
Web tools for introductory computational linguistics

D a f y d d G i b b o n
Fakultilt fllr Ling. 8z Lit.

Pf. 100131, D-33501 Bielefeld
gibbon~spe ct rum. uni-bielef eld. de

Julie Carson-Berndsen
Depar tmen t of C o m p u t e r S c i e n c e

Belfield, Dublin 4, I re land
Julie. Berndsen@ucd. ie

A b s t r a c t

We introduce a notion of training
methodology space (TM space) for
specifying training methodologies in
tile different disciplines and teaching
traditions associated with computa-
tional linguistics and the human lan-
guage technologies, and pin our ap-
proach to the concept of operational
model; we also discuss different gen-
eral levels of interactivity. A num-
ber of operational models are intro-
duced, with web interfaces for lexical
databases, DFSA matrices, finite-
state phonotactics development, and
DATR lexica.

1 W h y tools for CL training?

In computational linguistics, a number of
teaching topics and traditions meet; for ex-
ample:

• tbrmal mathematical training,
• linguistic argumentation using sources of

independent evidence,
• theory development and testing with em-

pirical models,
• corpus processing with tagging and sta-

tistical classification.

Correspondingly, teachers' expectations
and teaching styles vary widely, and, likewise,
students' expectations and accustomed styles
of learning are very varied. Teaching methods
and philosophies fluctuate, too, between more
behaviouristic styles which are more charac-
teristic of practical subjects, and the more

rationalistic styles of traditional mathemat-
ics training; none, needless to say, covers the
special needs of all subjects.

Without specifying the dimensions in de-
tail, let us call this complex field training
method space (TM space). The term train-
ing is chosen because it is neutral between
teaching and learning, and implies the inten-
sive acquisition of both theoretical and prac-
tical abilities. Let us assume, based on the
variations outlined above, that we will need
to navigate this space in sophisticated ways,
but as easily as possible. What could be at
the centre of TM space? As the centre of TM
space, let us postulate a model-based training
method, with the following properties:

1. The models in TM space are both formal,
and with operational, empirical interpre-
tations.

2. The empirical interpretations of models
in TM space are in general operational
models implemented in software.

3. The models in TM space may be under-
stod by different users from several differ-
ent perspectives: from the point of view
of the mathematician, the programmer,
the software user etc., like 'real life pro-
grammes'.

4. Typical lingware and software models are
grammars, lexica, annotated corpora, op-
erationalised procedures, parsers, com-
pilers; more traditional models are
graphs, slides, blackboards, three-
dimensional block or ball constructions,
calculators.

Why should operational models, in the
sense outlined here, be at the centre of TM-

i

space? There are several facets to the answer:
First, the use of operational models permits
practice without succumbing to the naiveti@s
of stimulus-response models. Second, this no-
tion of model is integrative, that is, they are
on the one hand mathematical, in that they
are structures which are involved in the in-
terpretation of theories, and at the same time
they are empirical, in representing chunks of
the world, and operational, in that they map
temporal sequences of states on to real time
sequences. But, third, working with opera-
tional models is more fun. Ask our kids.

This paper describes and motivates a range
of such models: fbr arithmetic, for manipu-
lating databases, for experimenting with fi-
nite state devices, for writing phonological
(or, analogously, orthographic) descriptions,
for developing sophisticated inheritance lex-
ica.

2 W h a t k i n d o f in teract iv i ty?

The second kind of question to be asked is:
Why the Web? Interactive training tools are
not limited to the Web; they have been dis-
tributed on floppy disk for over two decades,
and on CD-ROM for over a decade. In pho-
netics, interactive operational models have a
long history: audio I/O, visualisations as os-
cillogrammes, spectrogrammes, pitch traces
and so on, have been leading models for
multi-media in teacher training and speech
therapy education since the 1970s. So why
the Web? The answers are relatively straight-
fbrward:

• The Web makes software easy to dis-
tribute.

• The Web is both a distributed user plat-
form and a distributed archive.

• New forms of cooperative distance learn-
ing become possible.

• Each software version is instantly avail-
able.

• The browser client software used for
accessing the Web is (all but) univer-
sal (modulo minor implementation dif-
ferences) in many ways: platform inde-
pendent, exists in every office and many
h o u l e s , . . .

The tools describe here embody three dif-
ferent approaches to the dependence of stu-
dents on teachers with regard to the provision
of materials:

1. Server-side applications, realised with
standard CGI scripts: practically un-
limited functionality, with arbitrary pro-
gramming facilities in the background,
but with inaccessible source code.

2. Compiled client-side applications, re-
alised with Java: practically unlimited
functionality, particularly with respect to
graphical user interfaces, typically with
inaccessible source code.

3. Interpreted client-side applications, re-
alised with JavaScript: limited func-
tionality with respect to graphical
user interfaces, functionality limited to
text manipulation and manipulation of
HTML attributes (including CGI pre-
processing), typically with immediately
accessible code.

From the formal point of view, these pro-
gramming environments are equally suitable.
From the (professional) programming point of
view, the object oriented programming style
of Java is often the preferred, homogeneous
environment, though it is hard to relate it to
other styles. CGI provides an interface for
arbitrary programming languages, and script-
ing languages are highly relevant to linguis-
tic tasks, particularly modern varieties such
as per l , with respect to corpus tagging and
lexicon processing, or Tcl to the visualisa-
tion of formal models or speech transforma-
tions. JavaScript is a pure client-side ap-
plication, and has a number of practical ad-
vantages which outweigh many of its limi-
tations: JavaScript is interpreted, not com-
piled, and the code is immediately available
for inspection by the user; despite its sire-
plicity, it permits arbitrarily complex textual
and numerical manipulation and basic win-
dow management; like other scripting lan-
guages, Javascript is not designed for modu-
lar programme development or library deploy-
ment, but is best restricted to small applica-
tions of the kind used in introductory work.

There is another issue of interactivity at a
very general level: in software development,
perhaps less in the professional environment
than in the training of non-professionals to
understand what is 'going on under the bon-
net', or to produce small custom applications:
the open software, shared code philosophy. In
the world 'outside' salaries are obviously de-
pendent on measurable product output , and
intellectual property right (IPR) regulations
for shareware, licences and purchase are there
to enable people to make a legitimate living
from software development, given the prevail-
ing structures of our society.

As far as teaching is concerned, the de-
bate mainly affects programmes with medium
functionality such as basic speech editors or
morphological analysers, often commercial,
with products which can be produced in prin-
ciple on a 'hidden' budget by a small group
of advanced computer science or engineering
students (hence the problem). Obviously, it
is easy for those with in stable educational
institutions to insist that software is common
property; indeed it may be said to be their
duty to provide such software, particularly in
the small and medium functionality range.

Finally, it is essential to consider design is-
sues for interactive teaching systems, an area
which has a long history in teaching method-
ology, going back to the programmed learning
and language lab concepts of the 1960s, and
is very controversial (and beyond the scope of
the present paper). We suggest that the dis-
cussion can be generalised via the notion of
TM space introduced above to conventional
software engineering considerations: require-
ments spec~ifieation (e.g. specification of loca-
tion in TM space by topic, course and student
type), system design (e.g. control structures,
navigation, windowing, partit ion of material,
use of graphics, audio etc.), implementation
(e.g. server-side vs. client side), verifica-
tion (e.g. 'subjective', by users; 'objective',
in course context).

Only a small amount of literature is avail-
able on teaching tools; however, cf. (HH1999)
{br speech applications, and the following
for applications in phonetics and phonology

(CB1998a), (CBG1999), English linguistics
(CBG1997), and multimedia communicat ion
(G1997). The following sections will discuss
a number of practical model-based applica-
tions: a basic database environment; an in-
terpreter for deterministic finite automata;
a development environment for phonotactic
and orthographic processing; a testbed and
scratchpad for introducing the DATR lexi-
cal representation language. The languages
used are JavaScript (JS) for client-side appli-
cations, and Prolog (P) or C (C) for server-
side CGI applications.

3 Database query interface

generator

Database methodology is an essential part of
computational linguistic training; tradition-
ally, UNIX ASCII databases have been at the
core of many NLP lexical databases, though
large scale applications require a professional
DBMS. The example shown in Figure 1 shows
a distinctive feature matrix (Jakobson and
Halle consonant matrix) as a database rela-
tion, with a query designed to access phono-
logical 'natural classes'; any lexical database
relation can be implemented, of course. In
this JavaScript application with on-the-fly
query interface generation the following func-
tionality is provided:

i. Input and query of single database rela-
tions.

2. Frame structure, with a control frame
and a display/interaction frame which
is allocated to on-the-fly or pre-stored
database information.

3. The control frame permits selection of:

(a) a file containing a pre-compiled
database in JavaScript notation,

(b) on-the-fly generation of a query in-
terface from the first record of the
database, which contains the names
of the fields/attributes/flolumns,

(c) on-the-fly generation of tabular rep-
resentation of the database,

(d) input of databases in tabular form.

4. Query interface with selection of arbi-
trary conjunctions of query attributes
and values, and output attributes.

Figure 1: Database interface generator (JavaScript).

5. Compilation of database into a

JavaScript data structure: a one-
dimensional array, with a presentation
parameter for construction of the
on-the-fly query interface.

Typical applications include basic dictio-
naries, simple multillingual dictionaries, rep-
resentation of feature structures as a database
relation with selection of natural classes by
means of an appropriate conjunction of query
at tr ibutes and values.

Tasks range from user-oriented activities
such as the construction of 'flat' databases,
or of feature matrices, to the analysis of the
code, and the addit ion of further input modal-
ities. Advanced tasks include the analysis of
the code, addition of character coding conven-
tions, addit ion of further database features.

4 D F S A interpreter

There are many contexts in computational
linguistics, natural language processing and
spoken language technology in which devices
based on finite state au tomata are used; for
example, tokenisation, morphological analy-
sis and lemmatisation, shallow parsing, syl-

lable parsing, prosodic modelling, plain and
hidden markov models. A s tandard compo-
nent of courses in these disciplines is con-
cerned with formal languages and au tomata
theory. The basic form of finite state automa-
ton is the deterministic finite state automa-
ton (DFSA), whose vocabulary is epsilon-free
and which has no more than one transit ion
with a given label from any state. There
are several equivalent representation convert-
tions for DFSAs, such as a full transit ion
matrix (Vocabulary × StateSet) with target
states as entries; or sparse matr ix represen-
tation as a relation, i.e. a set of triples con-
sti tuting a subset of the Cartesian product
StateSet × Stateset x Vocabulary; or transi-
tion network representation.

The interface currently uses the full matr ix
representation, and permits the entry of arbi-
t rary au tomata into a fixed size matrix. The
example shown illustrates the language a'b,
but symbols consisting of an arbi t rary number
of characters, e.g. natural language examples,
may be used. A state-sequence trace, and de-
tailed online help explanations, as well as task

suggestions of varying degrees of difficulty are

Fil~ l~clil Vlsw GO Wlrxlow Help I

D F S A i ~ p ~ t : I j ~ . . I-~ I ~ ° ~ l - ~ ' ~

Q~. ~abs~ ~ Q, set ot fia~l ~tatea

Q: finite s¢~ o| ~ t~t~

D: umsi~ l+ancc+tion D Rom Q ~ d g to Q, D: Q,V

DFSA ~cm ~ eu~ ~emRRm matrix:

+:[~-"~,+:1 ~'~ I~
D:

t

IX~RA log mrs :

[

q O . qO
= . H z s ~ . + qo r . ~ i . , xmaqp~,~, al~,.,r. • .l

q O . qO
151rllf+tJ~ qO ~618e, 15mF'l~ i~pa~ =~11~

qo ~ qO

qo b q)

F T1 i 7 - 1 F -] F- -117-1

F - 1 F - - I E ~ a - l g - 1 7 - -] + +,
1 7 1 1 7 - 1 F - 1 1 7 - - 1 F - 1 t [] "~ , I
F - 1 7 - 1 F - 1 7 - - 1 F -] ,~

, ,'~'~ m, ,~-~h, , ,? ,~ , ,*~0~, ,,., -~,~, v,~,, ~,.~. ' , ,,,,

i! [~ I Dalydd Oi~bom Stm Feb 7 23:36:$0 ~ ' r 1999

Figure 2: Deterministic finite state automaton (DFSA) workpad (JavaScript).

provided.

5 P h o n o l o g i c a l N D F S A
d e v e l o p m e n t e n v i r o n m e n t

Phonology and prosody were the first areas
in which finite state technologies were shown
to be linguistically adequate and computa-
tionally efficient, in the 1970s; a close second
was morphological alternations in the 1980s
(CB1998a). The goal of this application is
to demonstrate the use of finite state tech-
niques in computational linguistics, partic-
ularly in the area of phonotactic and allo-
phonic description for computational phonol-
ogy. However, the tool does not contain any
level specific information and can therefore
be used also to demonstrate finite state de-
scriptions of orthographic information. In
this CGI application, implemented in Prolog
(see (CBG1999)), the following functionality
is provided:

1. Display/Alter/Add to the current (non-
deterministic) FSA descriptions.

2. Generate the combinations described in
the FSA.

3. Compare two FSA descriptions.

4. Parse a string using an FSA description.

Typical applications of this tool include de-
scriptions of phonological well-formedness of
syllable models for various languages. Tasks
range from testing and evaluating to parsing
phonological (or orthographic) FSA descrip-
tions. More advanced tasks include extension
of the current toolbox functionality to cater
for feature-based descriptions.

6 Z d a t r t e s t b e d a n d s c r a t c h p a d

DATR is a well-known theoretically well-
founded and practically oriented lexicon rep-
resentation language. It also has a high ra-
tio of implementations to applications, and,
until relatively recently, a low degree of stan-
dardisation between implementations. In or-
der to create a platform independent demon-
stration and practice environment, a CGI
interface was created. The engine was in-
tended to be a Sicstus Prolog application; Sic-
stus turned out to be non-CGI-compatible at
the time (1995), so a UNIX shell version of
DATR (mud, minimal UNIX DATR) was im-
plemented using a combination of UNIX text
stream processing tools, mainly awk. This

File Edit View GO Window • "] . : (,,° " Help.
, . ~ . .~ - - .~ , . : ,__~ ,~ : ,~ ~. - ~ ~ . ~ .

Back ¢ o r ~ ¢ . : ~ Reload : Home ~;ea~ch Guide • Pdnt . Secuflty ~ l~

ZI3A'FR HyprLex Scraud|pad

T H E O R Y

QUERY

Dafydd Gibbon, B B i r d c i e l d , 2 2 M a r c h 19~7

(d r . : I h g g " ~ r E t ¢ o - g a l d m t . _ g m a p l e D ~ ~ t s ~ = i ~ (. f
11 h ~ . ~ g l : i ~ l t = ~ t a a m t o t ~ l g ~

(a l r z a . d t t - P i n i t a St , a t a ~ u t ~ a r ~ = ~ ~a= h z e q = ~ * c
(31 r s l . d r = F ~ i n t e z p z e t ~ ~ir. l~ t y p e cc~ec4~ f o= h = ~ - = b * c

(11 t m . d t z - I L~ (' ~a i c cmp~a l t i ~ l t : ~ t . ~ t o g i ~ t q l i E l ~

~ = ~ i g z :

o

Mo~fe

(b u . * h o u • .

wo=d :

Figure 3: Zdatr scratchpad (CGI, UNIX shell, C).

was later replaced by Zdatr Vl.n, and will
shortly be replaced by Zdatr V2.0 (imple-
mented by Grigoriy Strokin, Moscow State
University). The Zdatr software is widely
used in the teaching of lexicography, lexicol-
ogy, and lexicon theory (Ginpress).

Two interikces are driven by Zdatr: The
testbed which permits interactions with pre-
viously defined and integrated DATR theo-
ries (CBG1999), and the scratchpad (shown
in Figure 3), with which queries can be writ-
ten and tested. The scratchpad permits the
entry of short theories and queries, and the
testbed has the following functionality:

1. viewing of DATR theories;
2. selection of manual, declared (#show and

#hide) and pre-listed queries;
3. selection of output properties (trace,

atom spacing).
4. a function for automatically integrating

new theories sent by email (not docu-
mented for external use).

Sample DATR theories which are avail-
able include a detailed model of composition-
ality in English compound nouns (Gibbon),

an application for developing alternative fea-
ture or autosegmental phonological represen-
tations (Carson-Berndsen), and a number of
algorithm illustrations (bubble sort, shift reg-
ister machine) for more theoretical purposes.

7 O u t l o o k

Tools like those introduced here are not ubiq-
uitous, and there are many areas of computa-
tional linguistics, in particular formal train-
ing in computing and training in linguistic
argumentation, which require intensive face-
to-face teaching. Our tools are restricted to
'island' applications where we consider them
to be most effective. For many students (and
teachers), such tools provide an additional
level of motivation because of their easy ac-
cessibility, portability, and the absence of in-
stallation problems, and can be used with dif-
ferent levels of student accomplishment, from
the relatively casual user in a foreign language
or speech therapy context, to the more ad-
vanced linguistic programmer in courses on
database or automata theory or software de-
velopment.

For reasonably small scale applications,

we favour client-side tools where possible.
JavaScript is suitable in many cases, provided
that minor browser incompatibilities are ham
dled. The database application, for exam-
ple, still provided very fast access when eval-
uated with a 2000 record, 10 at tr ibutes per
record database. JavaScript has a number
of disadvantages (no mouse-graphics interac-
tion, no library concept), but being an inter-
preted language is very suitable for introduc-
ing an 'open source code' policy in teaching.
In contrast to CGI applications, where query
and result transfer t ime can be considerable,
client-side JavaScript (or Java) applications
have a bandwidth dependent once-off down-
load time for databases and scripts (or com-
piled applets), but query and result transfer
t ime are negligeable.

The applications presented here are fully
integrated (with references to related appli-
cations at other commercial and educational
institutions, e.g. parsers, morphology pro-
grammes, speech synthesis demonstrations)
into the teaching programme. Obvious areas
where further development is possible and de-

sirable are:

• Automat ic tool interface generation
based more explicitly on general princi-
ples of training methodology, e.g. with a
more explicit account of TM space and
with more systematic control, help, error
detection, query and result panel design.

• Automatic test generation for tool (and
student) validation.

• Further tools for formal language, pars-
ing and au tomata theoretic applications.

• Extension of database tool to include
more database functionality.

We plan to extend our repertoire of appli-
cations in these directions, and will inte-
grate more applications from other institu-
tions when they become available.

Essen (eds.) Language Teaching and Language
Technology, Swets & Zeitlinger, Lisse.

Carson-Berndsen, J. 1998b. Time Map Phonol-
ogy: Finite State Methods and Event Logics
in Speech Recognition. Kluwer Acadmic Press,
Dordrecht.

Carson-Berndsen J. & D. Gibbon 1997. In-
teractive English, 2nd Bielefeld Multime-
dia Day Demo, "coral. lili .uni-bielefeld. de/
MuMeT2", Universitit Bielefeld, November 1997.

Carson-Berndsen J. & D. Gibbon 1999. Interac-
tive Phonetics, Virtually! In: V. Hazan & M.
Holland, eds., Method and Tool Innovations/or
Speech Science Education. Proceedings off the
MATISSE Workshop, University College, Lon-
don, 16-17 April 1999, pp. 17-20.

Gibbon, D. 1997 . Phonetics and
Multimedia Communication, Lecture
Notes, "coral. lili. uni-bielefeld, de/
Classes/Winter97", Universit~it Bielefeld.

Gibbon, D. in press. Computational lexicogra-
phy. In: van Eynde, F. & D. Gibbon: Lexicon
Development/or Speech and Language Process-
ing. Kluwer Academic Press, Dordrecht.

Hazan, V. & M. Holland, eds. 1999. Method and
Tool Innovations/or Speech Science Education.
Proceedings o/ the MATISSE Workshop, Uni-
versity College, London, 16-17 April 1999.

R e f e r e n c e s

Carson-Berndsen, J. 1998a. Computational
Autosegmental Phonology in Pronunciation
Teaching. In: Jager S; J. Nerbonne & A. van

