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Abstract

Constructive induction transforms the representation of
instances in order to produce a more accurate model of
the concept to be learned. For this purpose, a vari-
ety of operators has been proposed in the literature,
including a Cartesian product operator forming pair-
wise higher-order attributes. We study the effect of
the Cartesian product operator on memory-based lan-
guage learning, and demonstrate its effect on general-
ization accuracy and data compression for a number of
linguistic classification tasks, using k-nearest neighbor
learning algorithms. These results are compared to a
baseline approach of backward sequential elimination
of attributes. It is demonstrated that neither approach
consistently outperforms the other, and that attribute
elimination can be used to derive compact representa-
tions for memory-based language learning without no-
ticeable loss of generalization accuracy.

Introduction

It is a widely held proposition that inductive learn-
ing models, such as decision trees [Quinlan, 1993] or k-
nearest neighbor models [Aha, Kibler & Albert, 1991,
are heavily dependent upon their representational bi-
ases. Both decision tree algorithms and instance-based
algorithms have been reported to be vulnerable to ir-
relevant or noisy attributes in the representation of ex-
emplars, which unnecessarily enlarge the search space
for classification {John, 1997]. In general, there are
two options for dealing with this problem. Attribute
elimination (or selection) can be applied in order to
find a minimal set of attributes that is maximally in-
formative for the concept to be learned. Attribute
elimination can be seen as a radical case of attribute
weighting [Scherf & Brauer, 1997, Aha, 1998], where
attributes are weighted on a binary scale, as either rel-
evant or not; more fine-grained methods of attribute
weighting take information-theoretic notions into ac-
count such as information gain retio [Quinlan, 1993.
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Daelemans et al., 1997]. Successful attribute elimina-
tion leads to compact datasets, which possibly increase
classification speed. Constructive induction, on the
other hand, tries to exploit dependencies between at-
tributes, by combining them into complex attributes
that increase accuracy of the classifier. For instance-
based algorithms, this approach has been demonstrated
to correct invalid independence assumptions made by
the algorithm [Pazzani, 1998): e.g., for the Naive Bayes
classifier (Duda & Hart, 1973), the unwarranted as-
sumption that in general the various attributes a, = v,
are independent, and form a joint probability model for
the prediction of the class C:

PO [[Pa.=vlc0)

P(C|(11=‘01/\.../\au=‘un)=P(al=le Na =1))

(1)
Constructive induction thus can be used to invent re-
lationships between attributes that, apart from possi-
bly offering insight into the underlying structure of the
learning task, may boost performance of the resulting
classifier. Linguistic tasks are sequential by nature, as
language processing is a linear process, operating on
sequences with a temporal structure (see e.g. Cleere-
mans (1993) for motivation for the temporal structure
of finite-state grammar learning). Learning algorithms
like k-nearest neighbor or decision trees abstract away
from this linearity, by treating representations as multi-
sets of attribute-value pairs, i.e. permutation-invariant
lists. Using these algorithms, constructive induction
cannot be used for corrections on the linearity of the
learning task, but it can be used to study attribute in-
teraction irrespective of ordering issues.

In this paper, the use of constructive induction is
contrasted with attribute elimination for a set of lin-
guistic learning tasks. The linguistic learning domain
appears to be deviant from other symbolic domains in
being highly susceptible to editing. It has been no-
ticed [Daelemans et al., 1999i] that editing exceptional



instances from linguistic instance bases tends to harm
generalization accuracy. In this study, we apply edit-
ing on the level of instance representation. The central
question is whether it is more preferable to correct lin-
guistic tasks by combining (possibly noisy or irrelevant)
attributes, or by finding informative subsets.

Representation Transformations

John (1997) contains presentations of various attribute
selection approaches. In Yang & Honovar (1998), a
genetic algorithm is used for finding informative at-
tribute subsets, in a neural network setting. Cardie
(1996) presents an attribute selection approach to nat-
ural language processing (relative pronoun disambigua-
tion) incorporating a small set of linguistic biases (to
be determined by experts).

Many operators have been proposed in the litera-
ture for forming new attributes from existing ones. Pa-
gallo & Hauser (1990) propose boolean operators (like
conjunction and negation) for forming new attributes
in a decision tree setting. Aha (1991) describes IB3-
ClI, a constructive indiction algorithm for the instance-
based classifier IB3. Aiming at reducing similarity be-
tween an exemplar and its misclassifying nearest neigh-
bor, IB3-CI uses a conjunctive operator forming an at-
tribute that discriminates between these two. Bloedorn
& Michalski (1991) present a wide variety of mathe-
matical and logical operators within the context of the
AQ17-DC1 system. A general perspective on construc-
tive induction is sketched in Bloedorn, Michalski &
Wnek (1994). Keogh & Pazzani (1999) propose correla-
tion arcs between attributes, augmenting Naive Bayes
with a graph structure.

Pazzani (1998) proposes a Cartesian product oper-
ator for joining attributes, and compares its effects on
generalization accuracy with those of attribute elimina-
tion, for (a.0.) the Naive Bayes and PEBLS (Cost &
Salzberg, 1993) classifiers. The Cartesian product oper-
ator joins two attributes A; and A, into a new, complex
attribute A, -4, taking values in the Cartesian product

{< a,,a; >| a; € Values(A;) A aj € Values(A4:)} (2)

where V'alues(d) is the value set of attribute 4. The
Cartesian product operator has an intrinsic linear in-
terpretation: two features joined in a Cartesian prod-
uct form an ordered pair with a precedence relation
(the ordered pair < a, b > differs from the ordered pair
< b,a >). This linear interpretation vanishes in learn-
ing algorithms that do not discern internal structure in
attribute values (like standard nearest neighbor).
Pazzani's backward sequential elimination and join-
ing algorithim (BSEJ) finds the optimal representation
transformation by considering each pair of attributes

in turn, using leave-one-out cross-validation to deter-
mine the effect on generalization accuracy. Attribute
joining carries out an implicit but inevitable elimina-
tion step: wiping out an attribute being subsumed by
a combination. This reduces the dimensionality of the
result dataset with one dimension. Following success-
ful joining, the BSEJ algorithm carries out an explicit
elimination step, attempting to delete every attribute in
turn (including the newly constructed attribute) look-
ing for the optimal candidate using cross-validation.
The algorithm converges when no more transforma-
tions can be found that increase generalization accu-
racy. This approach is reported to produce significant
accuracy gain for Naive Bayes and for PEBLS. Pazzani
contrasts BSEJ with a backward sequential elimination
algorithm (BSE, backward sequential elimination, pro-
gressively eliminating attributes (and thus reducing di-
mensionality) until accuracy degrades. He also investi-
gates forward variants of these algorithms, which suc-
cessively build more complex representations up to con-
vergence. Both for PEBLS and Naive Bayes, attribute
joining appears to be superior to elimination, and the
backward algorithms perform better than the forward
algorithms. For k-nearest neighbor algorithms based
on the unweighted overlap metric, BSEJ did not out-
perform BSE.

Conditioning representation transformations on the
performance of the original classifier implements a
wrapper approach (John, 1997; Kohavi & John, 1998),
which has proven an accurate, powerful method to mea-
sure the effects of data transformations on generaliza-
tion accuracy. The transformation process is wrapped
around the classifier, and no transformation is carried
out that degrades generalization accuracy.

In this study, two algorithms, an implementation of
BSE and a simplification of the BSEJ algorithm, were
wrapped around three types of classifiers: 1B1-1G, IB1-
IG&MVDM (a classifier related to PEBLS in using
MVDM) and IGTREE [Daelemans et al., 1997]. All of
these classifiers are implemented in the TiMBL package
[Daelemans et al, 1999ii]. IB1-IG is a k-nearest neigh-
bor algorithm using a weighted overlap metric, where
the attributes of instances have their information gain
ratio as weight. For instances .X and 17, distance is
computed as '

AX,)Y) = i w,0(z;.yi) (3)

=1

where ¢ is the overlap metric, and w, is the information
gain ratio (Quinlan, 1993) of attribute 4.

The PEBLS algorithm can be approximated to a cer-
tain extent by combining IB1-IG with the Modified
Value Difference Metric (MVDM) of Cost & Salzberg



(1993). The MVDM defines the difference between two
values z and y respective to a class C, as

n

8(z,y) =Y | P(C. | z)

=1

- P(C.|y)| (4)

i.e., it uses the probabilities of the various classes
conditioned on the two values to determine overlap.
Attribute weighting of IB1-IG&MVDM (information
gain ratio based) differs from PEBLS: PEBLS uses
performance-based weighting based on class predicyion
strength, where exemplars are weighted according to an
accuracy or reliability ratio.

IGTREE is a tree-based k-nearest neighbor algo-
rithm, where information gain is used as a heuristic to
insert nodes in the tree. For every non-terminal node,
a default classification is stored for the path leading to
it. Whenever no exact match can be found for an un-
known instance to be classified, the default classification
associated with the last matching attribute is returned
as classification for the instance. Although IGTREE
sometimes lags behind IB1-IG in accuracy, it provides
for much faster, high quality classifiers.

An implementation of the BSE algorithm is outlined
in figure . It is akin in spirit to the backward elimi-
nation algorithm of John (1997). During every pass, it
measures the effects on generalization accuracy of elimi-
nating every attribute in turn, only carrying out the one
which maximizes accuracy. A simplified version of the
BSEJ algorithm called backward sequential joining with
information gain ratio (BSJ-IG) is outlined in figure .
It checks the 3“\’,V+_,), ordered combinations for N fea-
tures during each pass, and carries out the one resulting
in the maximum gain in accuracy (as a consequence of
the permutation invariance, the total search space of
(—NIY_'—_,), possible combinations can be halved). Any two
joined attributes are put on the position with the max-
imum information gain ratio of both original positions,
after which the remaining candidate position is wiped
out. Again, as the used classifiers are all permutation-
invariant with respect to their representations, this is
only a decision procedure to find a target position for
the attribute combination; all candidate positions are
equivalent target positions.

Unlike the original BSEJ algorithm, BSJ-IG omits
the additional explicit attribute elimination step di-
rectly after every attribute joining step, in order to seg-
regate the effects of attribute joining as much as possi-
ble from those of attribute elimination.

Both BSE and BSJ-IG algorithms are hill-climbing

algorithms. and, as such, are vulnerable to local min-
ima. Ties are resolved randomly by both.
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Experiments

The effects of forming Cartesian product attributes
on generalization accuracy and reduction of dimen-
sionality (compression) were compared with those of
backward sequential elimination of attributes. The
following 7 linguistic datasets were used. STRESS is
a selection of secondary stress assignment patterns
from the Dutch version of the Celex lexical database
[Baayen, Piepenbrock & van Rijn, 1993], on the basis
of phonemic representations of syllabified words. At-
tribute values are phonemes. Also derived from Celex
is the DIMIN task, a selection of diminutive formation
patterns for Dutch. This task consists of assigning
Dutch diminutive suffixes’to a noun, based on phonetic
properties of (maximally) the last three syllables of the
noun. Attribute values are phoneme representations
as well as stress markers for the syllables. The wsi-
NPVP set consists of part-of speech tagged Wall Street
Journal material (Marcus, Santorini & Marcinkiewicz,
1993), supplemented with syntactic tags indicating
noun phrase and verb phrase boundaries (Daelemans et
al , 1999iii). WSJ-POS is a fragment of the Wall Street
Journal part-of-speech tagged material (Marcus, San-
torini and Marcinkiewicz, 1993). Attributes values are
parts of speech, which are assigned using a window-
ing approach, with a window size of 5. INL-POS is a
part-of-speech tagging task for Dutch, using the Dutch-
Tale tagset [van der Voort van der Kleij et al., 1994],
attribute values are parts of speech. Using a window-
ing approach, on the basis of a 7-cell window, part
of speech tags are disambiguated. GRAPHON consti-
tutes a grapheme-to-phoneme learning task for English,
based on the Celex lexical database. Attribute values
are graphemes (single characters). to be classified as
phonemes. PP-ATTACH, finally, is a prepositional phrase
(PP) attachment task for English, where PP’s are at-
tached to either noun or verb projections, based on
lexical context. Attribute values are word forms for
verb, the head noun of the following noun phrase, the
preposition of the following PP, and the head noun of
the PP-internal noun phrase (like bring attention to
problem). The material has been extracted by Rat-
naparkhi et al. (1994) from the Penn Treebank Wall
Street Journal corpus. Key numerical characteristics of
the datasets are summarized in table 1.

Each of these datasets was subjected to the BSJ-IG
and the BSE wrapper algorithms, embedding either the
IB1-1G or IGTREE architecture. Both the Naive Bayes
and PEBLS classifier investigated by Pazzani (1998) al-
low for certain frequency tendencies hidden in the data
to bear on the classification. This has a smoothing ef-
fect on the handling of low-frequency events. which ben-
efit from analogies with more reliable higher-frequency



Procedure BSE
Input: a training set T

Qutput: a new training set T’ with possibly attributes removed

Set Acc to Accuracy(7T) for the current classifier

Set Success to true
While (Success) do
Set Success to false
For every attribute A in T do

Produce T' by removing A from every instance in T
NewAcc=Accuracy(T') for the current classifier

If (NewAcc>Acc)
Then
Set Acc to NewAcc
Set Winner to T’
Set Success to true
If Success equals true
Then
Set T to Winner
Return T

Figure 1: A wrapper implementation of Backward Sequential Elimination (BSE).

events. In order to assess the effects of smoothing, the
following additional experiments were carried out. Em-
beddded into BSE and BSJ-IG, the PEBLS approxima-
tion IB1-IG with MVDM was applied to three datasets:
STRESS, DIMIN and PP-ATTACH, for three values of k (1,
3, 7), the size of the nearest neighbor set. Values for &
larger than 1, i.e. non-singleton nearest neighbor sets.
have been found to reproduce some of the smoothing in-
herent to statistical back-off models (Daelemans et al..
1999ii; Zavrel & Daelemans, 1997).

Generalization accuracy for every attribute joining
or elimination step was measured using 10-fold cross-
validation, and significance was measured using a two-
tailed paired t-test at the .05 level. All experiments
were carried out on a Digital Alpha XL-266 (Linux) and
a Sun UltraSPARC-IIi (Solaris). Due to slow perfor-
mance of the IB1-IG model on certain datasets with the
used equipment, IB1-IG experiments with WsJ-NPVP
could not be completed.

Results

The results show, first of all, that the compression
rates obtained with BSE (average 34.9%) were consis-
tently higher than those obtained with BSJ-IG (average
28.6%) (table 2).
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Secondly, BSE and BSJ-IG have comparable effects
on accuracy. BSE generally boosts IGTREE perfor-
mance to IB1-IG level, and leads to significant accu-
racy gains for two datasets, STRESS and PP-ATTACH
(tabel 3). BSJ-IG does so for the STRESS set (tabel
4). Neither BSE nor BSJ-IG produce any significant
gain in accuracy for the IB1-IG classifier. This general-
izes the findings of Pazzani (1998) for classifiers based
on unweighted overlap metrics to classifiers based on a
weighted overlap metric. '

For the classifier IB1-IG&MVDM. the situation is
more complex (table 5). First, for ¥ = 1. BSE and BSJ-
IG have comparable accuracy. For the STRESS and Pp-
ATTACH sets, both algorithms produce significant and
comparable accuracy gains. Second. compression by
BSE is significantly higher than compression vy BSJ-
IG (47.2% vs. 30.6%).

For the larger values for k (3, 7), BSJ-IG produces
significant higher accuracies on the STRESS set, outper-
forming BSE. Moreover, BSJ-IG yields a compression
rate comparable to BSE. BSE compression drops from
47.2% to 27.8%.

A detailed look at the representations produced by
BSE and BSJ-IG reveals the following.



Procedure BSJ-IG
Input: a training set T
Qutput: a new training set T’ with possibly higher-order induced attributes

Set Acc to Accuracy(T) for the current classifier
Set Success to true
While (Success) do

Set Success to false

For every ordered combination of two attributes A, and A; in T do
Produce T' from T by joining A; and A,, putting them on the position
k € {i,j} with the largest information gain ratio.
NewAcc=Accuracy(T’) for the current classifier

If (NewAcc>Acc)
Then
Set Acc to NewAcc
Set Winner to T”
Set Success to true
If Success equals true
Then
Set T to Winner

Return T

Figure 2: A wrapper implementation of Backward Sequential Joining with Information Gain ratio (BSJ-IG)

e (BSJ-IG) IB1-IG&BSJ-IG and IGTREE&BSIJ-IG
only agree on WSJ-POS: they both join the same at-
tributes. For the other datasets, there is no overlap
at all.

(BSE) For the wsi-pPoOs set, BSE deletes exactly the

same two features that are joined by BSJ-IG for IB1-

IG and IGTREE. For the DIMIN set, IB1-IG&BSE
and IGTREE&BSE delete 4 common features. For
STRESS, all features deleted by IB1-IG&BSE are
deleted by IGTREE&BSE as well. On the INL-POS
set, three common features are deleted. Frequently,
BSE was found to delete an attribute joined by BSJ-
IG.

(IB1-IG&MVDM, BSJ-1G) BSJ-IG produccs no over-
lap for DIMIN for the three different classifiers (k =
1,3,7). For STRESS, the k = 1,k =3 and k = 7
classifiers join one common pair of attributes. This
is the pair consisting of the nucleus and coda of the
last syllable, indeed a strong feature for stress assign-
ment (Daelemans, p.c.). For PP-ATTACH, the k = 1,
k = 3 and k = 7 classifiers identify attribute 4 (the
head noun of the PP-internal noun phrase) for join-
ing with another attribute. Attribute 4 clearly intro-
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duces sparseness in the dataset: it has 5;695 possible
values, opposed to maximally 4,405 values for the
other attributes. The k = 3 and k¥ = 7 classifiers
agree fully here.

o (IB1-IG&MVDM, BSE) On the DIMIN set, the k = 1
and k = 3 classifiers differ in 1 attribute elimination
only. They display no overlap with k = 7, which elim-
inates entirely other attributes. For STRESS, k = 1
and k = 3 classifiers overlap on 3 attributes. The
three classifiers delete 1 common attribute (not the
nucleus or coda). For PP, the k = 3 and k& = 7 clas-
sifiers do not eliminate attributes; the & = 1 classi-
fier deletes the attribute 4 (PP-internal head noun),
and even the first verb-valued attribute. In doing
50, it constitutes a strongly lexicalised model for PP-
attachment taking only into account the first head
noun and the following preposition.

BSE produced more overlapping results across classi-
fiers than BSJ-IG. IB1-IG&MVDM with BSJ-IG is the
only type of classifier that is able to trap the important
interaction between nucleus and coda in the STRESS set.
Due to lack of domain knowledge. we cannot be cer-
tain that other important interactions have not been



Dataset Instances | Attributes | IB1-1G IGTREE
STRESS 3,000 12 85.9+0.8 | 81.6%1.0
DIMIN 3,000 12 98.2+0.4 | 98.2+0.5
wsJ-NPVP | 200,000 8 97.1+0.08 | 96.5+0.08
GRAPHON 350,000 7 96.6+0.04 | 96.24-0.06
WSJ-POS 399,925 5 95.9+0.04 | 95.940.04
INL-POS 250,004 7 96.3+£0.1 | 96.3+0.1
PP-ATTACH | 20,801 4 81.3+0.5 | 78.3+0.4

Table 1: Number of instances, attributes and original accuracies for the datasets.

Algorithm BSE | BSJ-IG
1B1-1G 34.2 | 23
IGTREE 34.7 |} 30.9
IB1-IG&MVDM, k=1 | 47.2 | 30.6
IB1-IG&MVDM, k=3 | 30.5 | 33.3
IB1- IG&MVDM, k=7 | 27.8 | 25
Average 34.9 | 28.6

Table 2: Average compression rates.

trapped as well; this lies outside the scope of this study.
Although firm conclusions cannot be drawn on the basis
of three datasets only, the compact and accurate results
of the k = 3 and k = 7 classifiers may indicate a ten-
dency for smoothing algorithms to compensate better
for eventual non-optimal attribute combinations than
for eliminated attributes. This would be in agreement
with Pazzani’s findings for PEBLS and Naive Bayes.

Frequently, cases were observed where BSE elimi-
nates attributes that were used for joining by BSJ-IG.
This indicates that at least some of the advantages of
attribute joining originate from implicit attribute elim-
ination rather than combination, which has also been
noted by Pazzani (1998): removing an attribute may
improve accuracy more than joining it to another at-
tribute.

Conclusions

The effects of two representation-changing algorithms
on generalization accuracy and data compression were
tested for three different types of nearest neighbor clas-
sifiers, on 7 linguistic learning tasks. As a consequence
of the permutation-invariance of the used classifiers and
the use of hill-climbing algorithms, a practical sampling
of the search space of data transformations was applied.
BSE. an attribute elimination algorithm, was found to
produce accurate classifiers, with consistently higher
data compression rates than BSJ-IG, an attribute join-
ing algorithm. The generalization accuracy of BSE is
comparable to that of BSJ-IG.
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Some evidence hints that attribute joining may be
more succesful — both for compression and accuracy
- for classifiers employing smoothing techniques, e.g.
PEBLS-like algorithms which select a nearest neighbor
from a nearest neighbor set using frequency informa-
tion. This type of classifier was able to trap at least
one important attribute interaction in the STRESS do-
main, offering extended insight in the underlying learn-
ing task. Further evidence is needed to confirm this
conjecture, and may shed further light on the question
whether and how linguistic learning tasks could benefit
from attribute interaction. An alternative line of re-
search to be pursued will address classifier models that
allow for linear encoding of linguistic learning tasks:
these models will allow investigations into corrections
on the linearity of linguistic tasks.
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