
A Modern Computational Linguistics Course Using Dutch

Gosse Bouma
Groningen University

PO Box 716
NL 9700 AS Groningen
gosse@let, r u g . nl

Abstract

This paper describes material for a
course in computational linguistics
which concentrates on building (parts
of) realistic language technology ap-
plications for Dutch. We present an
overview of the reasons for develop-
ing new material, rather than using
existing text-books. Next we present
an overview of the course in the form
of six exercises, covering advanced
use of finite state methods, grammar
development, and natural language
interfaces. The exercises emphasise the
benefits of special-purpose development
tools, the importance of testing on
realistic data-sets, and the possibilities
for web-applications based on natural
language processing.

1 I n t r o d u c t i o n

This paper describes a set of exercises in compu-
tational linguistics. The material was primarily
developed for two courses: an general introduc-
tion to computational linguistics, and a more ad-
vanced course focusing on natural language inter-
faces. Students who enter the first course have
a background in either humanities computing or
cognitive science. This implies that they possess
some general programming skills and that they
have at least some knowledge of general linguis-
tics. Furthermore, all students entering the course
are familiar with logic programming and Prolog.
The native language of practically all students is
Dutch.

The aim of the introductory course is to provide
a overview of language technology applications, of
the concepts and techniques used to develop such
applications, and to let students gain practical ex-
perience in developing (components) of these ap-

plications. The second course focuses on compu-
tational semantics and the construction of natu-
ral language interfaces using computational gram-
mars.

Course material for computational linguistics
exists primarily in the form of text books, such
as Allen (1987), Gazdar and Mellish (1989) and
Covington (1994). They focus primarily on ba-
sic concepts and techniques (finite state automata ,
definite clause grammar, parsing algorithms, con-
struction of semantic representations, etc.) and
the implementation of toy systems for experiment-
ing with these techniques. If course-ware is pro-
vided, it consists of the code and grammar frag-
ments discussed in the text-material. The lan-
guage used for illustration is primarily English.

While attention for basic concepts and tech-
niques is indispensable for any course in this
field, one may wonder whether implementation
issues need to be so prominent as they are in
the text-books of, say, Gazdar and Mellish (1989)
and Covington (1994). Developing natural lan-
guage applications from scratch may lead to max-
imal control and understanding, but is also time-
consuming, requires good programming skills
rather than insight in natural language phenom-
ena, and, in tutorial settings, is restricted to toy-
systems. These are disadvantages for an intro-
ductory course in particular. In such a course, an
attractive alternative is to skip most of the imple-
mentation issues, and focus instead on what can
be achieved if one has the right tools and da ta
available. The advantage is that the emphasis will
shift naturally to a situation where students must
concentrate primarily on developing accounts for
linguistic data, on exploring data available in the
form of corpora or word-lists, and on using real
high-level tools. Consequently, it becomes fea-
sible to consider not only toy-systems and toy-
fragments, but to develop more or less realistic
components of natural language applications. As
the target language of the course is Dutch, this

also implies that at least some attention has to
be paid to specific properties of Dutch grammar,
and to (electronic) linguistic resources for Dutch.
Since students nowadays have access to powerful
hardware and both tools and data can be dis-
tributed easily over the internet, there are no real
practical obstacles.

Text-books which are concerned primarily with
computational semantics and natural language in-
terfaces, such as Pereira and Shieber (1987) and
Blackburn and Bos (1998), tend to introduce a
toy-domain, such as a geography database or an
excerpt of a movie-script, as application area. In
trying to develop exercises which are closer to real
applications, we have explored the possibilities of
using web-accessible databases as back-end for a
natural language interface program.

More in particular, we hope to achieve the fol-
lowing:

• Students learn to use high-level tools. The
development of a component for morphologi-
cal analysis requires far more than what can
be achieved by specifying and implementing
the underlying finite state automata directly.
Rather, abstract descriptions of morpholog-
ical rules should be possible, and software
should be provided to support development
and debugging. Similarly, while a program-
ming language such as Prolog offers possi-
bilities for relatively high-level descriptions
of natural language grammars, the advan-
t, ages of specialised languages for implement-
ing unification-based grammars and accom-
panying tools are obvious. Furthermore, the
availability of graphical interfaces and visual-
isation in tutorial situations is a bonus which
should not be underestimated.

• Students learn to work with real data. In
developing practical, robust, wide-coverage,
language technology applications, researchers
have found that the use of corpora and elec-
tronic dictionaries is absolutely indispens-
able. Students should gain at least some
familiarity with such sources, learn how to
search large datasets, and how to deal with
exceptions, errors, or unclear cases in real
data.

• Students become familiar with quantitative
evaluation methods. One advantage of de-
veloping components using real data is that
one can use the evaluation metrics domi-
nant in most current computational linguis-
tics research. That is, an implementation of
hyphenatiOn-rule or a grammar for temporal

expressions can be tested by measuring its ac-
curacy on a list of unseen words or utterances.
This provides insight in the difficulty of solv-
ing similar problems in a robust fashion for
unrestricted text.

Students develop language technology compo-
nents for Dutch. In teaching computational
linguistics to students whose native language
is not English, it is common practice to fb-
cus primarily on the question how the (En-
glish) examples in the text book can be car-
ried over to a grammar for one's own lan-
guage. As this may take considerable time
and effort, more advanced topics are usually
skipped. In a course which aims primarily at
Dutch, and which also contains material de-
scribing some of the peculiarities of this lan-
guage (hyphenation rules, spelling rules rele-
vant to morphology, word order in main and
subordinate clauses, verb clusters), there is
room for developing more elaborate and ex-
tended components.

Students develop realistic applications. The
use of tools and real da ta makes it easier
to develop components which are robust and
which have relatively good coverage. Appli-
cations in the area of computational seman-
tics can be made more interesting by exploit-
ing the possibilities offered by the internet.
The growing amount of information available
on the internet provides opportunities for ac-
cessing much larger databases (such as public
transport time-tables or library catalogues),
and therefore, for developing more realistic
applications.

The sections below are primarily concerned with a
number of exercises we have developed to achieve
the goals mentioned above. A accompanying text
is under development. 1

2 F i n i t e S t a t e M e t h o d s

A typical course in computational linguistics
starts with finite state methods. Finite state tech-
niques can provide computationally efficient solu-
tions to a wide range of tasks in natural language
processing. Therefore, students should be familiar
with the basic concepts of automata (states and
transitions, recognizers and transducers, proper-
ties of automata) and should know how to solve

t See www. let. rug. nl/~gosse/tt for a preliminary
version of the text and links to the exercises described
here.

File Settings Operations Produce Hs!p

regex : ~l[?" -[? *'v.+.t#11,[? ".v:r,+.t#]) ~ I

String: I

X

_J

-zl

Edge Angle : [6]i5 : X - d i s t a n c e : 1120' "[' DisP iay Sigma I D i s p l a y Fa ~ount F~

Figure h FSA. The regular expression and transducer are an approximation of the rule for realizing a
final -v in abstract stems as - f if followed by the suffix - t (i.e. l e ev+ t ~ l e e f t) . [A,B] denotes t
tbllowed by B, {A,B} denotes t or B, '? ' denotes any single character, and t - B denotes the string
defined by t minus those defined by B. A.'B is the transduction of t into B. '+ ' is a morpheme boundary,
and the hash-sign is the end of word symbol.

toy natural language processing problems using
automata.

However, when solving 'real' problems most re-
searchers use software supporting high-level de-
scriptions of automata, automatic compilation
and optimisation, and debugging facilities, pack-
ages for two-level morphology, such as PC-KIMMO
(Antworth, 1990), are well-known examples. As
demonstrated in Kart tunen e ta l . (1997), an even
more flexible use of finite state technology can be
obtained by using a calculus of regular expres-
sions. A high-level description language suited for
language engineering purposes can be obtained by
providing, next to the standard regular expression
operators, a range of operators intended to facili-
tate the translation of linguistic analyses into reg-
ular expressions. Complex problems can be solved
by composing automata defined by simple regular

expressions.
We have developed a number of exercises in

which regular expression calculus is used to solve
more or less 'realistic' problems in language tech-
nology. Students use the FSA-utilities package 2
(van Noord, 1997), which provides a powerful lan-
guage for regular expressions and possibilities for
adding user-defined operators and macros, compi-
lation into (optimised) automata, and a graphical
user-interface. Automata can be displayed graph-
ically, which makes it easy to learn the meaning
of various regular expression operators (see figure
1).

Exercise I: Dutch Syllable Structure

Hyphenation for Dutch (Vosse, 1994) requires that
complex words are split into morphemes, and mor-

2www. let. rug. nl/~vannoord/f sa/

! •

macro(syll, [onset-, nucleus, coda ̂]).
macro(onset, { [b, {i ,r} ̂] , [c ,h- ,{l,r}-] }) .
macro(nucleus, { [a,{[a,{i,u}^],u}^],

[e,{[e,u ̂] ,i,o,u}-] }).
macro(coda, {[b, {s,t}^], [d,s^,t-]}).

Figure 2: First approximation of a regular expres-
sion defining Dutch syllables, t ^ means that t is
optional.

phemes are split into syllables. Each morpheme
or syllable boundary is a potential insertion spot
for a hyphen. Whereas one would normally de-
fine the notion "syllable' in terms of phonemes, it
should be defined in terms of character strings for
this particular iask. The syllable can easily be
defined in terms of a regular expression. For in-
stance, using the regular expression syntax of FSA,

a first approximation is given in figure 2. The
definition in 2 allows such syllables as [b, a , d] ,
[b ,1 , a ,d] , [b ~ r , e , e , d , s , t] , etc.

Students can provide a definition of the Dutch
syllable covering all perceived cases in about
twenty lines of code. The quality of the solu-
tions could be tested in two ways. First, stu-
dents could test which words of a list of over
5000 words of ~he form [C*,V+,C*] (where C and
V are macros for consonants and vowels, respec-
tively) are accepted and rejected by the syllable
regular expression. A restrictive definition will re-
ject words which are bisyllabic (g e i j k t) and for-
eign words such as crash , s f i n x , and jazz . Sec-
ond, students could test how accurate the defi-
nition is in predicting possible hyphenation posi-
tions in a list of morphophonemic words. To this
end, a list of 12000 morphophonemic words and
their hyphenation properties was extracted from
the CELEX lexical database (Baayen et al., 1993). 3
Tile best solutions for this task resulted in a 5%
error rate (i.e. percentage of words in which a
wrongly placed hyphenation point occurs).

Exercise I h Ve rba l Inflect ion

A second exercise concentrated on finite state
transducers. Regular expressions had to be con-

aThe hyphenation task itself was defined as a finite
state transducer:

macro(hyph, replace([] : - , syll, syll))

The operator replace (Target, LeftContext,
RightContext) implements 'leftmost' (and 'longest
match') replacement (Karttunen, 1995). This ensures
that in the cases where a consonant could be either
final in a coda or ini t ia l in t i le nex t onset , i t is in fact
added to the onset.

U n d e r l y i n g S u r f ace Gloss
a. werk+en werken work[mF]
b. bak+en bakken bak@NF]
c. raakSen raken hit[INF]
d. verwen+en verwennenpamper[INF]
e. teken+en tekenen draw[lNF]
f. aanpik+en aanpikken catch up[INF]

g. zanik+en zaniken wine[INF]
h. leev+en leven liV@NF]
i. leev leef live[paEs, 1, sa.]
j. leev+t leeft live(s)[paEs, 2/3, SG.]
k. doe+en doen do[INe]
h ga+t gaat go(es)[PRES, 2/3, SO.]
m. z i t+ t zit sit(s)[PRES, 2/3, S(~.]
n. werk+Te werkte worked[PAST, sa]
o. hoor+Te hoorde heard[PAST, SG]
p. blaf+Te blafte barked[pAsT, SG]
q. leev+Te leefde lived[PAST, SG]

Figure 3: Dutch verbal inflection

structed for computing the surface form of ab-
stract verbal stem forms and combinations of a
stem and a verbal inflection suffix (see figure 3).
Several spelling rules need to be captured. Ex-
amples (b) and (c) show that single consonants
following a short vowel are doubled when followed
by the '+en ' suffix, while long vowels (normally
represented by two identical characters) are writ-
ten as a single character when followed by a single
consonant and ' +en' Examples (d-g) illustrate
that the rule which requires doubling of a conso-
nant after a short vowel is not applied if the pre-
ceding vowel is a schwa. Note that a single ' e '
(sometimes ' i ') can be either a stressed vowel or
a schwa. This makes the rule hard to apply on the
basis of the written form of a word. Examples (h-
j) illustrate the effect of devoicing on spelling. Ex-
amples (i-l) illustrate several other irregularities in
present tense and infinitive forms that need to be
captured. Examples (n-q), finally, illustrate past
tense formation of weak verbal stems. Past tenses
are formed with either a ' + t e ' or '+de ' ending
(' + t e n ' / ' +den' for plural past tenses). The form
of the past tense is predictable on the basis of the
preceding stem, and this a single underlying suffix
'+Te ' is used. Stems ending with one of the con-
sonants ' c , f , h , k , p , s , t ' and ' x ' form a past
tense with ' + t e ' , while all other stems receive a
'+de ' ending. Note that the spelling rule for de-
voicing applies to past tenses as well (p-q). In
the exercise, only past tenses of weak stems were
considered.

The implementation of spelling rules as trans-
ducers is based on the r ep lace -ope ra to r (Kart-

macro(verbal_inflection,

shorten o double o past_tense).

macro (shorten,

replace([a,a]:a ,[],[cons,+,e,n])).

macro (double,

replace (b : [b, b] ,

[cons,vowel] , [+,e,n])).

macro (past _tense,

te_suffix o past default).

macro (te_suf f ix,

replace([T] : [t] ,

[{ c , f , h , k , s , p , t , x } , +] , [])) .
macro (p a s t _ d e f a u l t ,

r e p l a c e (I T] : [d] , [] , [])) .

Figure 4: Spelling rules for Dutch verbal inflec-
tion. A o B is the composition of transducers h
and B.

tunen, 1995). A phonological or spelling rule

U-+S/L_R

can be implemented in FSA as:

replace(Underlying:Surface, Left, Right)

An example illustrating the rule format for trans-
ducers is given in figure 4. Most solutions to the

exercise consisted of a collection of approximately
30 replace-rules which were composed to form

a single finite state transducer. The size of this
transducer varied between 4.000 and over 16.000
states, indicating that the complexity of the task
is well beyond reach of text-book approaches.

For testing and evaluation, a list of almost
50.000 pairs of underlying and surface forms was
extracted from Celex. 4 i0 % of the data was given
to the students as training material. Almost all so-
lutions achieved a high level of accuracy, even for
the 'verwennen/tekenen' cases, which can only

be dealt with using heuristics. The best solutions
}lad less than 0,5% error-rate when tested on the

unseen data.

4 Reliable extraction of this information from Celex
turned out to be non-trivial. Inflected forms are given
in the database, and linked to their (abstract) stem by
means of an index. However, the distinction between
weak and strong past tenses is not marked explicitly in
the database and thus we had to use the heuristic that
weak past tense singular forms always end in 'te' or
'de', while strong past tense forms do not. Another
problem is the fact that different spellings of a word
are linked to the same index. Thus, 'scalperen' (to
scalp) is linked to the stem 'skalpeer'. For the pur-
poses of this exercise, such variation was largely elim-
inated by several ad-hoe filters.

3 Grammar Development

Natural language applications which perform syn-
tactic analysis can be based on crude methods,
such as key-word spotting and pat tern match-
ing, more advanced but computationally effi-
cient methods, such as finite-state syntactic anal-
ysis, or linguistically motivated methods, such
as unification-based grammars. At the low-end
of the scale are systems which perform partial
syntactic analysis of unrestricted text (chunk-
ing), for instance for recognition of names or
temporal expressions, or NP-constituents in gen-
eral. At the high-end of the scale are wide-
coverage (unification-based) grammars which per-
form full syntactic analysis, sometimes for unre-
stricted text. In the exercises below, students de-
velop a simple grammar on the basis of real da ta
and students learn to work with tools for develop-
ing sophisticated, linguistically motivated, gram-
mars.

3.1 Exercise III: Recognizing temporal
expressions

A relatively straightforward exercise in grammar
development is to encode the grammar of Dutch
temporal expressions in the form of a context-free
grammar.

In this particular case, the grammar is actually
implemented as a Prolog definite clause grammar.
While the top-down, backtracking, search strat-
egy of Prolog has certain drawbacks (most no-
tably the fact that it will fail to terminate on left-
recursive rules), using DCG has the advantage that
its relationship to context-free grammar is rela-
tively transparent, it is easy to use, and it provides
some of the concepts also used in more advanced
unification-based frameworks. The fact that the
non-terminal symbols of the grammar are Prolog
terms also provides a natural means for adding an-
notation in the form of parse-trees or semantics.

The task of this exercise was to develop a
grammar for Dutch temporal expressions which
covers all instances of such expressions found in

spoken language. The more trivial part of the
lexicon was given and a precise format was de-

fined for semantics. The format of the grammar
to be developed is illustrated in figure 5. The
top rule rewrites a temp_expr as a weekday, fol-
lowed by a date, followed by an hour. An hour
rewrites as the ad-hoc category approximately
(containing several words which are not cru-
cial for semantics but which frequently occur
in spontaneous utterances), and an hourl cat-
egory, which in turn can rewrite as a category
hour_lex followed by the word uur, followed

!

temp_expr(date(Da,Mo,Ye),day(We),

hour(Ho,Mi)) >
weekday(We), date(Da,Mo,Ye),

hour(Ho,Mi).

weekday (l) - -> [zondag] .

d a t e (D a t e , M o n t h) - ->
d a t e _ l e x (D a t e) , month l ex (Month) .

hour(Hour,Min) -->
approximately, hourl(Hour,Min).

approximately -->
[ongeveer] ; [ore] ;
[omstreeks] ; [].

[rond] ;

hourl(Ho,Mi) -->
hour_lex(Ho), [uur], min_lex(Mi).

hourl(Ho,Mi) -->
min_lex(Mi), [over], hour_lex(Ho).

Figure 5: DCG for temporal expressions.

by a min_lex. Assuming suitable definitions
for the lexical (we-terminal) categories, this will
generate such strings as zondag v i j f j a n u a r i
o m s t r e e k s t i e n uur v i j f t i e n (Sunday, Jan-
uary the fifth, at ten fifteen). A more or less com-
plete g rammar of temporal expressions of this sort
typically contains between 20 and 40 rules.

A test-corpus was constructed by extract-
ing 2.500 utterances containing at least one
lexical i tem signalling a temporal expression
(such as a weekday, a month, or words
such as uur, minuut, week, morgen, kwart,
oms t reeks , etc.) from a corpus of dialogues col-
lected from a railway t imetable information ser-
vice. A subset of 200 utterances was annotated.
The annotat ion indicates which part of the utter-
ance is the temporal expression, and its semantics.
An example is given below.

sentence (42, [j a, ik,wil ,reizen, op,
zesent wint ig, j anuari, s_morgens, om,
tien,uur,vertrekken], [op,
zesentwintig, j anuari, s_morgens, om,
tien,uur], temp(date(_,l,26),

day(.... 2) ,hour (I0,_))) .

The raw utterances and 100 annotated utterances
were made available to students. A grammar can
now be tested by evaluating how well it manages
to spot temporal phrases within an utterance and
assign the correct semantics to it. To this end, a
parsing scheme was used which returned the (left-

head_complement_struct(Mthr,Hd,Comp) "-
head_feature_principle(Mthr,Hd),
Hd:comp <=> Comp.

rule(np_pp,vp/VP,[np/NP,pp/PP,v/V]) :-
head_complement_struct(VP,V,np_pp),
case(NP,acc),
PP:head:pform <=> aan.

Figure 6: A fragment of the g rammar for Dutch

most) maximal sub-phrase of an ut terance that
could be parsed as a temporal expression. This re-
sult was compared with the annotation, thus pro-
viding a measure for 'word accuracy' and 'seman-
tic accuracy' of the grammar. The best solutions
achieved over 95 70 word and semantic accuracy.

Exerc i se IV: U n i f i c a t i o n g r a m m a r

Linguistically motivated grammars are almost
without exception based on some variant of uni-
fication g rammar (Shieber, 1986). Head-driven
phrase structure g rammar (HPSG) (Pollard and
Sag, 1994) is often taken as the theoretical ba-
sis for such grammars. Although a complete in-
troduction into the linguistic reasoning underly-
ing such a framework is beyond the scope of this
course, as par t of a computat ional linguistics class
students should at least gain familiarity with the
core concepts of unification g rammar and some
of the techniques frequently used to implement
specific linguistic analyses (underspecification, in-
heritance, gap-threading, unary-rules, empty ele-
ments, etc.).

To this end, we developed a core g rammar
of Dutch, demonstrat ing how subject-verb agree-
ment, number and gender agreement within NP ' s ,
and subcategorization can be accounted for. Fur-
thermore, it illustrates how a simplified form of
gap-threading can be used to deal with unbounded
dependencies, how the movement account for the
position of the finite verb in main and subordi-
nate clauses can be mimicked using an ' empty
verb' and some feature passing, and how auxiliary-
participle combinations can be described using a
'verbal complex'. The design of the g rammar is
similar to the ovI s -g rammar (van Noord et al.,
1999), in that it uses rules with a relatively specific
context-free backbone. Inheritance of rules from
more general ' schemata ' and 'principles' is used
to add feature constraints to these rules without
redundancy. The schemata and principles, as well
as many details of the analysis, are based on HPSG.
Figure 6 illustrates the general format of phrase
structure schemata and feature constraints.

Halt Grammar Reconsult, D_ebug

X

H

@
I I __

m

t s
m m

I
m

m

m
/ \

I I
@ @

E
i

m
I

-,lJ

/ T o p]
i

• " : . .2, : . . ' ° : f

-,ii
i /

Figure 7: Screenshot of Hdrug

The grammar fragment is implemented using
the HDRUG development system 5 (van Noord and
Bouma, 1997). HDRUG provides a description lan-
guage for feature constraints, allows rules, lexical
entries, and 'schemata' or 'principles' to be visu-
alised in the form of feature matrices, and provides
an environment for processing example sentences
which supports the display of derivation trees and
partial parse results (chart items). A screen-shot
of HDRUG is given in figure 7.

As an exercise, students had to extend the
core fragment with rules and lexical entries for
additional phrasal categories (PP'S), verbal sub-
categorization types (verbs selecting for a PP-
complement), NP constructions (determiner-less
NP's), verb-clusters (modal+infinitive combina-
tions), and WH-words (wie, wat, welke, wiens, ho-
eveel, ... (who, what, which, whose, how many,
• ..). To test the resulting fragment, students were
also given a suite of example sentences which had
to be accepted, as well as a suite of ungrammatical
sentences. Both test suites were small (consisting

5www.let.rug.nl/-vannoord/hdrug/

of less than 20 sentences each) and constructed by
hand. This reflects the fact that this exercise is
primarily concerned with the implementation of a
sophisticated linguistic analysis•

4 N a t u r a l L a n g u a g e I n t e r f a c e s

Practical courses in natural language interfaces
or computational semantics (Pereira and Shieber,
1987; Blackburn and Bos, 1998) have used a
toy database, such as geographical database or
an excerpt of a movie script, as application do-
main. The growing amount of information avail-
able on the internet provides opportunities for
accessing much larger databases (such as public
transport time-tables or library catalogues), and
therefore, for developing more realistic applica-
tions. In addition, many web-sites provide in-
formation which is essentially dynamic (weather
forecasts, stock-market information, etc.), which
means that applications can be developed which
go beyond querying or summarising pre-defined
sets of data. In this section, we describe two ex-
ercises in which a natural language interface for

web-accessible information is developed. In both
cases we used the PILLOW package 6 (Cabeza et al.,
1996) to access da ta on the web and tfhfislate the "
resulting HTML-code into Prolog facts.

4.1 Exercise V: Natural Language
Generation

Reiter and Dale (1997) argue that the generation
of natural language reports from a database with
numerical da ta can often be based on low-tech
processing language engineering techniques such
as pat tern matching and template filling. Sites
which provide access to numerical da ta which is
subject to change over time, such as weather fore-
casts or stock quotes, provide an excellent appli-
cation domain for a simple exercise in language
generation.

For instanc% in one exercise, students were
asked to develop a weather forecast generator,
which takes the long-term (5 day) forecast of the
Dutch meteorological institute, KNMI, and pro-
duces a short text describing the weather of the
coming days. Students were given a set of pre-
collected numerical da ta as well as the text of the
corresponding weather forecasts as produced by
the KNMI. These texts served as a ' target cor-
pus', i.e. as an informal definition of what the
automat ic generation component should be able
to produce.

To produce a report generator involved the
implementat ion of 'domain knowledge' (a 70%
chance of rain means that it is ' rainy' , if max-
imum and minimum temperatures do not vary
more than 2 degrees, the tempera ture remains the
same, else there is a change in temperature that
needs to be reported, etc.) and rules which apply
the domain knowledge to produce a coherent re-
port. The latter rules could be any combination
of' format or write instructions and more advanced
techniques based on, say, definite clause grammar.
The completed system can not only be tested on
pre-collected material , but also on the information
taken from the current KNMI web-page by using
the Prolog-HTTP interface.

A similar exercise was developed for the AEX
(stock market) application described below. In
this case, students we asked to write a report gen-
erator which reports the current state of affairs at
tile Dutch stock market AEX, using numerical data
provided by the web-interface to the Dutch news
service 'NOS teietext' and using similar reports on
teletext itself as ' target-corpus ' .

Ohttp://www,clip.dia.fi.upm.es/miscdocs/
pillow/pillow.html

4.2 Exercise VI: Question answering

Most natural language dialogue systems are inter-
faces to a database. In such situations, the main
task of the dialogue system is to answer questions
formulated by the user.

The construction of a question-answering sys-
tem using linguistically-motivated techniques, re-
quires (minimally) a domain-specific g rammar
which performs semantic analysis and a com-
ponent which evaluates the semantic representa-
tions output by the g rammar with respect to the
database. Once these basic components are work-
ing, one can try to extend and refine the sys-
tem by adding (domain-specific or general) disam-
biguation, contextual-interpretat ion (of pronouns,
elliptic expressions, etc), l inguistically-motivated
methods for formulating answers in natural lan-
guage, and scripts for longer dialogues.

In the past, we have used information about
railway time-tables as application domain. Re-
cently, a rich application domain was created by
constructing a stock-market game, in which par-
ticipants (the students taking the class and some
others) were given an initial sum of money, which
could be invested in shares. Part icipants could
buy and sell shares at wish. Stock quotes were ob-
tained on-line from the news service 'NOS teletext'.
Stock-quotes and transactions were collected in a
database, which, after a few weeks, contained over
3000 facts.

The unification-based g rammar introduced pre-
viously (in exercise IV) was adapted for the cur-
rent domain. This involved adding semantics
and adding appropriate lexical entries. Further-
more, a simple question-answering module was
provided, which takes the semantic representation
for a question assigned by the g rammar (a formula
in predicate-logic), transforms this into a clause
which can be evaluated as a Prolog-query, calls
this query, and returns the answer.

The exercise for the students was to extend the
grammar with rules (syntax and semantics) to
deal with adjectives, with measure phrases (vijf
euro/procent (five euro/percent), with date ex-
pressions (op vijf januari (on January, 5)), and
constructions such as aandelen Philips (Philips
shares), and koers van VNU (price of VNU) which
were assigned a non-standard semantics Next, the
question system had to be extended so as to han-
dle a wider range of questions. This involved
mainly the addition of domain-specific translation
rules. Upon completion of the exercise, question-
answer pairs of the sort illustrated in 8 were pos-
sible.

Q: wat is de koers van ABN AMR0

what is the price of ABN AMR0

A: 17,75
Q: is het aandeel KPN gisteren gestegen

have the KPN shares gone up yesterday

A: ja
yes

Q: heeft Rob enige aandelen Baan verkocht

has Rob sold some Baan shares
A: nee

no

Q: welke spelers bezitten aandelen Baan

Which players possess Baan shares

A: gb, woutr, pieter, smb

Q: hoeveel procent zijn de aandelen kpn

How many percent have the KPN shares

gestegen

gone up

A: 5

Figure 8: Question-answer pairs in the AEX dia-
logue system.

5 C o n c l u d i n g r e m a r k s

Developing realistic and challenging exercises in
computational linguistics requires support in the
ibrm of development tools and resources. Power-
ful tools are available for experimenting with finite
state technology and unification-based grammars,
resources can be made available easily using in-
ternet, and current hardware allows students to
work comibrtably using these tools and resources.
The introduction of such tools in introductory
courses has the advantage that it provides a re-
alistic overview of language technology research
and development. Interesting application area's
for natural language dialogue systems can be ob-
tained by exploiting the fact that the internet pro-
vides access to many on-line databases. The re-
sulting applications give access to large amounts
of actual and dynamic information. For educa-
tional purposes, this has the advantage that it
gives a feel for the complexity and amount of work
required to develop 'real' applications.

The most important problem encountered in de-
veloping the course is the relative lack of suit-
able electronic resources. For Dutch, the CELEX
database provides a rich source of lexical infor-
mation, which can be used to develop interest-
ing exercises in computational morphology. De-
velopment of similar, data-oriented, exercises in
the area of computational syntax and semantics
is hindered, however, by the fact that resources,
such as electronic dictionaries proving valence and

concept information, and corpora annotated with
part of speech, syntactic structure, and semantic
information, are missing to a large extent. The
development of such resources would be most wel-
come, not only for the development of language
technology for Dutch, but also for educational
purposes.

A c k n o w l e d g e m e n t s

I would like to thank Gertjan van Noord for his
assistance in the development of some of the ma-
terials and Rob Koeling for teaching the course
on natural language interfaces with me. The ma-
terial presented here is being developed as part
of the module natuurlijke taalinterfaccs of the
(Kwaliteit & Studeerbaarheids-) project brede on-
derwijsinuovatie kennissystemen (BOK), which de-
velops (electronic) resources for courses in the
area of knowledge based systems. The project is
carried out by several Dutch universities and is
funded by the Dutch ministry for Education, Cul-
ture, and Sciences.

R e f e r e n c e s

James F. Allen. 1987. Natural Language Un-
derstanding. Benjamin Cummings, Menlo Park
CA.

Evan L. Antworth. 1990. PC-KIMMO : a two-
level processor for morphological analysis. Sum-
mer Institute of Linguistics, Dallas, Tex.

R. H. Baayen, R. Piepenbrock, and H. van Rijn.
1993. The CELEX Lexical Database (CD-
ROM). Linguistic Data Consortium, University
of Pennsylvania, Philadelphia, PA.

Patrick Blackburn and Johan Bos. 1998. B.ep-
resentation and inference for natural language:
A first course in computational semantics. Ms.,
Department of Computational Linguistics, Uni-
versity of Saarland, Saarbrficken.

D. Cabeza, M. Hermenegildo, and S. Varma.
1996. The pillow/ciao library for internet/www
programming using computational logic sys-
tems. In Proceedings of the 1st Workshop on
Logic Programming Tools for INTERNET Ap-
plications, JICSLP"96, Bonn, September.

Michael A. Covington. 1994. Natural Language
Processing for Prolog Programmers. Prentice
Hall, Englewood Cliffs, New Jersey.

Gerald Gazdar and Christopher S. Mellish. 1989.
Natural Language Processing in Prolog; an In-
troduction to Computational Linguistics. Addi-
son Wesley.

L. Karttunen, J.P. Chanod, G. Grefenstette, and
A. Schiller. 1997. Regular expressions for lan-
guage engineering. Natural Lanuage Engineer-
ing, pages 1-24.

Lauri Karttunen. 1995. The replace opera-
tor. In 33th Annual Meeting o/ the Associa-
tion for Computational Linguistics, pages 16-
23, Boston, Massachusetts.

Fernando C.N. Pereira and Stuart M. Shieber.
1987. Prolog and Natural Language Analysis.
Center for the Study of Language and Informa-
tion Stanford.

Carl Pollard and Ivan Sag. 1994. Head-driven
Phrase StruCture Grammar. Center for the
Study of Language and Information Stanford.

Ehud Reiter and Robert Dale. 1997. Building ap-
plied natural language generation systems. Nat-
ural Language Engineering, 3(1):57-87.

Stuart M. Shieber. 1 9 8 6 . Introduction to
Unification-Based Approaches to Grammar.
Center for the Study of Language and Infor-
mation Stanford.

Gertjan van Noord and Gosse Bouma. 1997.
Hdrug. a flexible and extendable environment
for natural language processing. In Dominique
Estival, Alberto Lavelli, and Klaus Netter, ed-
itors, Computational Environments for Gram-
mar Development and Linguistic Engineering,
pages 91-98, Somerset, NJ. Association for
Computational Linguistics.

Gertjan van N0ord, Gosse Bouma, Rob Koeling,
and Mark-Jan Nederhof. 1999. Robust gram-
matical analysis for spoken dialogue systems.
,lournal of Natural Language Engineering. To
appear.

Gertjan van Noord. 1997. FSA Utilities: A tool-
box to manipulate finite-state automata. In
Darrell Raymond, Derick Wood, and Sheng Yu,
editors, Automata Implementation. Springer
Verlag. Lecture Notes in Computer Science
1260.

Theo Vosse. 1994. The Word Connection. Ph.D.
thesis, Rijksuniversiteit Leiden.

