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Abstract  
The #u-TBL system represents an attempt to use the 
search and database capabilities of the Prolog pro- 
gramming language to implement a generalized form 
of transformation-based learning. In the true spirit 
of logic-programming, the implementation is 'derived' 
from a declarative, logical interpretation of transforma- 
tion rules. The #-TBL system recognizes four kinds 
of rules, that can be used to implement various kinds 
of disambiguators, including Constraint Grammar dis- 
ambiguators as well as more traditional 'Brill-taggers'. 
Results from a number of experiments and benchmarks 
are presented which show that the system is both flex- 

" ible and efficient. 

Introduction 
Since Eric Brill first introduced the method of Trans- 
formation-Based Learning (TBL) it has been used 
to learn rules for many natural language processing 
tasks, such as part-of-speech tagging [Brill, 1995], PP- 
attachment disambiguation [Brill and Resnik, 1994], 
text chunking [Ramshaw and Marcus, 1995], spell- 
ing correction [Mangu and Brill, 1997], dialogue act 
tagging [Samuel et al., 1998] and ellipsis resolution 
[Hardt, 1998]. Thus, TBL has proved very useful, in 
many different ways, and is likely to continue to do so 
in the future. 

Moreover, since Brill generously made his own TBL 
implementation publicly available, l many researchers in 
need of all off-the-shelf retrainable part-of-speech tag- 
ger have found what they were looking for. However, 
although very useful, Brill's original implementation 
is somewhat opaque, templates are not compositional, 

IThroughout this paper, when referring to Brill's TBL 
implementation, it is always his contextual-rule-learner - 
implemented in C - that I have in mind. "It is available from 
http://www, cs. jhu. edu/~br i l l / ,  along with ~veral other 
learners and utility programs. 

and they are hard-wired into the program. Therefore, 
the program is difficult to modify and extend. What is 
more, it is fairly slow. 

This paper is dedicated to the design and implemen- 
tation of an alternative transformation-based learner 
system, called "the #-TBL system" (pronounced "mu- 
table"). The p-TBL system is designed to be the- 
oretically transparent, flexible and efficient. Trans- 
parency is achieved by performing a 'logical reconstruc- 
tion' of TBL, and by deriving the system from there. 
Flexibility is achieved through the use of a composi- 
tional rule and template formalism, and 'pluggable' "al- 
gorithms. As for the implementation, it turns out that 
transformation-based learning can be implemented very 
straightforwardly in a logic programming language such 
as Prolog. Efficient indexing of data, unification and 
backtracking search, as well as established Prolog pro- 
gramming techniques for building rule compilers and 
meta-interpreters, contribute to the making of a logi- 
cally transparent, easily extendible, and fairly efficient 
system. 2 

The content of the paper is presented in a bottom-up 
fashion, starting from the semantics of transformation 
rules. First, I show that, contrary to what is often as- 
sumed, transformation rules can be given a declarative, 
logical interpretation. I then introduce the IL-TBL sys- 
tem, which in a manner of speaking is derived from this 
interpretation of rules. The template compiler, a part 
of the system which translates templates into efficient 
Prolog programs, is described, and by w~" of examples 
it is shown how a particular combination of training 
data and templates may be 'queried' from the Prolog 
prompt. Next, a number of variants of all-solutions 
predicates are specified, that deal with notions such as 
scores, rankings and thresholds. Since they appear to 
be independently useful - even useful outside TBL - 

"The ~-TBL system is available from 
http:/ /~w, ling. gu. se/-~lager/mutbl, html. 
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they belong in a separate library. By combining pred- 
icates from these code libraries, a number of TBL-like 
algorithms are assembled, and benchmarks are run that  
show the/~-TBL system to be quite efficient. Finally, a 
small experiment using transformation-based learning 
to induce Constraint Grammars from corpora is per- 
formed. 

T h e  Semant ics  of Trans fo rma t ion  Rules  

The  object of TBL is to learn an ordered sequence of 
transformation rules. The p-TBL system supports four 
kinds of transformation rules. 

R e p l a c e m e n t  r u l e s  dictate when - based on the 
context - one feature value for a word should be re- 
placed with another feature value. An example would 
be "replace tag vb with nn if the Word immediately 
to the left has a tag d t " .  Here is how this rule 
is represented in the # -TBL system's compositional 
rule / template  formalism: 

tag:vb>nn <- tag:dr@[-1]. 

This is of course the exact counterpart  of the transfor- 
mation rule in Brill's original framework. 

A d d i t i o n  ru l e s  specify when a feature value should 
be added to a word. An example would be "add tag nn 
to a word if the word immediately to the left has a tag 
ti t":  

tag:0>nn <- tag:dr@[-1]. 

Note that  a feature value is actually added to a word 
only if it not already there. 

D e l e t i o n  ru l e s  dictate when a feature value should 
be removed from a word. An example would be "remove 
tag vb from a word if the word immediately to the left 
has a tag d t " :  

tag:vb>0 <- tag:dt@[-1].  

R e d u c t i o n  ru l e s  reduce the set of feature values 
for a word with a certain value. An example would 
be "reduce a word's tag values with tag vb if the word 
immediately to the left has a tag dr":  

tag:vb>l  <- tag:dr@I-I] .  

An important  difference between deletion rules and re- 
duction rules is that  the latter will only remove a feature 
value from a word if it is not the last value for that  fea- 
ture. If vb is the last value the above rule is not applica- 
ble and the reduction will not take place. This should 
remind us of the kind of constraints that  are central 
to the so called reductionistic approach to disambigua- 
tion. as represented by for example Constraint Gram- 
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mar [Karlsson et al., 1995]). Constraint  grammars may 
indeed be possible to learn in the IL-TBL system, as I 
will show towards the end of this paper. 

In the p -TBL system's rule formalism, conditions 
may refer to different symbol features, and complex 
conditions may be composed from simpler ones. For 
example, here is a rule saying "replace the tag for ad- 
verb with the tag for adjective, if the current word is 
"only", and if the previous tag, or the tag before that,  
is a determiner tag.": 

tag:ab>jj <- wd:only@[O] k tag:dt@[-1 , -2 ] .  

Ill this paper, I will break with the tradition to think 
about transformation rules in exclusively procedural 
terms, and instead try to think about  them in declara- 
tive and logical terms. Transformation rules (partially) 
describe an ordered sequence of pairs of symbols, which 
I will refer to as a relation. Such a relation form training 
data for a TBL system. Here is a simple (and unrealis- 
tically small) example: 

dt vb nn dt vb kn dt vb ab dt vb 
dt nn vb dt nn kn dt jj kn dt nn 

The sequence formed by the upper elements of the pairs 
will be referred to as Sl,  and the sequence formed by the 
lower elements as Sn. Such sequences can be. modelled 
by means of two sets of clauses, which relate positions 
in the sequences to symbol feature values: 

$1 (1, dr) Sl (2, vb) $1 (3, nn) . . .  S1 (11, vb) 
S. (I, dr) S~ (2, nn) S.(3, vb) . . .  S. (11, nn) 

A central point in this paper is the suggestion that  
the declarative semantics of transformation rules can 
be captured by rule formulas in the form of univer- 
sally quantified implications, and that ,  for example, the 
meanings of the four very simple rules shown previously 
are captured by the following formulas: 
Replacement  

Vpo,p, [S, (po,vb) A (Pl = 1)o - 1) A St (p, .dr) --r S ,  (po,nn)] 

Addit ion 

Vpo,p, [-,St (po,nn) A (p, = Po - 1) A St (p, ,at ) ---r S ,  (po ,nn ) ] 

Dele t ion  

Vpo.p, [St (po,vb ) A (p, = po - 1) A St (p, ,dr) --~ -~S. (po,vb )] 

Reduct ion  

Vpo,p, [Sl (po,vb) A Bxo[S, (po,xo) A (x0 # vb)]A 
(P, = P0 -- 1) A S,(pl ,dt)  --~ -.S.(po,vb)] 

Rule formulas as such will not be put  to any direct 
computational use, but  the notion of a rule formula 
provides a starting point, from which computational 
tools can be derived. 



A rule instance is a rule formula in which every vari- 
able has been replaced with a constant. Now, we may 
define the notions of positive and negative instances 
of rule formulas (and thus indirectly of transforma- 
tion rules). A positive rule instance is a rule instance 
where the mltecedent and the consequent are both true. 
Thus, the following formula is a positive instance of the 
formula corresponding to the simple replacement rule 
above: 

Sl(2, vb) A (1 = 2 - 1) A S,(I,dt) --+ S,(2, nn) 

A negative instance of a rule is a rule instance where the 
antecedent is true but where the consequent is false, for 
example: 

Sl(8,vb) A (7 = 8 - 1) A S~(7,dt) -~ S,,(8, nn) 

Note that  Brilrs  notion of a neutral instance of a rule, 
i.e. an instance of a rule that  replaces an incorrect tag 
with another  incorrect tag, is a negative instance in my 
terminology. (In practice, this does not seem to mat ter  
much, as I will show later.) 

We now define two important  rule evaluation mea- 
sures. The score of a rule is the number of its positive 
instances minus the number of its negative instances: 

sco~e(R) =1 pos(R)  1 - I neg(R) I 
The accuracy of a rule is its number of positive instances 
divided by the total number of instances of the rule: 

accuracy(R) = I pos(R) I 
I P°S(R) I + I neg(R) I 

The notion of rule accuracy is well-known in rule in- 
duction and inductive logic programming, and towards 
the end of this paper we will see that it may have a role 
to play in the context of transformation-based learning 
too. 

A n  O v e r v i e w  o f  t h e  # - T B L  S y s t e m  
Through the use of unification and a particular search 
strategy (backtracking), a logic programming environ- 
ment such as Prolog implements a constructive kind 
of inference which allows us to define predicates that  
are able to recognize, generate and search for positive 
and negative instances of transformation rules. Fur- 
thermore,  a layer of recta-logical predicates provides 
a way to collect and count such instances, and thus 
a way to calculate the score and accuracy for any 
rule. Therefore, in a logic programming framework, 
transformation-based learning can be implemented in a 
very clear and simple way. 

However, for such an implementation to become use- 
ful. we have to think about  efficiency. Among other 
things, we need to think about  how we index our train- 
ing data. Assuming the part-of-speech tagging task. 
corpus data  can be represented by" means of three "kinds 
of clauses: 
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wd (P,N) is true iff the word W is a t  position P in the 
corpus 

t ag (P ,A)  is true iff the word at  position P in the cor- 
pus is tagged A 

t ag (A ,B ,P )  is true iff the word at, P is tagged A and 
the correct tag for the word at P is B 

Although this representation may seem a bit redundant, 
it provides exactly the kind of indexing into the data  
that  is needed. 3 A decent Prolog system can deal with 
millions of such clauses. 

Rules that  can be learned in T B L  are instances of 
templates, such as "replace tag A with B if tho symbol 
(e.g. the word) immediately to the left has tag C, where 
A, B and C are variables. Here is how we write this 
template in the p -TBL system: 

t3(A,B,C) # tag:A>B <- tag:C@[-l]. 

The term to the left of # is a unique identifier for the 
template. A template instance is a template  in which 
every variable in the identifier has been replaced by a 
constant. If we strip the identifier we end up with a 
transformation rule again. The  instant iated identifier 
uniquely identifies that  rule. 

Positive instances of rules tha t  are instancbs of the 
above template can be efficiently recognized, generated 
and searched for, by means of the following clause: 

positive (t3(A,B,C)) :- 
tag(A,B,PO), Pl is PO-I, tag(Pl,C). 

Negative instances are handled as follows: 

negative (t3 (A,B, C) ) :-  
tag(A,X,PO), dif(X,B), P1 is PO-I,taE(PI,C). 

It should be clear how these clauses use the representa- 
tion described above, and that they respect the seman- 
tics exemplified in the previous section. Clauses cor- 
responding to other templates and other types of rules 
can be defined accordingly. 

Tied to each template is also an update proce.dure that 
will apply rules tha t  are instances of this template, and 
thus update  sequences, by replacing feature values with 
other feature values, adding to the feature values, or 
removing from them. For example: 

apply(t3 (A,B,C)) :- 
(tag(A,X,P), P1 is P-l, tag(PI,C), 
re t rac t ( tag(A,X,P)) ,  r e t r a c t ( t a g ( P , l ) ) ,  
assert(tag(B,X,P)), asser~(tag(P,B)), 
fail ; true). 

3Assuming a Prolog with first argument indexing. 
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To write clauses such as these by hand for large sets 
of templates would be tedious and prone to errors and 
omissions. Fortunately, since the formalism is composi- 
tional, it is easy to write a template compiler that gener- 
ates them automatically. The #u-TBL system uses well- 
known Prolog compiler writing techniques to expand 
templates written in the compositional high-level nota- 
tion into clauses that can be run as programs. Thus, the 
convenience and flexibility of a high-level notation for 
templates and rules does not compromise performance. 
A template grammar defines the exact relation between 
a template and a set of clauses. As an illustration, the 
following grammar rules are used to expand a template 
into a Prolog clause defining p o s i t i v e / l ,  nega t ive /1  
and app ly / l ,  for that template: 

term_expansion((ID # A<-Cs), 
[ ( p o s i t i v e ( I D )  : -  G1), 
(negative(ID) :- G2), 
(apply(ID) :-(G3.fail;true))]) :- 

pos ((A<-Cs) ,LI, [] ), list2goal(L1 .G1), 
ne E ((A<-Cs) ,L2, [] ). list2goal (Li, G2), 
app((A<-Cs) ,L3, [] ), list2goal(L3,G3). 

pos((F:A>B<-Cs)) --> 
{G =.. [F,A,B,P]},[G], cond(Cs,P). 

neg((F:A>B<-Cs)) --> 
{G =.. [F,A,X,P]}, [dif(X,B),G], cond(Cs,P). 

app((F:A>B<-Cs)) --> 
{GI =.. [F,A,X,P], G2 =.. [F,P,A], 
G3 =.. [F,B,X,P], G4 =.. [F.P,B]}, 
[GI], cond(Cs,P), [retract(Gl), 
retract(G2), assert(G3), assert(G4)]. 

cond((C&Cs),P) --> cond(C,P), cond(Cs,P). 
cond(FA@Pos,PO) --> pos(Pos,PO,P), feat(FA,P). 

pos(Pos,PO,P) --> 
[member(Offset,Pos), P is PO+Offset]. 

feat(F:A,P)--> {G =.. [F,P,A]}, [G]. 

A modern Prolog system will compile the resulting 
clauses all the way down to machine code. Thus. a 
TBL-system implemented in Prolog can be quite effi- 
cient. 

T h e  p - T B L  T e m p l a t e  C o m p i l e r  

When a file containing transformation rules is consulted 
or compiled, each transformation rule is expanded into 
several Prolog clauses) As a result of this, a large 
number of predicates becomes available, some of which 
are documented in Figure 1. 

Using the predicates generated by the template com- 
piler, the training data in combination with the tem- 

4Also. if the user does not provide them, template idea- 
tlfiers m'e constructed automatically. 

pair(?a,?B) 
pair(?h,?B,?P) 

A ~ aligned with B at a position P in the current data. 

positive (?RuleID) 
positive (?RuleID, ?a, ?B) 
positive (?RuleID, ?A, ?B, ?P) 

RuleID names a rule which has a positive instance in 
the current data at a position P, whero A is aligned 
with B. The rule is an instance of a template, which 
is identified by the functor of RuleID. A call to this 
predicate usually has many solutions, az~,l tile order in 
which solutions are returned on backtracking is deter- 
mined by the order in which templates are presented 
to the system, and the order of symbols in the training 
data. 

sample(?RuleID) 
sample(?RuleID,?A,?B) 
sample(?RuleID,?A,?B,?P) 

As positive/{l,2,3}, except that rules are randomly 
sampled. 

sample_R(+R,?A,?B,-Rules) 
Binds Rules to a l i s t  with R rmldomly samplcd rules. 

negative(?RuleID) 
negative(?RuleID,?h,?B) 
negative(?RuleID.?A,?B,?P) 

RuleID names a rule which hasa negative instance m 
the data a t a  position P, where h is aligned with B. 

apply (+RuleID) 

The rule RuleID is applied to the current data. 

Figure 1: Extract fi'om the manual 

plates may be queried. By backtracking through the 
solutions to a call to p o s i t i v e / 1  we may for example 
verify that there are ten ways to instantiate our exam- 
ple template in our example data (for space reasons, I 
show only the first three solutions): 

[ 7- positive(RuleID), RuleID # Rule• 
Rule = tag:vb>nn <- tag:dt@[-l] 7 ; 
Rule = tag:nn>vb <- tag:vb@[-1] ? ; 
Rule = tag:dr>dr <- tag:nn@[-l] ? ; 
• . . 

Alternatively, we might be interested only in instances 
where the aligned feature values (h and B) are different, 
and there are six of those: a 

Sdif /2  is a built-in predicate in SICStus Prolog. A call 
to d i f  (X,Y) constrains X and Y to represent different terms. 
Calls to d i f / 2  either succeed~ fail. or are blocked depending 
oil whether X and Y are sufficiently instantiated. 
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l 7- dif(A,B), positive(ID,A,B), ID # Rule. 

Or, we might  be  interested only in template  instances 
where the aligned symbols have feature values nn and 
vb, respectively. There is only one such rule: 

i ?- positive(RulelD,nn,vb), RuleID # Rule. 
Rule = tag:nn>vb <- tag:vb@[-l] ? ; 

Sometimes, a random sample of a positive rule might 
be more useful: 

7 -  s a m p l e ( R u l e I D , n n , v b ) ,  RuleID # R u l e .  
Ru le  = t a g : n n > v b  <-  t a g : v b @ [ - 1 ]  

As for negative instances, we may want to know if the 
rule t a g : v b > n n  < -  t a g : d r @ [ - 1 ]  has any negative in- 
stances in the training data,  and indeed there is one at 
position 8, where vb is aligned with j j  ra ther  than  nn: 

?- RuleID # (tag:vb>nn <- tag:dt0[-l]), 
negative(RuleID,A,B,P). 
h = vb, B = j j ,  P = 8 ? 

L i b r a r y  ranking 
Library ranking is a package for scoring and ranking 
rules. I t  was written for the specific purpose of scoring 
t ransformat ion rules in the context of TBL, but  is likely 
to be more generally useful, hence deserving its s ta tus  
as a libra~'y. The  basic notions are defined as follows: 

A score is an integer > 0 

A ranking entry is a pair S-R such tha t  S is a score 
and R is a rule 

A ranking is an ordered sequence of ranking entries 
where each rule occurs only once. 

The  score of a rule is determined by counting the so- 
lutions returned by goals containing the rule (or ra ther  
its ID). Thus.  many predicates in library ranking are 
meta-predicates  that  work much the same way as the 
so called all-solutions predicates tha t  are built into Pro- 
log. Figure 2 lists some of the predicates available in 
l ibrary ranking. 

The  l ibrary encapsulates some of Brill's own w~ ' s  of 
optimizing t ransformation-based learning - optimiza- 
tions which are possible to perform for the ranking of 
rules in general. 

The predicates in l ibrary ranking interact in a 
straightforward way with the predicates generated by 
the templa te  compiler, as the following examples will 
show. Here. for instance, is how we compute (and print) 
a ranking on the basis of the goal invoh'ing a call to 
positive/3: 
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count (?R, +Goal , -N)  

Binds N to the number of solutions for Goal. un]ess it 
fails for lack of solutions. If there are uninsta~itiated 
variables in Goal, then a call to countl3 may back- 
track, generating alternative values for N corresponding 
to different instantiations of the free variables of Goal. 
Defined as: 

count(R,Goal,N) :- 
bagof(R,Goal,Solutions), 
length(Solutions,N). 

rank (?R, +Goal, +ST, -Ranking) 

Computes the score for each instance of R and ranks 
the instances. However, instances with scores less than 
the score threshold (ST) are not ranked. Defined as: 

rank (R, Goal, ST, Rnkng) :- 
setof (N-R, (count (., Goal, N), N>ST), Rnkng0), 
r e v e r s e  (RnkngO, Rnkng). 

penal ize (?R, +Goal, +Rnkng, +ST, +AT, -NewRnkng) 
Re-ranks the rules ill Rnkng by subtracting from their 
scores, giving a new ranking NewRnkng. However. any 
rule with a score < ST or all accuracy < AT Is just 
dropped. 

at_position (+N, +Rnkng, -Rule, -Score) 

Retrieves the Nth rule in the ranking, and its score. 

highscore (?R, +PGoal, +NGoal, +ST, +AT, ?WR, ?WRS) 

Among the different instances of R, NR is the rule with 
the highest score (i.e. the 'winning rule'), and NRS is 
its score, defined as the number of solutions to the 
goal PGoal minus the number of solutions to NGoal. 
However. if NRS < ST, or if no rule clears the accuracy 
threshold (AT), highscore/7 fails. Works a~ if defined 
by: 

highscore (R,PGoal,NGoal, ST, AT, WR, ~IRS) -- 
rank (R, PGoal, ST, Rnkng), 
penalize (R, NGoal, Rnkng, ST, AT, NewRnkng), 
at _pos it ion ( 1, NewRnkng, WR, WRS). 

Ill fact, highscore/7 is implemented in a more efficient 
way. It keeps track of a leading rule and its score, and 
thus only has to generate and count solutions to NGoal 
for rules for which the number of positive instances Is 
greater than the score for the leading lule. Moreover, 
the score threshold (ST) for the counting of solutions of 
NGoal can be set to the nmnber of solutions to PGoal 
minus the score for the leading rule. 

Figure 2: Ext rac t  fl'om the manual  

?-  r ank(R,A-B ' (d i f (A ,B) ,pos i t ive (R ,A,B) ) , l ,L ) ,  
print_ranking(L). 

3 tag:vb>nn <- tag:dt@[-1] 
1 tag:vb>jj <- tag:dtO[-l] 
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And here is how we find the highest scoring rule: 

I 7- highscore(R,A'B'(dif(A,B),positive(R,A,B)), 
negat  i r e  ( R),  1, WR, WRS ). 

WR = tag:vb>nn <- tag:tit@[-1], WRS = 3 ? ; 

This concludes the demonstration of how the template 
compiler and the ranking library allows a particular 
combination of templates and training data  to be in- 
teractively explored from the Prolog prompt. 

S i m p l e  T B L  

Full transformation-based learning is just a small snip- 
pet of code away. Given corpus data, templates and val- 
ues for the thresholds (ST and AT), the predicate t b l / 3  
implements learning of a sequence of rules: 

P r o g r a m  1 

t b l  (ST,AT,WRs) : -  
( highscore (Rule, 

A'B" (dif  (A,B) ,posi t ive (Rule,A, B)), 
negative (Rule), 
ST, 
AT, 
WR, 
WRS) 

-> apply(~), 
tb l  (ST,AT,WRsl), 
was = [~n~lWas13 

; WRs = [] 
). 

This predicate, defined entirely in terms of predicates 
generated by the template compiler and predicates from 
library ranking, combines all the important principles of 
TBL into a complete learning program, that repeatedly 
instantiates rule templates in training data, scores rules 
on the basis of counts of positive and negative instances 
of them, selects the highest scoring rule on the basis of 
this ranking, and applies it to the training data. 

Consider our small example once again. Here are the 
three rules learned (with the score threshold set to 1) 

tag:vb>nn <- t ag :d t~ [ -1 ] .  
tag:ab>kn <- tag:nn@[-1]. 
tag:nn>vb <- tag:nn@[-l]. 

and here are the transformations that the upper se- 
quence of the training data  goes through, when the rules 
are applied in the given order: 

dt vb nn dt vb kn dt vb ab dt vb 
dt nn nn dt nn kn dt nn ab dt nn 
dt nn nn dt nn kn dt nn kn dt nn 
d~ nn vb dt nn kn dt nn kn dt nn 

It is interesting to regard what is happening hei-e as a 
decomposition of a relation S1-S, ,  into a number of re- 
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lations SI-S.>_ o . . .  o S , - I - S , ,  corresponding to a number 
of rules R1 o . . .  o R , _ , .  

In general, for such a decomposition S , -S ,  = Si- 
S,+l o S,+I-Sn, it holds that  if a rule R, has P pos- 
itive and N negative instances in S , -S , ,  then (i) R, 
will have P + N positive and no negative instances in 
Ss-Si+l, and (ii) Ri will have no positive nor negative 
instances in S,+I-S , .  Clearly, (i) follows from the fact 
that  the update procedure associated with R, changed 
the negative instances of Ri in S , -S ,  into positive ones, 
and (ii) from the fact that  the antecedent of R, must 
be false in S,+l'Sn.  As a corollary to (ii) it follows that 
Ri will not be selected next. 

For each step, as long as P > S T  + N, then S, will 
become more similar to Sn. Note. in our example, that 
there is one rule, t a g : n n > j j  <- t a g : d r @ [ - 1 ] ,  that 
would remove the only remaining difference between 
$4 and S, .  However, this rule also has three nega- 
tive instances, and thus the rule gets a score below tim 
threshold. 

S c a l i n g  Up 
Program 1 is indeed small, simple and transparent. But 
what about efficiency? How well does it scale up to han- 
dle real world tasks, such as part-of-speech tagging? In 
one small test the learner was operating on annotated 
Swedish corpora 6 of three different sizes, with 23 dif- 
ferent tags, and the 26 templates that BriU uses in his 
distribution: 

tag:A>B <- tag:C@[-l]. 
tag:A>B <- tag:C¢[l]. 
tag:A>B <- tag:C¢[-2]. 
tag:A>B <- tag:C@[2]. 
tag:A>B <- tag:C@[-l,-2]. 
tag:A>B <- tag:C@[l,2]. 
tag:A>B <- tag:C@[-l,-2,-3]. 
tag:A>B <- tag:C@[l,2,3]. 
tag:A>B <- tag:C@[-1] & tag:D@[1]. 
tag:A>B <- tag:C@[-l] ~ tag:D~[-2]. 
tag:A>B <- tag:C@[1] & tag:D@[2]. 
tag:A>B <- ,d:C@[O] ~ tag:D@[-2]. 
tag:A>B <- wd:C@[O] & wd:D@[-2]. 
tag:A>B <- wd:C@[-1]. 
tag:A>B <- wd:C@[l]. 
tag:A>B <- wd:C@[-2]. 
tag:A>B <- wd:C@[2]. 
tag:A>B <- wd:C@[-l,-2]. 
tag:A>B <- ,d:C@[1,2]. 
tag:A>B <- wd:C@[O] & ,d:D@[-1]. 

6I have used selected parts of the Stockholm-Umea Cor- 
pus (SUC). Here is a key to the part-of-speech tags appear- 
ing in the present paper: ma = noun, vb = verb, pp = prepo- 
sition, pra = proper name. d t =  determiner, pn = pronoun, 
ie = infinitive marker, sn = subjunction, j j  = adjective, 
ab = adverb, hp = relative pronoun, kn ---- conjunction. See 
[Ejerhed et al.~ 1992] for further details of this corpus. 



tag:h>B <- wd:C@[O] & wd:D@[l]. 
tag:A>B <- wd:C@[0] & tag : D@ [-l] . 
tag:h>B <- wd:C@[O] & tag:D@[1]. 
tag:A> B <- wd:C@[O]. 
tag:A>B <- wd:C@[O] & tag:D@[2]. 
tag:A>B <- wd:C@[O] & wd:D@[2]. 

Below, I show the first thirteen rules, as they are re- 
ported by the p -TBL system (during training on the 
30kw corpus). Each rule is preceded by its score (first 
column), and by its accuracy (second column). 

130 1.00 t a g : d t > p n  <- t a g : v b ~ [ 1 ] .  
114 0.82 t a g : i e > s n  <- tag:vb@[2] .  
58 0.85 tag:pn>dt <- vd:det@[O] & tag:jj%[l]. 
37 1.00 tag:ie>sn <- tag:dt@[l]. 
37 0.97 tag:ie>sn <- tag:nn@[1]. 
34 0.95 tag:dt>pn <- tag:pp@[l]. 
29 1.00 tag:ie>sn <- tag:pn@[1]. 
21 1.00 tag:ie>sn <- tag:pro@Ill. 
19 1.00 tag:jj>pn <- wd:bland@[-1]. 
18 1.00 tag:dt>pn <- tag:hp@[l]. 
17 0.84 tag:pp>sn <- ,d:om@[O] & tag:pn@[l]. 
15 0.94 tag:sn>ie <- tag:vb@[1]. 
14 0.63 tag:hp>kn <- wd:som@[O] & tag:nn@[1]. 

Note that  the actual accuracy of a learned rule can 
sometimes be well below 1.00. (The accuracy thresh- 
old was set to 0.5 in this experiment.) The sequence 
of rules works well anyway, since the damage done by 
an incorrect rule can be repaired by rules later in the 
sequence. (In fact, a small experiment confirmed that  
the setting of the accuracy threshold to 1.00 generates 
a tagger which performs less well.) 

For each corpus, the accuracy of the learned sequence 
of rules was measured on a test corpus consisting of 
40,000 words, with an initial-state accuracy of 93.3%. 
The system was running on a Sun Ultra Enterprise 3000 
with a 250Mhz processor. Table 1 summarizes the re- 
sults of the tests: 

Size ST 
30k 2 
60k 4 

120k 6 

Runtime Mem.req. 
15 min 23M 
24 rain 38M 
54 rain 71M 

#(Its) Acc. 

99 95.5% 
81 95.7% 
88 95.8% 

Table 1: # -TBL performance - the simple algorithm 

The performance of the p-TBL system was compared 
with Brill's learner running on the same machine, with 
the same templates, score thresholds and training data. 
Table 2 gives the figures. 

These tests verify tha t  the program works as ex- 
pected, and also that  it is quite efficient, despite its 
small size and simple design. In fact. the tests show 
that p -TBL learner is an order of magnitude faster than 
Brill's original learner for this particular task. 
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Size ST 
30k 2 
60k 4 

120k 6 

Runtime Mem.req. 
90 min 24M 

185 min 43M 
560 min 82M 

#(Rs) 
104 
89 
98 

ACC. 

95.5% 
95.7% 
95.8% 

Table 2: Performance of Brill's learner 

T B L  h la E r i c  B r i l l  

This algorithm is perhaps tile one that  resembles Brill's" 
own algorithm the most. It differs fi'om the siml)le algo- 
rithm in that  to learn one rule, it ranks the error types 
that  occur in the trairting data (using r a n k / 4  from li- 
brary ranking to do so), and then it searches top-to- 
bot tom in this ranking, entry by entry, for a rule which 
fixes the type of error recorded by the entry, always 
keeping track of a leading rule and its score. When the 
score for a ranking entry drops below the leading rule's 
score, the search is abandoned, and the leader is de- 
clared winner. This effectively prunes the search space 
without losing completeness, and it also saves a lot of 
memory, since only rules for one kind of error at a time 
have to be held in memory. 

Program 2 

tbl (ST, AT, WRs) :- 
( rank((h,B), (dif CA,B) ,pair(A,B)), ST,Rnkng), 

le arn_one (Rnkng, dummy, O, AT, I/R, NRS), 
NRS >= ST 

-> apply (WR), 
t b l  (ST,AT,NRsl), 
NRs = [WRtWRsl] 
WRs = [] 

).  

learn_one (RnkngO,LR,LRS, AT,NR, NRS) :- 
( RnkngO -- [N-CA,B) lEnkng], 

N > LRS 
-> ( highscore (R, 

positive (R,A,B), 
negative (R, A, A), 
LRS, 
AT, 
LR1, 
LRSI) 

-> learn_one(Rnkng,LR1,LRS1 ,AT,NR,NRS) 
; learn_one (Rnkng,LR, LRS, AT,NR, WRS) 
) 

; NR = LR, NRS = LI~ 
). 

The benchmark results, using the same setup as with 
the simple algorithm, are shown in Table 3. 

As can be seen from Table 3, the optimized algo- 
rithm is significantly faster than the simple one, and 
it uses less memory. However, as pointed out in 
[Ramshaw and Marcus, 1995], the effect of this partic- 
ular optimization method depends on the size of the 

! 



Size ST 
30k 2 
60k 4 

120k I. 6 

Runtime Mem.req. 
10 min 17M 
20 min 22M 
50 min 39M 

#(Rs) Acc. 
99 95.5% 
85 95.7% 
92 95.8% 

Table 3: I~-TBL performance - the optimized algorithm 

tag set. The larger the tag set, the more benefit we 
can expect. Thus, we can expect to see even greater 
improvements for many learning tasks. 

Note also that in contrast with the simple algorithm, 
this algorithm uses Brill's notion of negative rule in- 
stance. The call negative (g, A, A) ensures that neutral 
instances are not counted as negative. However, it ap- 
pears that the way negative instances are counted does 
not matter much, at least not for this application. The 
rules look pretty much the same as the rules generated 
by Brill's learner, and in fact, the first ten rules are 

identical. 

M o n t e  C a r l o  T B L  

The original TBL algorithm suffers from the fact that 
the number of candidate rules to consider grows very 
fast with the number of rule templates, and in prac- 
tice only a small number of templates can be handled. 
[Samuel et al., 1998] presents a novel twist to the al- 
gorithm, in  order to solve this problem. The idea is 
to randomly sample from the space of possible rules, 
rather than generating them all. The better the rule is, 
the greater the chance that it is included in the sample. 
Thus, the system is likely to find the best rules first. An 
implementation of this algorithm can be assembled by 
replacing the definition of learn_one/6 in Program 2 
with the following definition: 

Program 3 

learn_one(Rnkng0,LR,LRS,AT,NR,NRS) :- 
( Rnkng0 = [N-(A,B) IRnkng], 

N > LRS 
-> samp1e_R(16,A,B,Rs), 

( highscore(R, 
(member(R,Rs),positive(R,A,B)), 
negative(R,A,A), 
LRS, 
AT, 
LRI, 
LRS1) 

learn_one(Rnlmg,LRI,LRSl,AT,NR,NRS) 
Iearn_one(Rnkng,LR,LRS,AT,NR,NRS) 

-> 

) 

). 
NR = LR, NRS = LRS 
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That is, h ighsco re /7  picks tile rules that it evalu- 
ates from the (here) 16 rules that are sampled. The 
amount of work that h ighsco re /7  has to perform, and 
the memory requirements, no longer depends on how 
many templates there are. 

To test the algorithm, the system was run with 260 
templates with the 60,000 word corpus, and a compar- 
ison was made with the optimized algorithm. The out- 
come of this experiment is reported in Table 4. 

Algorithm Runtime Mem.req. #(Rs) Acc. 
Lazy 48 min 21M 202 95.7% 
Brill 427 min 84M 126 95.7% 

Table 4: #-TBL performance - the lazy algorithm vs. 
the '~ la Brill algorithm. 

As can be seen from the table, although the other al- 
gorithm did not perform too bad with 260 templates, 
the 'lazy' algorithm was an order of magllitude faster. 
Accuracy was not compromised, although the number 
of rules grew. 

As a sidenote, let me describe a convenient /L-TBL 
system feature which makes it possible to train with 
very many templates without actually writing them 'all 
down. Instead of loading a set of templates into the 
system, the user may load a couple of template decla- 
rations, which, in terms of 'window' sizes and ranges of 
relative positions over which windows 'slide', constrain 
the relation between templates and clauses, defined by 
the template grammar. Constrained in this way, the 
grammar Call be used to generate templates. Without 
going into any further details, let me just show the dec- 
larations which causes the system to generate the 260 
templates used above: 

• - head(tag:A>B). 
:- window_size(tag,3). 
"- window_size(wd,2). 
:- range(tag,[-3,-2,-l,l,2,3]). 
:- range(wd,[-2,-1,1,2]). 
"- anchors([-t ,O,1]).  

L e a r n i n g  C o n s t r a i n t  G r a m m a r s  

In another experiment, the #-TBL system was run with 
a number of templates for reduction rules, in order to see 
if something resembling a Constraint Grammar could 
be induced from training data. Each word token in a 
training corpus of 30,000 words was assigned the set 
of part-of-speech tags that it can have according to a 
lexicon. The training data also indicated which member 
of this set was the correct one. 

The system was run with the following four tem- 
plates: 



tag:A>l <- unique(tag:C@[-l]). 
tag:A>l <- unique (tag : C@ [l] ) . 
tag:A>l <- wd:C@[O] & unique(tag:D@[-l]). 
tag:h>l <- wd:C@[O] k unique(tag:DO[l]). 

The use of the u n i q u e / 1  wrapper in the conditions of 
the rules has the effect that  a rule will trigger only if the 
assignments of tags to words in the relevant surround- 
ings ar e non-mnbiguous. (As Karlsson et al. (1995) put 
it, the rules are run in "careful application mode".) 

As mentioned earlier, replacement rules do not have 
to be very accurate: if a rule early in a sequence of re- 
placement rules makes some errors, the errors can often 
be 'fixed' by rules later in the sequence. By contrast, 
in a sequence of reduction rules there are no rules that  
can add tags once they have been removed. There- 
fore, in order to maximize the accuracy of the whole 
sequence of rules, it must be induced under a valida- 
tion bias which sees to it that  each rule is as accurate 
as possible. In the # -TBL system, this is taken care of 
by" setting the accuracy threshold to a very high value. 
However, a sequence of rules induced in this way will 
typically leave many words with more than one tag. If 
we want instead to minimize the tags per words ratio, 
the accuracy threshold can be set to a lower value, but 
then a lower tagging accuracy will naturally result. In 
the experiment, the accuracy threshold was set to 0.99 
(which still allows for a bit of noise in the data) and to 
0.85. Program 2 was used. 

Below, I show the first ten rules that  were learned by 
the system (with the accuracy threshold set to 0.99): 

451 1.00 tag:rg>l <- 
451 1.00 tag:pl>l <- 
274 1.00 tag:pn>l <- 
274 0.99 tag:ab>l <- 
230 1.00 tag:pl>l <- 
222 1.00 tag:ab>l <- 
221 1.00 t a g : r g > l  <- 
219 1.00 tag:p1>1 <- 
200 1.00 tag:p1>1 <- 
166 0.99 tag: rg>l  <- 

wd:i@[O] ~ unique(nn@[l]). 
wd:i@[O] & unique(nn@[1]). 
wd: en@ [0] & unique (nn@ [i] ). 
wd: en@ [0] & unique (nn@ [i] ). 
unique(dl@ [-I] ). 
wd:av~[O] & unique(nn@[-l]). 
wd:£@[O] & unique(nn@[-l]). 
.d:i@[O] & unique(nn@[-1]). 
wd:p@[O] k unique(nn@[-t]). 
wd:en@[O] & unique(jj@[l]). 

The  induced sequences of rules were tested on a cor- 
pus of 11,000 words. Both the accuracy and the tags 
per word ratio in the test corpus were measured7 The 
initial tags per word ratio in the test corpus was 1.35. 
The results of the tests are given in Table 5. 

Size ST AT #(Rs)  Runtime Acc. T / W  
30k 6 0.99 410 75 min. 99.6% 1.17 
30k 6 0.85 215 20 min. 98.1% 1.04 

Table 5: Result of Constraint Grammar induction 

TA word is deemed to be accurately tagged if the correct 
tag is an element in the set of tags that the word has been 
assigned. 

These results are promising. But  before it would be 
fair to compare with other methods for inducing Con- 
straint Grammars from annotated corpora,  e.g. the 
methods described ill [Samuelsson et al., 1996] or in 
[Lindberg and Eineborg, 1998], it remains to determine 
the optimal set of templates and the optimal settings 
of the accuracy threshold. Very likely, the learning pro- 
cess (applied to the learning of reduction rules) can also 
be optimized for speed. In short, a lot more has to be 
done, but at least this section has shown how easily an 
experiment like this can be set up in the # -TBL envi- 
ronment. 

Summary and Conclusions 
The #-TBL system is not just  a re-implementation 
of original TBL in another  programming language. 
Rather it should be seen as all a t t empt  to use tile rea- 
soning and database capabilities of Prolog to do TBL 
ill a more high-level way. The # -TBL system is: 

Genera l  - The system supports four types of rules by 
means of which not only traditional 'Brill-taggers', 
but also Constraint Grammar  disambiguators, are 
possible to train. 

Eas i ly  e x t e n d i b l e  - Through its support  of a compo- 
sitional rule/ template  formalism and 'pluggable' al- 
gorithms, the system can easily be tailored to differ- 
ent learning tasks. 

T r a n s p a r e n t  - Rules have a declarative, logical se- 
mantics which, among other things, has proved to be 
of great value during the implementation work. 

Ef f ic ien t  - A number of benchmarks have been run 
which show that  the system is fairly efficient - an 
order of magnitude faster than Brill's contextual-rule 
learner. 

I n t e r a c t i v e  - Prolog is all interactive language and 
this is something that  the # -TBL system inherits. 

Sma l l  - Thanks to the choice of implementation lan- 
guage, the system's code base can be kept quite small. 
Indeed, a 'light' version of the # -TBL system., con- 
sisting of just one page of Prolog code, has been im- 
plemented [Lager, 1999]. 

In short, the #-TBL system is a powerful environ- 
ment in which to experiment with transformation-based 
learning. 
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Appendix: The #-TBL User Interface 
Although it certainly helps to be familiar with the Pro- 
log programming language, the p-TBL system is actu- 
ally designed to be usable also by those who lack Prolog 
experience. 

The system has a simple command line interface, de- 
picted in Figure 3, from which commands ('an be given 
and queries be made. Furthermore. there are several 
flags which control the way in which the system carries 
out its tasks. 

*************************************************** 
The NUTBL System, v e r s i o n  0 . 7  

(c)  Torbjoern Lager, 1999 
Dept. of L i n g u i s t i c s ,  Uppsala U n i v e r s i t y ,  Sweden 

The MUTBL System comes v i t h  a b s o l u t e l y  no warranty. 

FLAGS: 

training_data='data/testcorpus' 

test_data='data/10kw_test' 

algoritbm='algorithms/brill' 

templates=~templates/brill_dist_templates '. 
score_threshold=3 

accuracy_threshold=0.5 

verbosity=2 

COMMANDS: 

load 

train 

test 

set F=V 
help 

flags 

commands 

- l o a d s  d a t a ,  c o m p i l e s  . t e m p l a t e s ,  e t c .  
- s t a r t s  t r a i n i n g  process  
- tests result of training 

- sets flag F to the value V 

- shows this menu 

- sho.s settings of flags 
- lists available commands 

predicates - lists available predicates 

I ?- 

Figure 3: The #-TBL User Interface 


