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Abstract  

We introduce a new model of selectional 
preference induction. Unlike previous ap- 
proaches, we provide a stochastic genera- 
tion model for the words that  appear  as 
arguments of a predicate. More specifi- 
cally, we define a hidden Markov model 
with the general shape of a given seman- 
tic class hierarchy. This model has a num- 
ber of at tract ive features, among them that  
selectional preference can be seen as dis- 
tributions over words. Initial results are 
promising. However, unsupervised param- 
eter estimation has proven problematic. A 
central problem is word sense ambiguity in 
the training corpora. We describe a t tempts  
to modify the forward-backward algorithm, 
an EM algorithm, to handle such disam- 
biguation. Although these a t tempts  were 
unsuccessful at  improving performance, we 
believe they give insight into the nature of 
the bottlenecks and into the behavior of the 
EM algorithm. 

1 Introduction 

We describe here an approach to inducing selectional 
preferences from text corpora. In the traditional 
view, a predicate constrains its arguments by select- 
ing for particular semantic classes, or concepts. Se- 
lectional restriction of the traditional sort can be 
characterized as a relation p(v, r, c) over predicates 
v, syntactic roles r, and argument  concepts c. Indi- 
vidual instances (v, r, c) are selectional tuples. Ex- 
amples are given in table 1. 

Of more interest to computat ional  linguistics is 
selectional preference, a continuous-valued gener- 
alization of selectional restriction. Selectional pref- 
erence is a mapping ~ : (v,r,c) ~ a that  maps 
each tuple (v,r,c) to a real number  a, the degree 

Predicate Role Argument Class 
splatter subj CAUSAL-AGENT 
splatter obj FLUID 
splatter on SURFACE 

Table 1: Selectional tuples 

of preference of v for c with respect to role r. Pos- 
itive degrees of preference are intended to correlate 
with intuitive judgments of "plausibility" or "typi- 
cality," and negative judgments are intended to cor- 
relate with intuitive judgments of "implausibility." 

We have chosen to characterize such selectional 
preference as a side-effect of a stochastic model for 
generating what we will call co-occurrence tuples: 
triples (v, r, n) for v a predicate, r a syntactic role, 
and n the headword of the argument filling the role 
r with respect to v. An example of a co-occurrence 
tuple is (splatter, obj, water). Co-occurrence tuples 
can be obtained from text corpora, and can be used 
to make inferences about the probability of selec- 
tional tuples. For example, the co-occurrence tuple 
(splatter, obj, water) may be taken as evidence for 
the selectional tuple (splatter, obj, FLUID). More 
concretely, such co-occurrence tuples make up the 
training corpora, from which we train our stochastic 
models. 

For this study, we have used the British National 
Corpus (100M words), from which we have extracted 
co-occurrence tuples using the Cass parser (Abney, 
1997). By way of illustration, table 2 shows the val- 
ues of n in tuples (eat, obj, n) along with their freq- 
uencies in the corpus. This "subcorpus" would be 
used to train a stochastic model specific to the ob- 
ject role of the verb eat and is the first of two inputs 
to our induction process. 

There are two problems with such training data: 
it is noisy and it contains ambiguity. The noise 
is sometimes due to tagging or parsing errors, and 
sometimes due to metaphorical uses. Examples from 



meat 45 bucket 1 ice 2 
tape 1 investment 1 soup 2 
proportion 2 kitchen 1 fry 4 
root 4 salad 2 top 1 
bread 14 feast 1 scrap 2 
majority 2 sauce 1 sugar 1 
principle 1 food 77 hole 2 
roll 4 pack 1 bag 2 
race 1 mouthful 3 dinner 11 
sheep 1 salt 1 meal 46 
trout 2 pasta 1 slice 7 
dish 2 spaghetti 6 chicken 5 
stick 1 egg 18 average 1 
sandwich 13 yogurt 1 mustard 1 
breakfast 30 garlic 1 

Table 2: Objects of eat in the BNC 

table 2 include investment, average, tape, and race'. 
However, note that the "good" examples such as food 
and meal are much greater in number and frequency'. 
Thus, the signal is stronger than the noise in most 
cases and most reasonably robust training methods 
will be able to handle the noise. 

The second problem, that  of word sense ambigu- 
ity, is more difficult. The word bread in table 2 pro- 
vides an example. Bread can be used to refer to a 
food, e.g., the multigrain bread in Germany is won- 
derlul, but it can also refer to money, e.g., I could 
really use some bread since my car just  broke down. 
For this reason, it is not immediately clear which 
concepts the 14 tokens of bread provide evidence for. 
If the wrong choice is made for a high frequency 
word, incorrect selectional preferences will result. 

The model we propose represents this sort of un- 
certainty in a natural way: the two senses of bread 
are represented as different paths through a stochas- 
tic model, both of which generate the same obser- 
vation. This stochastic model is a hidden Markov 
model (HMM) which has the shape of a given se- 
mantic hierarchy. Figure 1 shows an example hi- 
erarchy. In the work discussed here, we made use 
of the WordNet semantic hierarchy (Miller, 1990). 
This hierarchy is the second input to our induction 
process. 

We hoped that the forward-backward algorithm, 
an EM algorithm, would properly disambiguate 
word senses in the training data  as a side effect of 
its quest to maximize the likelihood of the training 
data  given the model. However, for reasons we will 
discuss in section 4, this was not the case. 

In the following section we discuss work on se- 
lectional preference induction that  also assumes as 
input (i) subcorpora corresponding to predicate role 
pair and (ii) a semantic class hierarchy. Then we 

TOP 

LOCA~ON ENTITY 

LEc'E.FORM CAUSAL-AGENT 

PERSON e~ ~ " ~ ' ~  
BEEs ~ m , , r ~ Z  

WORKER 
BEE WORKER FEMALE MALE 

Figure 1: Example Semantic Class Hierarchy 

formally define our stochastic model. Next we look 
at a number of ultimately unsuccessful at tempts to 
modify the forward-backward algorithm to perform 
effective word-sense disambiguation of the training 
data. Despite these problems we did obtain some 
encouraging results which we present at the end of 
the paper. 

2 R e l a t e d  w o r k  

There' have been a number of attempts to derive 
selectional preferences using parsed corpora and a 
semantic class hierarchy. Our work is closely re- 
lated to that of (Resnik, 1993). His system pro- 
vides a distribution over classes conditioned on a 
predicate-role pair: p( clv, r ). It estimates p( clv , r ) 
as f ( v , r , c ) / ~ c '  f ( v , r , c ' ) ,  where f ( v , r , c )  is in turn 
approximated by allocating the frequency of the co- 
occurrence tuple (v, r, n) among the classes C(n)  to 
which the senses of n belong. For example, sup- 
pose the word bread has two senses, BREAD and 
MONEY. Suppose further that BREAD is a hyponym 
of BAKED-GOODS, FOOD, ARTIFACT, and TOP, and 
MONEY is a hyponym solely of TOP. Then C(bread) 
is (BREAD, BAKED-GOODS, FOOD, ARTIFACT, TOP, 
MONEY). Tokens of bread are taken as ambiguous ev- 
idence for all concepts in C(bread); the weight of ev- 
idence is divided uniformly across C(bread). Hence 
each token of (eat, obj, bread) counts as 1/6 of a 
token of (eat, obj, BREAD), 1/6 of a token of (eat, 
obj, BAKED-GOODS), and so on. Such a uniform al- 
lotment is does not reflect empirical distributions of 
senses, which are Zipf-like, but does produce reason- 
able results. It is important to note that Resnik is 
not very explicit about how the probability p(clv, r) 
is to be interpreted; there is no explicit stochastic 
generation model involved. 

Resnik uses p(clv, r) to quantify selectional pref- 
erence by comparing it to p(c), the marginal proba- 
bility of class c appearing as an argument. He mea- 
sures the difference between these distributions as 
their relative entropy (D). The total amount of "se- 
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lection" that  a predicate v imposes on the filler of 
role r is quantified as D(p(c[v,r)[[p(c)). The selec- 
tional preference of v for c in role r is quantified 
as the contribution of the c to the total  amount  of 
selection: 

p( c[v, r) log eJs.ly_ffO_ p(c) 
selpref(v, r, c) = Dfp(c'lv, r)llP(C')) 

The class or classes produced as the output  for the 
predicate are those with the highest selpref value. 

Other work on the induction of selectional pref- 
erences includes (Li and Abe, 1995). They charac- 
terize the selectional restriction of a predicate with 
a horizontal cut through a semantic hierarchy, and 
use the principle of Minimum Description Length 
(MDL) to choose a cut tha t  optimally balances sim- 
plicity and descriptive adequacy. More specifically, a 
cut is a set of concepts tha t  parti t ion the set of nouns 
belonging to the hierarchy. A cut is deemed simpler 
if it cuts the hierarchy at a higher place (i.e., the cut 
contains fewer concepts), and descriptive adequacy 
is measured by comparing the actual distribution of 
nouns filling a slot (v, r) to the closest approxima- 
tion one can obtain by est imating p(nlc ) for only the 
concepts c in the cut. Again, the intended stochastic 
generation model is not clear. 

As mentioned, the interpretation of expressions 
such as p(clv, r) is obscure in these previous mod- 
els. Without  clarity about  what  stochastic process 
is producing the data,  it is difficult to gauge how 
well probabilities are being estimated. In addition, 
• having an explicit stochastic generation model en- 
ables one to do a number  of things. First, one 
can experiment with different methods of eliminat- 
ing word sense ambiguity in the training corpus 
in a principled fashion. Second, it is often possi- 
ble to calculate a number  of useful distributions. 
From our model, the following distributions can 
be efficiently estimated: Pr(word[predicate, role), 
Pr (word[ semantic-class, predicate, role), 
and Pr( word-senselword ,predicate,role). These 
distributions can be used directly to help solve 
ambiguity resolution problems such as syntac- 
tic structure disambiguation. In addition, the 
Pr(wordlpredicate, role ) distribution can be seen 
as a very specific language model, i.e., a language 
model for the head of the argument  of the predicate. 

3 O u r  S t o c h a s t i c  G e n e r a t i o n  M o d e l  

Our model generates co-occurrence tuples (e.g., (eat, 
obj, bee])) as follows. The probability p(v, r, n) 
of a co-occurrence tuple can be expressed as 
p(v,r)p(nlv, r ). Our central concern is the condi- 
tional probabili ty p(nlv, r). We associate a separate 

HMM with each pair (v,r)  in order to characterize 
the distribution p(nlv ,r). Thus, the HMM for (eat, 
obj) would be different than that  for (drink, subj). 
Tha t  is, the general structure of the HMM would be 
the same but the parameters  would be different. 

The  states and transitions of the HMMs are iden- 
tified with the nodes and arcs of a given semantic 
class hierarchy. The nodes of the hierarchy represent 
semantic classes (concepts), and the arcs represent 
hyponymy (that is, the "is-a" relation). Some con- 
cepts are expressible as words: these concepts are 
word senses. A sense may be expressible by multi- 
ple words (synonyms) and, conversely, a single word 
may be an expression of more than one sense (word 
sense ambiguity). For expository reasons, we assume 
that  all and only the terminal nodes of the hierarchy 
are word senses. In actuality, the only constraint our 
system places on the shape of the hierarchy is tha t  
it have a single root. 

A "run" of one of our HMMs begins at the root 
of the semantic hierarchy. A child concept is chosen 
in accordance with the HMM's transition probabil- 
ities. This is done repeatedly until a terminal node 
(word sense) c is reached, at which point a word w 
is emitted in accordance with the probability of ex- 
pressing sense c as word w. Hence, each HMM "run" 
can be identified with a path through the hierarchy 
from the root to a word sense, plus the word that  
was generated from the word sense. Also, every ob- 
servation sequence generated by our HMMs consists 
of a single noun: each run leads to a final state, at 
which point exactly one word is emitted. 

More formally, a concept graph is given, and an 
expressibility relation from nodes to words. Tile 
nodes of the graph are identified with concepts C = 
{ c l , . . . , c n } ,  and the expressibility relation relates 
concepts to words kY = { w l , . . . , w m } .  The HMM 
consists of a set of s ta tes  {ql, . . . ,qn},  which we 
identify with the nodes of the concept graph; a set of 
possible emissions which we identify with W U {e} 
( that  is, we permit  non-emitting states); and three 
parameter  matrices: 

A = {aij} The transition probabilities. The value 
aij represents the probability of making a tran- 
sition from state qi to state qj. aij is nonzero 
only if there is an arc in the concept graph from 
concept ci to concept cj. 

B = {bj(k)} The emission probabilities. The value 
bj(k) represents the probability of emitt ing 
word Wk while in state q/. States corresponding 
to nonterminal nodes in the concept graph are 
non-emitting (that is, they emit  e with prob- 
ability 1), and states corresponding to termi- 
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nal nodes are emitting states (they emit e with 
probabili ty 0). 

~- = {Tri} The initial s tate distribution, rri is identi- 
cally 1 for the s tar t  s tate (corresponding to the 
root node), and 0 for all other states. 

As mentioned, we associate an HMM with each 
pair (v , r) .  Each HMM has the same structure,  de- 
termined by the semantic hierarchy. Where they 
differ is in the values of the associated parameters .  
To est imate parameters ,  we require a training sam- 
ple of observation sequences. Since each observation 
sequence consists of a single word, a training sample 
is simply a collection of word tokens. The training 
sample consists of the nouns filling the associated 
"slot" ( v , r ) - - t h a t  is, a token of the noun n is in- 
cluded in the training sample for each token of the 
tuple (v , r ,n )  tha t  occurs in the corpus. Table 2 
provides an example corpus. 

This approach permits us to address both  word 
sense disambiguation and selectional preference. An 
ambiguous word is one that  could have been gen- 
erated by means of more than one s ta te  sequence. 
For a given ambiguous word n appearing in a slot 
(v,r), we can readily compute the posterior prob- 
ability that  word sense c was used to generate n, 
according to the (v, r) model. We can disambiguate 
by choosing the word sense with max imum poste- 
rior probability, or we can use the probabilities in 
a more sophisticated model tha t  uses more contex- 
tual information than just the slot in which the word 
appears.  

Selectional preferences for (v, r) ,  can be extracted 
from these models by calculating the distribution 
over classes p(clv, r) from the model trained for (v, r) 
and tile distribution p(c) from a model trained on 
all nouns. One can then follow Resnik and use sel- 
pref(v,r,c) as defined above. These distributions can 
be calculated by considering our HMMs with addi- 
tional transitions going from all leaf states to the 
root state. Such HMMs are ergodic and thus the 
probabili ty of being in a particular s tate  at a t ime 
t converges to a single value as t approaches oo. 
These steady-state  probabilities can be put entirely 
in terms of the parameters  of the model. Thus, once 
an HMM has  been trained, the steady state proba- 
bilities can be easily calculated. Because of the cor- 
respondence between states and classes, these steady 
state distributions can be interpreted as a distribu- 
tion over classes. 

As mentioned earlier, another  way of thinking 
about  selectional preference is as a distribution over 
words. For example, the selectional preference of the 
verb eat for its direct object would be expressed by 

high probabilities for words like breakfast, meat, and 
bread and low probabilities for words like thought, 
computer, and break. This conception of selectional 
preference is related to language modeling in speech 
recognition. In fact, the selectional preference of a 
predicate-role pair can be thought of as a very spe- 
cific language model. This way of thinking about  
selectional preferences is useful because it points to 
possible applications in speech recognition. 

4 P a r a m e t e r  E s t i m a t i o n  

We had originally hoped that  after turning our se- 
mantic hierarchy into an HMM as described above, 
we could simply run the standard forward-backward 
algorithm on the training corpus and we would get 
a useful model. Unfortunately, there are a number  
of reasons why this does not work. We will describe 
these problems and our a t tempted solutions in the 
context of disambiguating the words in the train- 
ing da ta  with multiple word senses, a fundamental  
task in the estimation of selectional preferences. In 
each of the three sub-sections below we describe a 
problem we discovered and an a t tempted  solution. 
In the end, we were not able to produce a sys tem 
that  performed bet ter  than Resnik's system on his 
word-sense disambiguation evaluation. This evalua- 
tion is an indirect way of testing whether the training 
method is word sense disambiguating the training 
corpora correctly. However, when we derived from 
our models a ranked list of classes using p(clv ,r) 
and Divergence as described above, we obtained very 
good lists. We present some representative lists and 
the results on Resnik's evaluation in section 5. 

In addition, we think the a t tempted solutions are 
instructive and provide insight into the nature of the 
problem and the behavior of the EM algorithm. 

4.1 S m o o t h i n g  

It was our original hope that,  by treating the choice 
of word sense as just another hidden variable in the 
HMM, word-sense disambiguation would be accom- 
plished as a side effect of EM estimation. In fact, 
however, there is no pressure in the model in favor 
of parameter  settings in which occurrences of an am- 
biguous word are all accounted for by a single word 
sense. If the initial parameter  settings account for 
an ambiguous word as a mixture of word senses, the 
converged model does likewise. This should come as 
no surprise to those with experience using EM, but  is 
not usually stated very clearly in the literature: the 
EM algorithm estimates a mixture model and (intu- 
itively speaking) strongly prefers mixtures contain- 
ing small amounts of many solutions over mixtures  
that  are dominated by any one solution. 
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Figure 2: Smoothing 

For example, consider Figure 2. We assume a 
miniature training corpus, containing one instance 
each of four words, meat, apple, bagel, cheese. 
The word meat is ambiguous, having both sense 
E S S E N C E  and sense F L E S H .  The training corpus 
is perfectly accounted for by the weights in Figure 2, 
and this is indeed a fixed point of the EM algorithm. 

One would like to introduce some pressure toward 
consolidating word occurrences under a single word 
sense. Further, one would like the set of word senses 
one ends up with to be as closely related as possible. 
In Figure 2, for example, one would like word meat 
to shift as much of its weight as possible to sense 
F L E S H ,  not sense the E S S E N C E .  

We sought to accomplish this in a natural  way by 
smoothing transition probabilities, as follows. The 
transition probabilities out of a given state consti- 
tute a probability distribution. At a given iteration 
of the EM algorithm, the "empirical" distribution 
for a given state is the distribution of counts across 
outgoing transitions, where the counts are estimated 
using the model produced by the previous iteration. 
(Hence the scare quotes around empirical. For want 
of a bet ter  term, let us call this distribution pseudo- 
empirical.) 

For example, assume the parameter  settings 
shown in Figure 2 to be the output  of the previous 
iteration, and assume that  each word appears once 
in the training corpus. Then the (estimated) count 
for the path  through transition F O O D  ~ F L E S H  is 
1/2, and the count for the paths through transitions 
F O O D  --~ F R U I T ,  F O O D  ~ B R E A D ,  F O O D  
D A I R Y  is 1 each. Hence, the total count for the 
state F O O D  is 3.5. Dividing each transition count 
by the count for state F O O D  yields the pseudo- 
empirical probabilities {1/7, 2/7, 2/7, 2/7}. 

The pseudo-empirical probabilities would nor- 
mally be installed as transition weights in the new 
model. Instead, we mix them with the uniform 
distribution {1/4, 1/4, 1/4, 1/4}. Let p(t) be the 
pseudo-empirical probabili ty of transition t, and let 
u(t) be the uniform probabili ty of transition t. In- 
stead of setting the new weight for t to p(t), we set 

it to E u(t) ÷ (1 - v)p(t). 

Crucially, we make the mixing parameter,  e, a 
function of the total count for the state. Intuitively, 
if there is a lot of empirical evidence for the distribu- 
tion, we rely on it, and if there is not much empirical 
evidence, we mix in a larger proportion of the uni- 
form distribution. To be precise, we compute ~ as 
1 / ( c +  1), for c the total count of the state. This has 
the desirable property that  E is 1 when c is 0, and 
decreases exponentially with increasing c. 

It is probably not immediately obvious how 
smoothing in this manner helps to prune undesired 
word senses. To explain, consider what happens in 
Figure 2. There are two paths from the root to 
the word meat, one leading through the word sense 
E S S E N C E  and the other leading through the word 
sense F L E S H .  In the "previous" model (i.e., the 
weights shown), each of those paths has the same 
weight (namely, 1/8), hence each instance of the 
word meat in the training corpus is taken as evi- 
dence in equal parts for word senses E S S E N C E  and 
F L E S H .  

The difference lies in the states C O G N I T I O N  
and F O O D .  Words apple, bagel, and cheese, along 
with half of meat, provide evidence for the state 
F O O D ,  giving it a total count of 31/2; but the only 
evidence for state C O G N I T I O N  is the other half of 
meat, giving it a total count of 1/2. The new distri- 
bution for C O G N I T I O N  has a large admixture of 
the uniform distribution, whereas the distribution of 
F O O D  has a much smaller uniform component. 

The large proportion of uniform probability for 
the state C O G N I T I O N  causes much of its probabil- 
ity mass to be "bled off" onto siblings of E S S E N C E  
(not shown, but indicated by the additional outgoing 
edges from C O G N I T I O N ) .  Since none of these sib- 
ling are attested in the training corpus, this makes 
C O G N I T I O N ' s  fit to the training corpus very poor. 
Intuitively, this creates pressure for T O P  to reduce 
the weight it apportions to C O G N I T I O N  and in- 
crease its weight for F O O D ;  doing so improves the 
model's overall fit to the training corpus. 

This decreases the relative count for the word 
sense E S S E N C E  in the next iteration, increasing 
the pressure to shift weight from C O G N I T I O N  to 
F O O D .  Ultimately, an equilibrium is reached in 
which most  of the count for word meat is assigned to 
the word sense F L E S H .  (What prevents a total  shift 
to the word Sense F L E S H  is smoothing at T O P  , 
which keeps a small amount of weight on C O G N I -  
T I O N .  In a large hierarchy, this translates to a van- 
ishingly small amount of weight on E S S E N C E . )  
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Figure 3: Imbalanced Senses 

4.2 Sense  B a l a n c i n g  

In Figure 2, our smoothing method produces the de- 
sired bias for the corpus meat, apple, bagel, cheese. 
However, in different circumstances the bias pro- 
duced is not the desired one. Consider training the 
hierarchy in Figure 3 on a corpus made up of one 
token of meat. 

The hierarchy in Figure 3 differs from the hier- 
archy in Figure 2 in that  meat has three senses, 
two of which share a prefix path, i.e., the transi- 
tion from TOP to FOOD. When training on the 
corpus of one token of meat, 2/3 of the count would 
go down the FOOD side and the other third down 
the COGNITION side; thus, with respect to the 
forward-backward algorithm, there is little difference 
between the current example and the previous one. 
Therefore, the two senses of meat under FOOD will 
be preferred. Intuitively this is wrong, because there 
is no information in the corpus on which to derive 
a bias for any one sense and we would like our pa- 
rameter settings to reflect this. In addition, this is 
also not simply a border case problem, since if meat 
is very frequent, as in the corpus in Table 2, it could 
easily happen that such an a priori bias for certain 
senses of meat drowns out the bias that should result 
from the other words in the corpus. 

In concrete terms, the problem is the shared 
path prefix that exists for the senses under FOOD, 
namely the transition from TOP to FOOD. More 
abstractly, the problem is that  the hierarchy is not 
balanced with respect to the senses of meat--if there 
were another sense under ESSENCE there would be 
no problem (see Figure 4). 

One can simulate such a phantom sense within the 
forward-backward algorithm. First the count for the 
transitions in the prefix path have to be reduced. 
This can be done by modifying the E step such that 
the expectation, E w ( X i , j ) ,  for the random variable, 
Xi~ j ,  which corresponds to the transition from state 
i to state j for a single token of word w, is calculated 

TOP 

COGNrHON FOOD 

f FLESH PLANT-PART BREAD DAIRY 

ESSENCE... f l  . . . . .  " ' "  I ' / -  T T 

Figure 4: Sense Balancing 

TOP 

C( )G NITION F(R)D PL,-MWT- PART 

ESSENCE FLESH 

.,of 

Figure 5: Graph with Reentrancy 

as follows. 

Ew(Xi.j) 
w) 

where Ew() is the expectation based on the model 
and corpus and D(j ,w) is the number of unique 
paths starting at j and ending in a state that can 
generate w. One then sums over all tokens of the 
corpus to get the expectation for the corpus. 

The second step is to reduce tile probability of the 
paths to the sister sense of the phantom sense, e.g., 
C O G N I T I O N s  ESSENCE. This can be achieved by 
increasing the normalization factor used in the M 
step: 

: Ew( (r,w) - 

Once again, we focus on the contribution of a single 
token of a word w and thus the normalization factor 
used in the M step would be the sum Aw over the 
tokens in the corpus. The state r is the starting state 
of the model, i.e., the state corresponding to the 
root of the hierarchy. The exception to this formula 
occurs when D(r,w) - D ( i , w )  = O, in which case 

A,~ = Ew. 
There are other ways of modifying the algorithm 

to simulate the phantom sense. However, this 
method is easy and efficient to implement since the 
E and M steps remain simple local calculations--the 
only global information comes through the function 
d which can be efficiently and easily computed. 

Another kind of sense imbalance is shown in Fig- 
ure 5. This imbalance can be corrected by further 
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Figure 6: Path  on the Right is Preferred Due to its 
Shorter Length 

modifying the E step as follows: 

v(j, w)u(j) 

where U(j)  is the number of unique paths up to 
the root from j .  

4.3 L e n g t h  a n d  W i d t h  B a l a n c i n g  

Most of the example hierarchies/models we have 
considered so far have been balanced with respect 
to length and width, i.e., the length of the paths to 
the generating states has been uniform and the num- 
ber of transitions out of a state has been uniform 
across states. I t  turns out that  uniform length and 
width are important  characteristics with respect to 
our modified forward-backward algorithm: shorter 
paths are preferred to longer ones (see Figure 6) and 
paths that  go through states with few exiting tran- 
sitions are preferred to ones that  go through states 
with many (see Figure 7). In fact, short paths are 
preferred to longer ones by the s tandard forward- 
backward algorithm, since in an HMM the proba- 
bilities of events in a sequence are multiplied to get 
the probabili ty of the sequence as a whole. Width 
only comes into play when one introduces smooth- 
ing. Remember  that  in our smoothing, we mix in the 
uniform probability. Consider the transitions com- 
ing out of the state C O G N I T I O N  in Figure 7; there 
are four transitions and thus the uniform probabil- 
ity would be 1/4. In contrast,  the transitions coming 
out of the state FOOD in the same figure number 
only 2 and thus the uniform distribution would be 
1/2. If  there are many transitions the probability 
mixed for the uniform distribution will be smaller 
than if there were fewer transitions. 

We can solve the problem by balancing the hier- 
archy: all paths tha t  result in generating a symbol 
should be of the same length and all distributions 
should contain the same number of members.  As in 

TOP 

CC~NITION FOOD 

ESSENCE FLESH 

. ,a l  

Figure 7: Path on the Right is Preferred Due to its 
Relatively Narrow Distributions 

the previous section, we can simulate this balancing 
by modifying the forward-backward algorithm. 

First, to balance for width, the smoothing can be 
modified as follows: instead of mixing in the uni- 
form probability for a particular parameter,  always 
mix in the same probability, namely the uniform 
probability of the largest distribution, umax (i.e., 
the state with the largest number of exiting tran- 
sitions; in Figure 7, this maximum uniform proba- 
bility would be 1/4). Thus the smoothing formula 
becomes E u ,~x  + (1 - c)p(t).  This modification has 
the following effect: it is as if there are always the 
same number of transitions out of a class. Width 
balancing for emission parameters  is performed in 
an analogous fashion. 

Let us turn to length balancing. Conceptually, 
in order to balance for length, extra transitions and 
states need to be added to short paths so that  they 
are as long as the maximum length path of the hi- 
erarchy. It  should be noted that  we are only con- 
cerned with paths that  end in a state that  generates 
words. The extension of short paths can be simu- 
lated by multiplying the probability of a path by a 
factor that  is dependent on its length: 

Pr~b(p) = Prob(p)umax (lengLh'~* -len~Lh(p) ) 

This additional factor can be worked into the for- 
ward and backward variable calculations so that  
there is no loss in efficiency. I t  is, thus, as if 
lengthmaz - length(p) states have been added and 
that  each of these states has Urnax - 1  exiting transi- 
tions. 

5 P r e l i m i n a r y  R e s u l t s  

As mentioned above, we tested our trained models 
on a word-sense disambiguation evaluation, reason- 
ing that  if it performed poorly on this evaluation, 
then it must not be disambiguating the training cor- 
pus very well. The bot tom line is that  we were 
not able to advance the state of the a r t - - t h e  per- 
formance results are comparable to, but not bet ter  
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than, those obtained by Resnik. We used the train- 
ing sets, test sets, and evaluation method described 
in (Resnik, 1997). 1 Table 3 presents performance 
results. The Random method is simply to randomly 
pick a sense with a uniform distribution. The First 
Sense method is to always pick the most common 
sense as listed in WordNet. The HMM smoothed 
method is to use models trained with smoothing 
but  no balancing modifications. HMM balanced uses 
smoothing and all three balancing modifications. 

Method 
Random 28.5% 
First Sense 82.8% 
Resnik 44.3% 
HMM smoothed 35.6% 
HMM balanced 42.3% 

Table 3: Word Sense Disambiguation Results 

Next we give examples of the preferences derived 
from trained models for three verbs, , represented 
as weights on classes. These are typical rather than 
best-case examples. We have not yet a t tempted any 
formal evaluation of these lists. 

eat 0.321048 food 
0.245948 substance 
0.209142 nutriment 
0.156176 object 
0.144745 entity 
0.072242 meal 

abandon 0.078877 content 
0.061569 psychological feature 
0.057775 idea 
0.056840 cognition 
0.038888 plan 
0.025118 activity 
0.023805 a t tempt  
0.023058 act 
0.021834 belief 

break 0.033223 object 
0.020298 law 
0.020287 law of nature 
0.018689 substance 
0.016658 ice 
0.016407 solid 
0.015359 guidance 
0.014416 rule 
0.014345 entity 
0.014334 crystal 

1We would like to thank Philip Kesnik for providing 
us with the training and test data that he used in the 
above mentioned work. 

6 C o n c l u s i o n  

In the last section , we showed why the straight- 
forward application of an EM algorithm, namely 
the forward-backward algorithm, would not disam- 
biguate the sensese of input words as desired. Thus, 
we introduced a type of smoothing which produced 
the desired bias in the example at hand. Then we 
showed how this smoothing, when used on certain 
graphs, produced unwanted biases which then neces- 
sitated further modifications in the E and M steps 
of the algorithm. In the end, even with smoothing, 
sense, length, and width balancing, the performance 
of the EM-like estimation was disappointing. 

One possible lesson is that EM itself is inappro- 
priate for this problem. Despite the fact that it has 
become the default method for uncovering hidden 
structure in NLP problems, it essentially averages 
together many possible solutions. Possibly, a less 
linear method that eventually commits to one or 
another hypothesis about hidden structure may be 
more appropriate in this case. 

In conclusion, this paper has made the following 
contributions: it has shown how a stochastic gener- 
ation model can make use of a semantic class hierar- 
chy, it has provided a negative result with respect to 
parameter estimation for this model, and in doing so 
has provided an interesting illustration of the inner 
workings of the forward-backward algorithm. 
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