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Abstract 

We introduce a learner capable of automatically extend- 
ing large, manually written natural language Definite 
Clause Grammars with missing syntactic rules. It is 
based upon the Minimum Description Length princi- 
ple, and can be trained upon either just raw text, or 
else raw text additionally annotated with parsed cor- 
pora. As a demonstration of the learner, we show how 
full Noun Phrases (NPs that might contain pre or post- 
modifying phrases and might also be recursively nested) 
can be identified in raw text. Preliminary results ob- 
tained by varying the amount of syntactic information 
in the training set suggests that raw text is less useful 
than additional NP bracketing information. However, 
using all syntactic information in the training set does 
not produce a significant improvement over just brack- 
eting information. 

1 In t roduc t ion  

Identification of Noun Phrases (NPs) in free text has 
been tackled in a number of ways (for example, [25, 9, 
2]). Usually however, only relatively simple NPs, such 
as 'base' NPs (NPs that do not contain nested NPs 
or postmodifying clauses) are recovered. The motiva- 
tion for this decision seems to be pragmatic, driven in 
part by a lack of technology capable of parsing large 
quantities of free text. With the advent of broad cover- 
age grammars (for example [15] and attendant efficient 
parsers [11], however, we need not make this restriction: 
we now can identify 'full' NPs, NPs that might contain 
pre and/or post-modifying complements, in free text. 

Full NPs m'e more interesting than base NPs to esti- 
mate: 

• They are (at least) context free, unlike base NPs 
which are finite state. They can contain pre- and 
post-modifying phrases, and so proper identifica- 
tion can in the worst case imply full-scale pars- 
ing/grammar learning. 

• Recursive nesting of NPs means that each nominal 
head needs to be associated with each NP. Base NPs 
simply group all potential heads together in a flat 
structure. 

As a (partial) response to these challenges, we iden- 
tify full NPs by treating the task as a special case of 
full-scale sentential Definite Clause Grammar (DCG) 
learning. Our approach is based upon the Minimum 
Description Length (MDL) principle. Here, we do not 
explain MDL, but instead refer the reader to the liter- 
ature (for example, see [26, 27, 29, 12, 22]). Although 
a DCG learning approach to NP identification is far 
more computationally demanding than any other NP 
learning technique reported, it does provide a useful 
test-bed for exploring some of the (syntactic) factors 
involved with NP identification. By contrast, other ap- 
proaches at NP identification more usually only con- 
sider lexical/part-of-speech influences. 

In this paper, we consider, from an estimation per- 
spective, how dependent NPs are upon their (surround- 
ing) syntactic context. We varied the information con- 
tent of the training set and measured the effect this had 
upon NP identification accuracy. Results suggest that: 

• Use of any syntactic information, in addition" to raw 
text during estimation, produces better results than 
estimation from raw text alone. 

• NPs containing an internal annotation (nonterminals 
in addition to NPs) are harder to estimate than NPs 
that do not contain these additional nonterminals. 

• Training with NP annotated sentences and training 
with sentences annotated with full sentential parses 
produce very similar results to each other. 

We stress that the last finding is provisional, and further 
investigation is necessary to verify it. 

The structure of the rest of this paper is as follows. 
Section 2 gives an overview of our approach, whilst sec- 
tion 3 goes into estimation and modelling details. We 
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do not s tar t  induction ab initio, but instead base es- 
t imation upon manually written grammars. Section 4 
briefly describes the particular grammar used in this 
research, whilst section 5 relates our work to others. 
Section 6 presents an experimental evaluation of our 
learner. The paper ends with a discussion Of our find- 
ings. 

2 O v e r v i e w  

Our learner is probabilistic, and starts with a DCG- 
based language model M0. Parameters are initially es- 
t imated from parsed corpora, annotated in terms of 
the non-terminal set used by the DCG. It incremen- 
tally processes each sentence s~ in the list of sentences 
So. . .  's# . . .  sn. If a sentence s# cannot be generated (the 
grammar contained within the model lacks the required 
rules), we need to find a new model with a high, non- 
zero posterior probability given the sentences so . . .  s# 
seen so far. Our (for computational reasons, necessarily 
suboptimal) approach selects such a model by" carrying 
out a local search over the space of models with a non- 
zero posterior probability, given all sentences see so far. 
We use a MDL-based prior to help us compute a pos- 
terior probability. Analogously to Pereira and Schabes 
(P+S)  [23], we also constrain the search using parsed 
corpora. Unlike P+S,  we not only use parsed corpora to 
constrain parameter  estimation, we also use it to con- 
strain model selection. We replace M0 with the newly 
constructed (locally) maximal a posterior model and 
after processing all sentences in this incremental man- 
ner, terminate with a model that  generates all sentences 
seen in the training set. 

Key aspects of our approach are: 

Incremental learning. We only construct rules neces- 
sary to parse sentences in training set. This reduces 
the computational burden and enables us to learn 
with grammars that  use large (> 30) feature sets. By 
contrast,  batch approaches that  compile-out all rules 
that  can be expressed with a fixed category set and 
with rules limited to some length can only deal with 
far smaller feature sets, thereby preventing induction 
of realistic grammars. 

Initialisation with a model containing manually writ- 
ten rules, with parameters estimated from parsed 
corpora. This alleviates some of the pitfalls of lo- 
cal search and, by definition, makes estimation faster 
(our initial model is already a reasonable estimate). 
Lari and Young demonstrated this point when they 
used an Hidden Markov Model as an approximation 
of a Stochastic Context Free Grammar SCFG [19]. 
Note that in general any manually written grammar 
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will undergenerate, so there is still a need for new 
rules to be induced. 

• Ability to induce 'fair' models from raw text. We 
do not select models solely on the basis of likelihood 
(when training material is limited, such models tend 
to overfit); instead, we select models in terms of their 
MDL-based prior probability and likelihood. MDL- 
based estimation usually reduces overfitting (since, 
with limited training material, we select a model that  
fits th~ training material well, but  not too well) [22]. 

• Learning from positive-only data. We do not require 
negative examples, nor do we require human inter- 
vention. This enables us to transparently use gram- 
mar learning as part  of s tandard text  parsing. 

• Use of parsed corpora allows us to induce models that 
encode semantic and pragmatic preferences. Raw 
text is known to underconstrain induction [13] and 
even with an MDL-based prior, when training upon 
raw text, we would be unlikely to estimate a model 
whose hidden variables (grammar rules) resulted in 
linguistically plausible derivations. Parsed corpora 
supplies some of this missing information. 

3 Est imat ion Details 
Estimation of a model, given a training set of'sentences 
and an associated set of manually constructed parses, 
consists of four steps: probabilistic modelling of DCGs, 
model construction, search (constrained by parsed cor- 
pora) , and model estimation. We now explain these 
steps in turn. 

P r o b a b i l i s t i c  M o d e l l i n g  o f  D C G s  

DCGs in our approach are modelled in terms of a 
compression-based prior probability and a SCFG-based 
likelihood probability. The prior assigns high probabil- 
ity to compact models, and low probabilities to verbose, 
idiomatic models. As such, it favours simple grammars 
over more complex possibilities. The  likelihood proba- 
bility describes how well we can encode the training set 
in terms of the model. We now turn to the specifcation 
of likelihood and prior probabilities in our system. 

L i k e l i h o o d  P r o b a b i l i t y  To specify a likelihood 
probability for DCGs, we have opted to use a SCFG, 
which consists of a set of context free grammar rules 
along with an associated set of parameters [6]. Each pa- 
rameter models the way we might expand non-terminals 
in a top-down derivation process, and within a SCFG, 
we associate one such parameter with each distinct con- 
text free rule. However, DCG rules are feature-based, 
and so not directly equivalent to simple context free 
rules. In order to define a SCFG over DCG rules, we 



need to interpret them in a context-free manner. One 
way to achieve this is as follows. For each category in 
the grammar that  is distinct in terms of features, invent 
an atomic non-terminal symbol. With these atomic 
symbols, create a SCFG by mapping each category in a 
DCG rule to an atomic symbol, yielding a context free 
(backbone) grammar, and with this grammar, specify 
a SCFG, /Vii. Naturally, this is not the most accurate 
probabilistic model for feature-based grammars, but for 
the interim, is sufficient (see Abney for a good discus- 
sion of how one might define a more accurate proba- 
bilistic model for feature-based grammars [1]). 

SCFGs are standardly defined as follows. Let P(A -~ 
(~ ] A) be the probability of expanding (backbone) non- 
terminal symbol A with the (backbone) rule A --+ o 
when deriving some sentence si. The probability of the 
jth derivation of si is defined as the product of the prob- 
abilities of all backbone rules used in that  derivation. 
Tha t  is, if derivation j followed from an application of 
the rules A~ -~ c~ . . . .  , A~ ~ a~, 

gl 

P~eriv(Sz [ M,) = H P(A~ --+ aJ,) (1) 
i=l  

The probability of a seiatence is then defined as the sum 
of the probabilities of all n ways we can derive it: 

t l  

P~(si I Mi) = Y~ P~eriv(Si IMi) (2) 
3=1 

Having modelled DCGs as SCFGs, we can immedi- 
ately specify the likelilmod probability of Mi generating 
a sample of sentences so.. .  sn, as: 

n 

P(so. . .  sa I M,) = H Ps(s, I Mi) (3) 
j=0 

This treats each sentence as being independently gen- 
erated from each other sentence. 

P r i o r  P r o b a b i l i t y  Specifying a prior for DCGs 
amounts to encoding the rules and the associated pa- 
rameters. We encode DCG rules in terms of an integer 
giving the length, in categories, of the rule (requiring 
log* (n) bits, where log* is Rissannen's encoding scheme 
for integers), and a list of that  many encoded categories. 
Each category consists of a list of features, drawn from 
a finite set of features, and to each feature there is a 
value. In general, each feature will have a separate set 
of possible values. Within manually written DCGs, the 
way a feature is assigned a value is sensitive to the po- 
sition, in a rule, of the category containing the feature 
in question. Hence, if we number the categories of a 
rule. we can work out the probability that  a particular 

feature, in a given category, will take a certain value. 
Let P(v I fO be the probability that  feature f takes 
the value v, in category i of all rules in the grammar. 
Each value can now be encoded with a prefix code of 
- l o g ( P ( v  I f i )  bits in length. Encoding a category 
simply amounts to a (fixed length) sequence of such en- 
coded features, assuming some canonical ordering upon 
features. Note we do not learn lexical entries and so not 
not need to encode them. 

To encode the model parameters, we simply use Ris- 
sannen's prefix coding scheme for integers to encode a 
rule's frequency. We do not directly encode probabili- 
ties. since these will be inaccurate when the frequency, 
used to estimate that  probability, is low. Rissanuen's 
scheme has the property that  small integers are assigned 
shorter codes than longer integers. In our context, this 
will favour low frequencies over highcr ones, which is 
undesirable, given the fact that  we want, for estimation 
accuracy, to favour higher frequencies. Hence, instead 
of encoding an integer i in log*(/) bits (as, for exam- 
ple, Keller and Lutz roughly do [18]), we encode it in 
log*(Z - i) bits, where Z is a mlmber larger than any 
frequency. This will mean that  higher frequencies are 
assigned shorter code words, as intended. 

The prior probability of a model )IL, containing a 
DCG G and an associated parameter set is: 

P ( M i )  = 2 -(lg(M')+Ip(M')) -t- C (4) 

where: 

Id 

IAM,) = Y .[log*(I r I) + Z - log(PO' I/,))1 (5) 
rEG t=l  / E F  

is description length of the gramma," and 

tAM, )  = l o g ' ( Z  - y(,.)) (6) 
rEG 

is the description length of the paranaeters. C is a con- 
stant ensuring that  the prior sums to one; F is the set 
of features used to describe categories: ] r ] is the length 
of a DCG rule r seen f(r) times. 

Apart from being a prior over DCG rules, our scheme 
has the pleasing property that  it assigns longer code 
words to rules containing categories in unlikely posi- 
tions than to rules containing categories in expected po- 
sitions. For example, our scheme would assign a longer 
list of code words to the categories expressing a rule 
such as Det -~ Det N P  than to the list of categories 
expressing a rule such as N P  --+ Det NP.  Also, our 
coding scheme favours shorter rules than longer rules, 
which is desirable, given the fact that ,  generally speak- 
ing. rules in natural language grammars tend to be 
short. 
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P o s t e r i o r  P r o b a b i l i t y  In summary, the probability 
of a model, given a set of training examples is: 

P(M, I S o . . .  s , )  = 
[2- U#{M' )+'P{ M' D +C].H~.=O PS(s~IM.) 

P(so . . . s .  ) 
(7) 

M o d e l  C o n s t r u c t i o n  

For lack of space, we only sketch our model construc- 
tion strategy. In brief, our approach is (largely) mono- 
tonic, in that  we extend an old model with new rules 
constructed from pieces of manually written rules, such 
that  the new and old rules result in a parse for the cur- 
rent sentence (and the old rules alone fail to parse the 
current sentence). In more detail, whenever we fail to 
parse a sentence with the manually written DCG, we 
use an optimised chart parser [10] to construct all lo- 
cal trees licensed by the manually written grammar.  We 
next  consider ways adjacent local trees licensed by man- 
ually written DCG rules may be combined into larger 
local trees (ie invent rules whose right hand side con- 
sists of categories that  spell out the mother categories of 
these adjacent local trees; the left hand side will be one 
of these right-hand side categories, with the possibility 
of having its bar level raised). The parser packs all lo- 
cal trees in space polynomial with respect to sentence 
length. If, within self-imposed bounds upon compu- 
tation (for example, limiting the number of local trees 
joined together), we succeed in constructing at least one 
tree that  spans the entire sentence, we can build a new 
model by extracting all new rules seen in that  tree and 
adding them to the old model. 

Note that  periodically, it is useful to prune (and re- 
normalise) the model of rules seen only once in the pre- 
viously encountered sequence of sentences. Such pruned 
rules are likely to have arisen either due to marked con- 
structions, noise in the training material, or rules that  
appeared to be promising, but did not receive any sub- 
sequent support  and as such have little predictive util- 
it.v. Pruning the model is a non-monotonic operation 
and hard to formally justify, but nevertheless useful. 
Whitten,  Cleary and Bell also comment upon the use- 
fulness of resetting the model [3]. 

Our model construction approach has the following 
properties: rules constructed all encode a version of 
X-Syntax,  which weakly constrains the space of pos- 
sible rules [8, 21]; analyses produced using manually 
written rules are favoured over those produced using 
learnt rules (by virtue of computation being resource- 
bounded): this mirrors the empirical fact that  when 
extending manually written grammars, only a few. rules 
are necessary, and those required generally 'join' to- 
gether local trees generated by manually written rules. 
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S e a r c h  

Model construction may produce an exponential num- 
ber of parses for a sentence and for computational rea- 
sons, we are unable to evaluate all the models encoded 
within these parses. We therefore use a probabilistic 
unpacking strategy that  efficiently selects the n most 
likely parses, where n is much less thml the total num- 
ber of parses possible for some sentence [11]. There is 
insufficient space here to describe how we rank parses, 
but the underlying parse selection model is based upon 
the SCFG used to evaluate models. Currently. it is not 
lexicalised, so parse selection performance is subject to 
the well-known limitations of non-lexicalised SCFGs [5]. 
Whilst estimating models, we simultaneously estimate 
the parse selection model in terms of tile parse used to 
produce the model picked. Probabilistic unpacking is 
crucial to our approach, and it is this that  makes our 
learner computationally feasible. 

After extracting n parses, we can then go on to con- 
struct k I models, evaluate their posterior probabilities, 
and then select the model that  maximises this term. 
However, as was shown by P-t-S, when training material 
consists of just (limited quantities) of raw text. classi- 
cal, single model parameter  estimation often results in a 
model that  produces worse parse selection results than 
when the estimation process is constrained to only con- 
sider derivations compatible with the parsecl corpora. 
In our context, we can use parsed corpora to constrain 
both parameter  estimation and also model selection. 
We simply re-rank the n parses produced during model 
construction using a tree similarity metric that  com- 
pares how 'close' an automatically constructed parse 
is to a manually written parse, and take the q parses 
that  all minimise the metric and are all scored equally 
well [17]. From these q parses we can then build mod- 
els as usual. When q = 1, there is no need to rely 
upon MDL-based model selection. Otherwise. when q 
is greater than one, we have a set of parses, all equally 
consistent with the manually created tree, and so fall- 
back upon the usual model selection strate~.v. Our use 
of parsed corpora differs from P+S ' s  in that  we use it as 
a soft constraint: we may still keep parses even if they 
violate constraints in the manually constructed parse 
tree. The reason for this decision is that we do not 
construct all possible parses for a sentence., and so at 
times may not produce a parse consistent with a manu- 
ally created parse. Also, it is not clear whether parsed 
corpora is sufficiently reliable for it to be trusted abso- 
lutely. Clearly there will be a link between the amount 
of information present in the parsed corpora mid the 
quality of the estimated model. In the experimental 

~k may be less than or equal to n. depending upon which 
independence assumptions are made by" the model 



section of this paper, we consider this issue. 

Estimation 
When computing a model's posterior probability, we 
estimate the description length of features, P(v ] f,), 
the model parameters, P(A -+ a I A) and the likelihood 
probability, P(so... sn ]Mi)- 

The feature description length is estimated by count- 
ing the number of times a given feature takes some value 
in some category position, and applying a maximal like- 
lihood estimator to arrive at a probability. The model 
parameters are estimated by counting the number of 
times a given backbone rule was seen in the previous 
n parses just produced, and then again using a maxi- 
mal likelihood estimator to produce a probability. We 
estimate, as we cannot afford to globally recompute, 
the likelihood probability using the following approxi- 
mations. Only a fixed number of n previously seen sen- 
tences that cannot be parsed using the manually writ- 
ten rules are considered in the likelihood computation. 
We assume that the parses of these sentences remains 
constant across alternative models, but the derivation 
probabilities might vary. We also assume that the string 
probability of each sentence is reasonably well approx- 
imated by a single parse. 

4 T h e  G r a m m a r  

The grammar we extend with learning, (called the Tag 
Sequence Grammar [7], or TSG for short) was developed 
with regard to coverage, and when compiled consists of 
455 object rules. It does not parse sequences of words 
directly, but instead assigns derivations to sequences 
of part-of-speech tags (using the CLAWS2 tagset [4]). 
The grammar is relatively shallow, (for example, it does 
not fully analyse unbounded dependencies) but it does 
make an attempt to deal with common constructions, 
such as dates or names, commonly found in corpora, but 
of little theoretical interest. Furthermore, it integrates 
into the syntax a text grammar, grouping utterances 
into units that reduce the overall ambiguity. 

For the experiments reported here, we manually ex- 
tended TSG with four extra rules. These extra rules 
dealt with obvious oversights when parsing the WSJ. 

5 R e l a t e d  W o r k  

Our approach is closely related to Stolcke's model merg- 
ing work [29]. Apart from differences in prior and likeli- 
hood computation, the main divergence is that our work 
is motivated by the need to deal with undergeneration 
in broad-coverage, manually written natural language 
grammars (for example [15]). Although we do not go 
into the issues here, estimation of rules missing from 
such g-rammars is different from estimating grammars 
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ab initio. This is because rules missing from any real- 
istic grammar are all likely to have a low frequency in 
any given corpus, and so will be harder to differenti- 
ate from competing, incorrect rules purely on the basis 
of statistical properties alone. We know of no other 
work reporting automated extension of broad-coverage 
grammars using MDL and parsed corpora. 

One of the anonymous reviewers wanted to know how 
our work related to Explanation-Based Learning (EBL) 
[20]. EBL is not concerned with induction of rules: it 
deals with finding more efficient ways to use existing 
rules. For example, in NLP, EBL has been used to re- 
duce the time taken to parse sentences with large gram- 
mars ([28]). EBL does not extend the coverage of any 
given grammar, unlike our approach. In our opinion, 
it would be better to view our learner as all Inductive 
Logic Programming system specialised for DCG induc- 
tion. 

6 E x p e r i m e n t s  

For our experiments we used material supplied by 
the CoNLL99 workshop organisers. This consisted of 
48,224 fully parsed training sentences, and a disjoint 
set of 984 testing sentences. Both sets were randomly 
drawn from the parsed section of the Wall Street Jour- 
nal. The test set came in two versions, differing from 
each other in how the sentences were marked:up. The 
first version consisted of sentences with NP bracketings 
marked (results using this test set are given in table 1). 
The second version had NP bracketings marked, and 
within each marked NP, there was an internal parse 
(results for this version are in table 2). These parses 
were labelled with Penn Nonterminals. Each test sen- 
tence was trivially rooted with an S symbol (necessary 
for the evaluation software). To make this clearer, if an 
original Wall Street Journal parse, stripped of tags and 
nonterminal decorations was: 

(S (NP (NP Bailey Controls), (VP based (PP in 
(NP (NP Wickliffe), (NP Ohio)))).) (VP makes 
(NP computerized industrial controls systcms)).) 

the version containing just NP bracketing would be: 

(S (NP (NP Bailey Controls), based in (NP (NP 
Wickliffe), (NP Ohio)),) makes (NP computerized 
industrial controls systems) .) 

whilst the version containing parsed NPs would be: 

(S (NP (NP Bailey Controls), (VP based (PP in 
(NP (NP Wickliffe), (NP Ohio)))),) makes (NP 
computerized industrial controls systems).) 

For computational reasons, we could not deal with 
all sentences in the training set. and when learning 
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rules, we limited ourselves to ser/tences with a maxi- 
mum length of 15 tokens. During evaluation, we used 
sentences with a maximum length of 30 tokens. This 
reduced the training set to 10,249 parsed sentences, and 
the test set to 739 sentences. Finally, we retagged the 
CoNLL99 material with the Claws2 tagset (required by 
TSG). Evaluation was carried out by Parseval (which 
reports unlabelled bracketing results: we do not report  
labelled results as TSG does not use the Penn Non- 
terminal set) [16]. Note tha t  evaluation is based upon 
bracketing, and not word accuracy. For example, if we 
failed to include one word in a NP that  contains four 
other words, we would have a bracketing accuracy of 
0. On the other hand, a word accuracy result would be 
80%. 

A s a  comparison, we evaluated TSG upon the testing 
material. This is experiment 5 in tables 1 and 2. The 
other four experiments differed from each other in terms 
of what the learner was trained upon: 

1. Just tagged sentences. 

2. Tagged Sentences with NP bracketings marked. We 
reduced WSJ parses to include just their NP brack- 
etings. 

3. Tagged sentences with NPs bracketing annotated 
with an internal parse. Again, we mapped WSJ 
parses to reduced parses containing just annotated 
NPs. 

4. Tagged sentences with a full Wall Street Journal 
parse. 

For each experiment, we report  the size of the final 
grammar, the percentage of testing sentences covered 
(assigned a full parse), crossing rates, recall and preci- 
sion results with respect to testing sentences with NPs 
bracketed and those containing annotated NPs. For the 
bracketing task, we mapped full parses, produced by 
nmdels, to parses just  containing NP bracketing. For 
the aimotation task. we mapped full parses to parses 
containing just NPs with an internal annotation. Note 
that within our grammatical framework, the best map- 
ping is not clear (since parses produced by our models 
have categories using multiple bar levels, whilst WSJ 
parses ouly use a single level). As a guess, we treated 
bar 1 and bar 2 nominal categories as being NPs. This 
means that  our precision results are lowered, since in 
general, we produce more NPs than would be predicted 
by a WSJ parse. 

In each case. we evaluate the performance of a model 
in terms of the highest ranked parse, and secondly, in 
terms of the "best' parse, out of the top 10 parses pro- 
duced. Here "best' means the parse produced that  is 

closest, in terms of a weighted sum crossing rates, pre- 
cision and recall, to the manually selected parse. This 
final set of results gives an indication of how well our 
system would perform if it had a much bet ter  parse 
selection mechanism. Best figures are marked in paren- 
theses. 

Figure 1 gives our results for the bracketing task, 
whilst figure 2 gives our results for the annotat ion task. 
Model size and coverage results were id~-ltical for both 
tests, so the second table omits them. 

Exp Size % Gen CR R P 
1 2687 78 1.27 (1.02) 66.5 (73.9) 51.5 (55.31 
2 2774 91 1.34 (0.99) 64.6 (73.5) 50.8 (55.6: 
3 2782 91 1.29 (0.97) 64.6 (73 5) 50.9 (55.6: 
4 2592 90 1.34 (1.01) 64.8 (73.2) 50.5 (55.3: 
5 459 63 1.2 (0.95) 68.7 (75.8) 53 2 (56.9: 

Figure 1: NP Identification Results (Bracketing) 

Exp CR R P 
1 2.08 (1.52) 57.99 (67.7) 48.1 (54.6) 
2 2.27 (1.54) 56.5 (67.0) 46.0 (54.2) 
3 2.22 (1.52) 56.5 (66.9) 50.9 (54.2) 
4 2.32 (1.63) 56.5 (66.7) 45.4 (53.1) 
5 1.85 (1.40) 59.2 (69.1) 51.4 (57.2) 

Figure 2: NP Identification Results (Annotation) 

Firstly, when compared with other work on NP re- 
covery, our results are poor. As was mentioned in the 
search section, this is largely due to our system being 
based upon a language model that has well known lim- 
itations. Furthermore, as was argued in the iutroduc- 
tion, full NPs are by definition harder to identify than 
base NPs, so we would expect our results to be worse. 
Secondly, we see that  the bracketing task is easier than 
the annotation task: generally, the results in table 1 are 
better  than the results in table 2. Given the fact that  
the annotation search space is larger than the brack- 
eting space, this should come as no surprise. Turning 
now to the individual experiments, we see that parsed 
corpora (experiments 2, 3 and 4) is all informative con- 
straint upon NP induction. Rules learnt using parsed 
corpora bet ter  capture regularities than do rules learnt 
from just raw text (experiment 1). This is shown by the 
increased coverage results of experiments 2 .3  and 4 over 
1. In terms of crossing rates, recall and precision, no 
clear story has emerged. Surprisingly, there seems to be 
minimal difference in coverage when using either anno- 
tated NPs or full parses. This could be due to a number 
of reasons, such as WSJ NPs being more reliably an- 
notated than other phrases, simple artifactual problems 
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with the learner, the evaluation metrics being too coarse 
to show any real differences, etc. Further, qualitative 
investigation should determine whether there are any 
differences in the parses that TSG alone cannot assign 
to sentences. 

Due to time constraints, we did not measure statisti- 
cal significance tests between the various experiments. 
A later version of this paper (available from the author, 
osborne@let.rug.nl) will report these tests. 

7 Conclusion 
We presented an MDL-based incremental DCG learner. 
Experimental evaluation showed that estimation is pos- 
sible using just raw sentences, but that better results 
are possible when additional parsed corpora is used. 
Evaluation also showed that this parsed corpora need 
not be that detailed, and that NP bracketing informa- 
tion produced similar results to using full WSJ parses. 
This final results seems counterintuitive, and merits fur- 
ther investigation. 

Future work on the learner will be in three main di- 
rections: 

• Abandonment of the SCFG as the basis of the lan- 
guage model. We are considering either Abney's 
random fields [1] or Goodman's Probabilistic Fea- 
ture Grammmars [14] as a replacement. Apart from 
performance improvements, altering the model class 
should allow empirical investigation of the MDL 
claim that model classes can be evaluated in terms 
of compression. So, if we discover even more com- 
pact models using (say) Goodman's scheme than we 
could using our SCFG, we might deduce that this is 
the case. Naturally: lexicalisation would enter into 
any scheme entertained. 

• Use of semantics in estimation. We have at our dis- 
posal a large grammar augmented with a composi- 
tional semantics [15]. Again, this should lead to bet- 
ter results. 

• Prior we!ghting. As is well known, MDL-based learn- 
ers sometimes improve from weighting the prior with 
respect to tile likelihood. Schemes, such as Quinlan 
and Rivest's [24], fall outside of the coding framework 
and (effectively) replicate the training set. We intend 
to pursue encoding-based schemes that achieve the .  
same purpose. 
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