (cf. 
(Dagan and Itai, 1994)) to accept only those trans- 
lation pairs with sufficiently high statistical confi- 
dence, for example. 

6 Conclus ion  
In this paper,  we proposed an adaptat ion of the 
TF-IDF model to Japanese grapheme-phoneme align- 
ment. We then went on to extend the basic statis- 
tical method to devise a fully unsupervised learn- 
ing method,  by way of a two discrimination-based 
metrics and incremental refinement of the statis- 
tical model. Experimentat ion suggested tha t  the 
proposed learning method marginally outperforms 
both a baseline rule-based method and the non- 
incremental statistical method.  

I tems of future research include expanding eval- 
uation of the incremental learning method to the 
full dictionary file used in this research, as well as 
to other Japanese dictionaries/genres and other lan- 
guages. 
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